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Energy Conservation and Pomeron Loops in High Energy Evolution
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We present a formalism which modifies the Mueller Dipole Model such that it incorporates energy-
momentum conservation as well as important colour suppressed effects in the cascade evolution. The formalism
is implemented in a Monte Carlo simulation program, and the results are compared to inclusive data from HERA
and the Tevatron. We here find a generally very good agreement between our model and the experimental data.
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I. INTRODUCTION

To leading log or NLL accuracy the cross section for high
energy ep or pp scattering is determined by the BFKL evo-
lution equation. The solution corresponds to a powerlike in-
crease for high energies, or a gluon density which grows like a
power for small values of xBj. Such a growth cannot continue
indefinitely, but must be followed by a region of saturation,
when the gluon density otherwise would become too high.

Saturation and rescattering is more easy to treat in trans-
verse coordinate space than in momentum space. A dipole
cascade model for small x evolution has been formulated by
Mueller [1–3]. This formalism leads to the leading log BFKL
equation but takes also into account unitarisation effects due to
multiple scatterings between partons from two colliding par-
ton cascades. In Mueller’s model dipoles in the same cascade
are, however, not allowed to interact. Therefore the model
does not take all saturation effects into account, and the result
depends on the Lorentz frame used in the calculations.

Another problem is that Mueller’s cascade is only correct
to leading log(1/x) accuracy. An important contribution to
the non-leading corrections is related to energy-momentum
conservation. In this talk I want to discuss an extention of
Mueller’s model, presented in ref. [4], which includes both
effects of energy momentum conservation and saturation ef-
fects within the individual cascades before the collisions. The
formalism is implemented in a MC simulation program, and
I will also present some applications to DIS at HERA and to
high energy pp collisions.

II. THE MUELLER DIPOLE MODEL

In Mueller’s model one starts with a qq̄ pair, heavy enough
for perturbative calculations to be applicable, and calculates
the probability to emit a soft gluon from this pair. Here the
quark and the antiquark are assumed to follow light-cone tra-
jectories, and the emission of the gluon is calculated in the
eikonal approximation. Adding the contributions to the emis-
sion from the quark and the antiquark, including the interfer-
ence, the probability for a dipole (xxx,yyy) with endpoints in posi-
tions xxx and yyy, to split into two dipoles (xxx,zzz) and (zzz,yyy) is given

by

dP
dY

=
ᾱ
2π

d2zzz
(xxx−yyy)2

(xxx−zzz)2(zzz−yyy)2 (1)

Here xxx, yyy, and zzz are two-dimensional vectors in transverse co-
ordinate space, ᾱ≡ Ncαs/π, and Y =log(1/x) denotes the ra-
pidity, which acts as the time variable in the evolution process.

In the large Nc limit the two new dipoles emit softer gluons
independently, with the decay probability given by eq. (1). In
the same limit the emission of further dipoles factorizes pro-
ducing a cascade where the number of dipoles grows expo-
nentially with Y (corresponding to a power 1/xλ).

When two dipole cascades collide, the individual cross sec-
tion between two dipoles (xxxi,yyyi) and (xxx j,yyy j), due to single
gluon exchange, is given by

fi j =
α2

s

8
ln2

(
(xxxi−xxx j)2(yyyi−yyy j)2

(xxxi−yyy j)2(yyyi−xxx j)2

)
(2)

The sum ∑ fi j then corresponds to single pomeron exchange.
At high energies ∑ fi j can be large, and in an eikonal approxi-
mation the contributions from multiple pomeron exchange ex-
ponentiates and the cross section saturates.

III. ENERGY MOMENTUM CONSERVATION

We note that the expression in eq. (1) has non-integrable
singularities at zzz = xxx and zzz = yyy. In numerical calculations
it is therefore necessary to introduce a cutoff, ρ, such that
(xxx− zzz)2,(zzz− yyy)2 ≥ ρ2. The scattering probability for small
dipoles is, however, suppressed in such a way that the total
cross section has a finite limit when ρ→ 0.

