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One-Dimensional Lattice Gas Models with Infinitely Many Absorbing States
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We determined, by numerical simulations, the critical behavior one-dimensional systems with infinitely many
absorbing states. These models are modified versions of the conserved lattice gas model in which two adjacent
active particles instead of just one can jump to their neighboring sites. The models studied here are examples
of systems with many absorbing states and order parameter coupled to a nondiffusive conserved field that show
nontrivial critical behavior.
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I. INTRODUCTION

One of the major tasks in the study of nonequilibrium phase
transitions is to determine the basic ingredients that distin-
guish the different universality classes. Nonequilibrium phase
transitions to a unique absorbing state generically belong to
the universality class of directed percolation. This conjecture
has been proposed by Grassberger [1] and later extended by
Grinstein et al [2]. It establishes that systems with a scalar
order parameter exhibiting a continuous phase transition to a
unique absorbing state generically belong to the universality
class of directed percolation. Directed Percolation defines a
precise universality class (described by the Reggeon field the-
ory) which is very robust with respect to the introduction of
microscopic modifications.

Subsequently Rossi at al [3] have proposed a new uni-
versality class for the critical behavior of systems that pos-
sess infinitely many absorbing states and a nondiffusive con-
served field. Several models have been studied to check this
new finding, as the fixed-energy sandpile (FES) models [4–6],
the conservative lattice gas (CLG) model [3, 7, 8], the con-
served transfer threshold process (CTTP) [3, 9] and reaction-
diffusion systems [10]. More recently, the Langevin equation
describing systems in which the order parameter is coupled to
a conserved nondiffusive field [11] has been solved numeri-
cally and the critical exponents have been determined [12, 13].

With the exception of the CLG, all models mentioned above
present a nontrivial critical behavior in one dimension. The
CLG model defined on a one-dimensional chain can be solved
exactly [14] and shows a classical critical behavior. For in-
stance, the order parameter vanishes linearly when half of the
sites are occupied. In this paper, we consider three modified
versions of the CLG model, two of them exhibiting nonclas-
sical critical behavior, which is compatible with calculation
from a Langevin equation [12, 13]. Whereas in the ordi-
nary CLG models just one active particle jumps to a nearby
empty site, in the modified versions two active particles jump
to nearby empty sites. This process, that produces two-site
instead of just one-site vacancies, together with the conserva-
tion of particles enhances the creation of active sites specially

when the density of particles is less then but near 0.5 and may
give rise to an active state for a density strictly less than 0.5.

II. MODELS

The models we have studied are defined on a chain ofL
sites with periodic boundary conditions. A configuration is
specified by the occupation variableηi that assumes the value
ηi = 0 if the sitei is empty andηi = 1 if the sitei is occupied
by a particle. Double or multiple occupancies are forbidden.
Isolated particles (particles with empty next-nearest-neighbor
sites) are inactive and do not move. Adjacent sites occupied
by particles are active and repel each other via repulsive short-
range interactions. As a product of this interaction, the two
active particles may jump to their neighborhoods. The contin-
uous time Markovian dynamics consists of a series of repul-
sions events in active states.

Differently from the dynamics of the CLG model, in which
just one particle jumps at each time step, in the present models
both adjacent active particles may jump to their neighboring
sites. Three versions are studied that are called model 1, 2 and
3, which differ by their neighborhood. In model 1 the neigh-
borhood is composed by the first-neighbor site only. In model
2, by the first and second neighboring sites, and in model 3, by
the first, second and third neighboring sites. In addition, the
neighborhood of the right (left) particle is at its right (left). If
there aren empty site in the neighborhood, the jumping prob-
ability to an empty site equals 1/n. If all sites of the neighbor-
hood are occupied the particle remains at its place. In model 2,
we have also considered a simpler model that consists in for-
bidding jumps to the second nearest-neighbor site whenn= 1.
Thus, in this model, forn = 1, active sites can only jump to
their first nearest-neighbor site.

