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In this paper we study damage spreading in a one-dimensional model under two dynamics introduced
by Hinrichsen and Domany. In particular, we study the e�ects of synchronous and asynchronous
updating on the spreading properties. We show that the damage does not spread when the second
dynamic is implemented in a synchronous way. We �nd that the rules for updating the damage
produced by this dynamics, as the temperature goes to in�nity and a certain parameter � is zero,
are equivalent to those of Grassberger's well-known model A cellular automaton.

I Introduction

The damage spreading technique was proposed by

Kau�man thirty years ago in the context of biologically

motivated cellular automata [1]. More recently, this

concept was extended to analyse kinetic Ising and Potts

models which are described by well-known Hamiltoni-

ans and exhibit critical properties [2]. The technique

requires following the behavior of two similar samples

(slightly di�erent initial conditions) under same ther-

mal noise. Usually, the evolution is done by means of

Glauber, Metropolis or heat-bath updating. However,

in order to understand the role of the dynamics, other

kinds of updating have been studied. In fact, this was

the goal of a recent paper by Hinrichsen and Domany

[3] which describes the spreading properties in a one-

dimensional model submitted to two kinds of updating

(henceforth named I and II). The �rst case (dynamics

I) is very similar to Glauber dynamics but depends on

the sign of the two neighbours instead of the site itself.

The new value of the variable at the site i is:

�i(t+1) =

�
+sign(qi(t)� z) if �i�1�i+1 = +1
�sign(1� qi(t)� z) if �i�1�i+1 = �1

(1)

where �i (t) = �1, z is a random number (between

zero and 1) and the probability qi(t) is given by

qi (t) =
ehi(t)

ehi(t) + e�hi(t)
(2)

with

hi(t) =
J

kT

X
j

�j (t)

and J the exchange coupling constant (H =

�J
P

<i;j>

�i�j). Dynamics II combines the Glauber up-

dating with information about three sites (two �rst

neighbours and the site itself). In this case, the new

value for � is obtained by

�i(t+1) =

�
+sign(qi(t)� z) if �i�1�i�i+1 = +1
�sign(1� qi(t)� z) if �i�1�i�i+1 = �1

(3a)

if a random number r is greater than a given parameter

�. If r < �, the update follows Glauber dynamics

�i(t+ 1) =

�
+sign(qi(t)� z) if �i(t) = +1
�sign(1� qi(t)� z) if �i(t) = �1

(3b)

The two rules above can be combined in one updating,

by introducing another parameter, y. Thus,

�i(t+ 1) =

�
+sign(qi(t)� z) if yi = +1
�sign(1� qi(t)� z) if yi = �1

(4)

where

y = �i [(1 + �i�1�i+1) + (1� �i�1�i+1) sign (�� �z)] ;

�z is a random number between 0 and 1. In both cases

there is a damage spreading transition, but the critical

properties are totally di�erent. Whereas the transition

in case I belongs to the directed percolation universality
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class, dynamics II leads to a \parity-conserving" phase

transition. In the �rst case, the evolution of the damage

(di�erence between two samples) can be described by

Domany-Kinzel cellular automata rules, at least when

T = 1 [3]. Such a mapping is not known for the sec-

ond case. In this paper we address two questions: �rst,

What is the e�ect of synchronization on the spreading

of the damage; second, Is there a known model that

dynamics II can be mapped to?

II The role of updating

To implement the dynamics presented above, we have

at least two possibilities: updating one site at a time

(asynchronous or \continuous dynamics") as is usual in

simulation of Ising-like models, or changing all the sites

at the same time (parallel or synchronous updating),

usually done in cellular automata. Our simulations for

dynamics I show that damage spreading occurs in both

cases. We checked this conclusion by simulating the

Domany-Kinzel cellular automaton (related to dynam-

ics I, at T =1, via a mapping found by Hinrichsen and

Domany) with continuous dynamics. Evolution of the

damage is the same in both cases (see Fig. 1). However,

for dynamics II, the situation is completely di�erent.

Depending on the kind of the updating (synchronous or

asynchronous) damage spreading may or may not occur

(see Fig. 2). In their study Hinrichsen and Domany [3]

used only parallel updating[4]. If they had used contin-

uous dynamics they would not have observed damage

spreading, as we have shown in our simulations. In the

next section, we will obtain a mapping of dynamics II

to the model A cellular automaton of Grassberger et

al.[5]. This will allow a better understanding of our

results on damage spreading.

III Mapping to Grassberger's

model A

We begin by setting � = 0 (which implies working only

with the equation (3.a) for updating the spins) and tak-

ing high temperature limit (T ! 1). In this case,

equation (3.a) becomes

�i(t+ 1) = �i�1�i�i+1sign(0:5� z) (5)

which means that the evolution of the damage ( � ) fol-

lows deterministic rules which depend on the site itself

and the two nearest neighbours:

c

�
t : 111 110 101 100 011 010 001 000

t+ 1 : 0 0 0 1 0 1 1 0
(6)

Now we observe that these rules correspond to the one-dimensional cellular automaton obeying rule 22 (in Wolfram's

classi�cation), which is known to exhibit chaotic behavior. On the other hand, we note that the rule 22 is exactly

the limit of the Grassberger's model A below with p = 1. Thus the damage spreads.

t : 111 110 101 100 011 010 001 000
t+ 1 : 0 1� p 0 1 1� p 1 1 0

(7)

In this sense, we can conclude that Hinrichsen-Domany's dynamics II exhibits damage spreading at least when

� = 0 and T =1 . On the other hand, for � = 1, and T =1; equation 4 can be simpli�ed to

�i(t+ 1) = �isign(0:5� z) (8)

which implies another kind of updating for the damage. We �nd that the local damage in this case evolves exactly

as the one-dimensional cellular automaton governed by the rule 204 (again in Wolfram's notation).

�
t : 111 110 101 100 011 010 001 000

t+ 1 : 1 1 0 0 1 1 0 0
(9)

We remark that damage does not spread in this limit because the value of � is conserved in the evolution

(0! 0 and 1! 1). The absence of the damage spreading in this case is not surprising, since for � = 1 we recover

Glauber dynamics.
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Figure 1. Patterns created with Domany-Kinzel automaton
rules (with p1 = 0.83 e p2 = 0). (a) Synchronous updating
and (b) Asynchronous updating.

Figure 2. Patterns created with model A cellular automaton
rules (with p = 0.3) from initial states containing a single
kink. (a) Synchronous updating and (b) Asynchronous up-
dating.

IV Conclusions

We studied damage spreading in a one-dimensional
model evolving under two di�erent dynamics, proposed
by Hinrichsen and Domany[3]. We showed that syn-
chronous updating can destroy the damage spreading
when the dynamics II is used. In addition, we ob-
tained a mapping of dynamics II to the model A cellu-
lar automaton introduced by Grassberger et al.[5]. In
this light, it is not strange that critical exponents ob-
tained by HD were in the parity conserving universality
class [6].
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