A small dipole means that we have two well localized glu-
ons in the transverse plane, and these gluons must then have a
correspondingly large transverse momentum. If these small
dipoles are interpreted as corresponding to real emissions
with p⊥ ∼ 1/r, it would imply a severe violation of energy-
momentum conservation. Therefore such dipoles have to be
interpreted as virtual fluctuations, and will not be present in
exclusive final states.

It is earlier realized that energy conservation has an im-
portant effect on the evolution of parton cascades [5]. In
ref. [6] we presented a formalism to take into account energy-
momentum conservation in Mueller’s model, using the Linked
Dipole Chain (LDC) model [7] as a guidance.
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Figure 8: Schematic picture of a dipole swing. The two dipoles (xxx1, yyy1) and (xxx2, yyy2) are trans-

formed into two new dipoles (xxx1, yyy2) and (xxx2, yyy1) after a recoupling of the colour flow. The initial

chain of dipoles is replaced by a new chain stretching between the original qq̄ pair, with red colour,

and a loop of dipoles, with blue colour.

frame this process must be interpreted as the result of gluon exchange between two dipoles

in the cascade. It then corresponds to the replacement of two dipoles with two new dipoles

within the evolution of the cascade. This process has been called a “dipole swing” and is

illustrated in fig. 8. As it represents the dipole–dipole scattering cross section in (2.2) it

ought to be proportional to α2
s
/8, and therefore effectively suppressed. We ought to point

out that fig. 8 is only a schematic picture showing how the dipoles are connected to each

other, and does not represent the transverse size of the dipoles. In fact, the swing process

is more likely to replace two dipoles with two smaller dipoles, as discussed below.

Including the dipole swing it is in fact possible to generate any kind of colour loop.

Thus all loops formed when the expanding “tentacles” in fig. 7 join can be generated by

the original dipole splitting process together with the dipole swing. This is illustrated in

fig. 9, which shows how a dipole splitting process in the evolution towards the left can also

be visualized as a pomeron fusion process generated by the dipole swing, when the process

is evolved in the opposite direction.

4.2.2 Colour Multipoles

As mentioned above a second effect of finite Nc is the formation of colour quadrupoles

and higher multipoles. In fact, it can be seen in the complete version of the B–JIMWLK

equations that more complicated colour structures appear at each step of the evolution.

Obviously these complicated colour structures imply that one loses the simple picture of

a system of dipoles, which evolve through simple splittings. Nevertheless, in view of the

success of the time-like dipole cascades in e+e−-annihilation it may be possible to find a

working approximation within the dipole framework also in this case. We may then try to

approximate a quadrupole as two dipoles where those formed by the closest colour–anti-
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FIG. 1: Schematic picture of a colour recoupling, or dipole swing.
The two dipoles (xxx1,yyy1) and (xxx2,yyy2) are transformed into two new
dipoles (xxx1,yyy2) and (xxx2,yyy1) after a recoupling of the colour flow. The
initial chain of dipoles is replaced by a new chain stretching between
the original qq̄ pair, red colour, and a loop of dipoles, blue colour.

We used this formalism in a MC program and found that
the number of dipoles grows much more slowly, and the onset
of saturation is correspondingly delayed. In fact it is found
that in DIS the unitarity effects become quite small within the
HERA energy regime.

An important consequence of energy-momentum conserva-
tion is that it implies a dynamical cutoff, ρ(∆y), which is large
for small steps in rapidity, but gets smaller for larger steps ∆y.
Besides its physical effects reducing the growing gluon den-
sity, energy-momentum conservation also simplifies the MC
treatment, since large numerical complications in a MC with-
out energy conservation, as discussed in [8], are not present.