In all models studied here, the number of particles is con-
served and the density of particlesρ works as the control para-
meter. In the regime of small densities, the system falls in one
of its many absorbing states (without repulsions). Increasing
the density of particles, a phase transition takes place to the
active state (with repulsions) at the critical densityρc. The
order parameter of the system is the density of active particles
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FIG. 1: Pair densityρp of model 2 as a function of particle densityρ
for several values of the system sizeL.

ρac. In actual calculation, we have used the density of pairs of
adjacent particlesρp defined as the average

ρp =
〈Np〉

L
, (1)

whereNp is the total number of adjacent particles.

III. METHODS

To locate the critical densityρc for these models, we have
used three different methods. The first one consists in deter-
mining the critical density by seeking a power-law behavior
of the order parameter on the system sizeL. For sufficient
large systemsL and close to the critical point, finite-size scal-
ing [15] establishes that the order parameter may be written in
the form

ρp(∆,L) = L−β/νR(L1/ν∆), (2)

where∆ ≡ ρ−ρc and the scaling functionR(x)∼ xβ, for large
x, since the behavior of the order parameter in this limit is
given by [15]

ρp ∼ ∆β. (3)

In the models studied where the tuning parameter is the den-
sity of particles, we can only changeρ in increments of 1/L.
To get around this restriction, values ofρp for densities be-
tween those accessible for a givenL were obtained via inter-
polation.

A second criterion used to locate the critical point consists
in determining the order parameter moment ratiom(ρ,L) =
〈N2

p〉/〈Np〉2. According to finite size scaling,m(ρ,L) obeys
the scaling relation

m(ρ,L) = φ(L1/ν∆), (4)
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FIG. 2: Pair densityρp for model 3 as a function of particle density
ρ for several values of the system sizeL.

whereφ(x) is a universal function. This criterion is very useful
to determine the transition because it is invariant with respect
to the system sizeL at the critical point.

A third criterion to locate the critical point consists in per-
forming time-dependent simulations. This approach consists
in studying the evolution of the system over a large number
of independent trials (we have used from 5000 to 8000 trials),
always starting with an initial configuration very close to an
absorbing state with only a pair of particles. Each indepen-
dent trial consists in choosing a different particle to become
active and the system evolutes until a maximum timetM. At
each regular interval, we average the number of active pairs
np = 〈Np〉 and the survival probabilityPs(t) (defined as the
probability in each time unity the system does not reach the
absorbing state). For long times in the critical point these vari-
ables display power-law behavior, given by

np(t) ∼ tη, (5)

and

Ps(t) ∼ t−δ. (6)

In off-critical regimes (supercritical and subcritical) we ex-
pect deviations from this power law behavior. Thus, this cri-
terion is useful to locate the critical point.

IV. NUMERICAL RESULTS

We performed extensive simulations of the models defined
above. The initial condition is generated by distributingN par-
ticles randomly amongL sites. A step of the simulation begins
by randomly choosing a pair of active particles. This is done
by randomly choosing a particle and its next-nearest-neighbor
site. If this neighbor is occupied by a particle these two parti-
cles jump to their neighborhood according to the rules defined
in section II. For the simulations, we have used systems rang-
ing fromL = 1000 toL = 8000 sites and 5×107 Monte Carlo
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FIG. 3: Pair densityρp versus system sizeL for model 2, for various
values of the particle density.

steps. A Monte Carlo step occurs when all active sites on av-
erage are visited. For these models, we did not permit that the
system fall into the absorbing state by maintaining at least an
active site.