IV. FINITE Nc EFFECTS IN DIPOLE LANGUAGE

As mentioned above, in Mueller’s dipole model saturation
effects are included from multiple interactions in a collisions
between two cascades, but not in the evolution of each cascade
separately. The multiple dipole-dipole interactions due to
gluon exchange can give rise to closed loops of colour dipoles,
and in a Lorentz invariant formalism such loops must be pos-
sible also within the individual parton cascades. The dipole-
dipole scattering in eq. (2) is proportional to α2

s , and therefore
formally colour suppressed compared to the dipole splitting
process in eq. (1), which is proportional to ᾱ = Ncαs/π. A
mechanism giving dipole loops within the evolution cascade
must therefore also be colour suppressed, and thus could not
be included in Mueller’s cascade, which is only exact to lead-
ing order in Nc.

The dipole loops are related to triple pomeron couplings
and to the pomeron merging process. Several attempts have
been presented to describe pomeron merging within the dipole
formalism, see e.g. refs. [9, 10]
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FIG. 2: The γ∗p total cross section shown for different Q2. The solid
lines include the dipole swing while the dashed lines are without the
dipole swing. Data points are taken from [11, 12].
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FIG. 3: The effective slope measured at different Q2. The solid line is
our result including the dipole swing while the dashed line is without.
Filled circles are data from ZEUS[12] while filled[11] and open[13]
squares are data from H1.

With a finite number of colours also colour quadrupoles and
higher multipoles can be produced in the evolution. This can-
not be described exactly in a factorized form, but it may be
possible to find an improved approximation to the colour field
in terms of two dipoles formed by nearby charge-anticharge
pairs. This will give rise to a recoupling of the dipoles in the
dipole chain corresponding to a “dipole swing” as illustrated
in Fig. 1. Such a swing could also be caused by gluon ex-
change inside the cascade, and it will result in closed loops in
the dipole chains. In ref. [4] we studied a formalism where
loops can be formed by such a swing, with a probability which
is suppressed by a factor ∼ 1/N2

c . The strength of this recou-
pling should be such that the result is Lorentz frame indepen-
dent.
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V. RESULTS

Our formalism has been applied to γ∗p and pp scattering
using a MC simulation program. The coupling of a virtual
photon to a qq̄ dipole is well known. The proton structure has
to be modelled, and is in our calculations represented by three
dipoles in a triangular configuration.

The results for DIS are presented in Figs. 2 and 3. Fig. 2
shows the total cross section and Fig. 3 shows the result for
the logarithmic slope, λeff = d(logσ)/d(log1/x), for different
values of Q2. We see that there is a generally good agreement
between the model and the experimental data for all points
in the interval 1GeV2 . Q2 .100 GeV2. We also see that the
effect of saturation is small, and that including the swing gives
only a minor correction.
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FIG. 4: The total cross section for pp scattering as a function of the
cms energy

√
s. Here results are shown for evolution with and with-

out the dipole swing mechanism. The results for the one pomeron
cross sections are also shown. Also shown are the results obtained in
the “lab” frame where one of the protons is almost at rest.

Results for the pp total cross section are shown in Fig. 4.
Here the saturation effects from multiple scattering and the
dipole swing are much larger. The figure also shows results
obtained in a frame where one of the protons is at rest. It
was stressed above that the saturation effects in the cascade
have to imply that the result is frame independent. In Fig. 4
we note especially that including the swing indeed makes the
result practically independent of the Lorentz frame.

VI. CONCLUSIONS

A formalism is presented to include energy conservation
and saturation effects corresponding to pomeron merging in
Mueller’s dipole cascade model. Results from MC simula-
tions agree well with experimental data for DIS and pp to-
tal cross sections. We conclude that although we do not yet
have an explicitely frame independent formalism, it appears
as if our implementation of the dipole swing does include
the most essential features of the pomeron merging process.
Our formalism is, however, still only applicable for total cross
sections. The energy conservation constraint does reduce the
number of virtual dipoles, but they are not totally eliminated.
In future work we want to develop the formalism further in or-
der to also be able to describe the properties of exclusive final
states.
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