The phase transition for model 1 occurs atρc = 1/2 and
was found to be discontinuous with a jump equal to 0.125.
For models 2 and 3, the transition is continuous. In Figs. 1
and 2, we show the behavior of the order parameter versus
the density of particles for several values of the system size
L. To locate the critical point we have used three methods
as mentioned above. Using the cumulant method for lattices
L = 4000 andL = 8000 the crossings occur atρc = 0.4527(1)
and ρc = 0.42475(5) for models 2 and 3 respectively. We
have also performed log-log plots ofρp versusL for several
values ofρ, as shown in Fig. 3 for model 2, and in Fig. 4 for
model 3, to verify the dependence of the order parameter on
the lattice size. Using this criterion we findρc = 0.45270(5)
andβ/ν = 0.223(5) for model 2. For model 3, considering
the critical densityρc = 0.4248, we obtained the critical ex-
ponentβ/ν = 0.213(4), which agrees with the value obtained
for model 2. It also agrees with the valueβ/ν = 0.217(9)
obtained by Ramasco [12].

After obtaining the critical density, we used the values of
ρc to calculate the critical exponentsβ. In Figs. 5 and 6, we
have a log-log plot ofρp versus∆ in the supercritical regime.
The slope of the straight line fitted to the data point forL =
8000 leads toβ = 0.277(3), for model 2, andβ = 0.278(2) for
model 3.

We have also performed time-dependent simulations for
models 2 and 3 to determine the exponentsδ andη by means
of equations (5) and (6).

¿From the power law behavior we found values forρc that
are in agreement with the other methods. The following re-
sults are found:δ = 0.13(1) andη = 0.36(2), for model 2,
andδ = 0.13(1) andη = 0.33(3), for model 3. To calculate
the averages at each time we have used from 5000 to 8000
trials on a lattice of sizeL = 2000. For comparison we have
used a different way to determine the exponentδ for model
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FIG. 4: Pair densityρp versus system sizeL for model 3, for various
values of the particle density.
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FIG. 5: Pair densityρp as function of∆ ≡ ρ−ρc for values of sys-
tem sizeL ranging from 1000 to 8000 in the supercritical regime for
model 2.
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FIG. 6: Pair densityρp as function of∆ ≡ ρ−ρc for values of sys-
tem sizeL ranging from 1000 to 8000 in the supercritical regime for
model 3.
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FIG. 7: Decay of the pair densityρp for model 3 as function of time
for several values of the particle densityρ and forL = 10000.

3. In this approach, the density of pairsρp of particles was
measured as a function of time starting from a configuration
obtained by distributingN particles randomly. At the critical
point it behaves as [15]

ρp ∼ t−δ. (7)

The average pair density was calculated by using 5000 trials in
a lattice of sizeL = 10000. The data are shown in Fig. 7, from
which we obtainδ = 0.120(5), which is in fair agreement with
the above result.

The critical exponents obtained for model 2 are presented
in Table I. For comparison we also show in the same table
the exponents obtained by Ramasco et al [12] and Dornic et
al [13] for systems in which the order parameter is coupled

to a conserved nondiffusive field. The DP universality class
exponents are also shown. The result forβ is close to the
DP exponent as well as to the result obtained by Ramasco
et al [12]. The values of the other exponents in Table I are,
however, far from the DP values. The values forβ/ν and for
η are close to the results by Ramasco et al [12] and that ofδ
is very close to that found by Dornic et al [13].

TABLE I: Critical exponents of model 2 compared with results com-
ing from the Langevin approach for systems with order parameter
coupled to a conserved nondiffusive field [12, 13] and DP universal-
ity class exponents [15] in one dimension.

β β/ν δ η Obs.
0.277(3) 0.223(5) 0.13(1) 0.36(2) model 2
0.29(2) 0.217(9) 0.140(5) 0.365(10) [12]

0.125(2) [13]
0.2765 0.2521 0.1595 0.3137 DP [15]

V. CONCLUSION

We have presented simple one-dimensional systems with
infinitely many absorbing states and conserved particle num-
ber that possess a non trivial critical behavior. These models
are modified versions of the original CLG model. In model
1 the phase transition is discontinuous. The exponents deter-
mined numerically for models 2 and 3 are in agreement with
results by Ramasco et al [12] and by Dornic et al [13] for a
one-dimensional system with the order parameter coupled to
a conserved nondiffusive field.
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[6] R. Dickman, T. Toḿe, and M. J. de Oliveira, Phys. Rev. E66,

016111 (2002).
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