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In this paper we use the Ziglin-Yoshida method to discuss the determination of non-
integrability domains for some classes of homogeneous hamiltonian systems. In particu-
lar, we demonstrate the non-integrability of the St�ormer problem through the reduction
of the system to a two-dimensional homogeneous potential. We have also found the non-
integrability domains of potentials of the form V = qm1 qn2 (Aq

2
1 +Bq22)

p and V = qm1 qn2 q
p
3 :

I. Introduction

In the last two decades or so, there has been an

increasing interest on the analysis of the integrability

of dynamical systems. An integrable system is char-

acterized by regular (periodic) behavior for (almost)

all initial conditions and all time; in this case, we

can get global information on its long-term behavior.

Non-integrable systems have regions in the phase space

where the motion is irregular, or chaotic; in the context

of dynamical systems, chaos means an extreme sensi-

tivity of the solutions to the choice of initial conditions.

Therefore, it is an important problem to �nd methods

for the identi�cation of integrable or non-integrable sys-

tems.

The notion of integrability is related to the existence

of �rst integrals. So the question above can be stated

in the following form: how can we identify the values

of the parameters for which the equations of motion

have (or not) �rst integrals? Several methods for the

identi�cation of classes of integrable systems have been

developed: singularity analysis [1], direct construction

of polynomial �rst integrals [2,3], linear compatibility

method [4], Lie and Noether symmetry analysis [5,6],

construction of Lax's pairs [7], the Carlemann embed-

ding method [8], the quasimonomial formalism [9] etc.

On the other side, the proof of the non-integrability

of a given system is usually a di�cult task. The ten-

tative of �nding a generic algorithm for proving the

non-integrability of a general dynamical system has not

yet been accomplished and there are some evidences

that, in the general case, the mathematical problem

belongs to the class of undecidable mathematical prob-

lems. However, particular methods have been devel-

oped for analyzing the non-integrability of hamiltonian

systems.

Hamiltonian systems have a particular importance

in physics and possess a peculiar mathematical prop-

erty: the sympletic structure. A hamiltonian system

with N degrees of freedom is Liouville integrable when-

ever N global �rst integrals, in involution, can be ob-

tained. Furthermore, if the level set (intersection) of

these integrals is compact and their gradient vectors are

linearly independent on the level set for a given initial

condition, then the motion is expressed as a quasiperi-

odic motion on an N-dimensional torus [10]. The proof

of the integrability of a hamiltonian system is based on

the exhibition of these N integrals of motion.

An important procedure in this direction was es-

tablished by Melnikov, starting from Poincar�e's results;

it permits to detect the non-integrability of a per-

turbed hamiltonian system. Poincar�e introduced the

concepts of homoclinic and heteroclinic orbits, linking

�xed points, and showed that perturbations of these or-

bits are sources of complex behaviors in dynamical sys-

tems. The importance of homoclinic orbits and of the

transversal homoclinic interception - i.e, the transversal

interception of unstable and stable manifolds of a �xed
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point - was de�nitively established with the Smale-

Birkho� theorem. This theorem shows that the exis-

tence of transversal homoclinic interceptions is a suf-

�cient condition for the existence of Cantor invariant

sets in which the periodic orbits are dense.

Melnikov's method gives a criterion for the exis-

tence of a transversal homoclinic interception in the

Poincar�e's section de�ned by the 
ux; a function which

measures the separation between the unstable and sta-

ble manifolds allows the detection of the interception.

A basic supposition for the application of this method

is that the non-perturbed Hamiltonian must have a

known separatrix, a situation that is not always sat-

is�ed. This method is well-known and is exposed in

some recent textbooks on non-linear systems [11]. An-

other possibility for proving the non-integrability of a

dynamical system is to prove directly the existence, in

the phase space, of a structure that is equivalent to a

Bernoulli shift or to a Smale horse-shoe.

Here we will limit ourselves to discuss another

method for the detection of non-integrable hamiltonian

systems, the so-called Ziglin-Yoshida analysis, and

to make some applications of this method for spe-

ci�c classes of homogeneous Hamiltonians with two and

three degrees of freedom. Some years ago, Ziglin [12]

has proven a powerful theorem which gives a necessary

condition for integrability and can thus be used to prove

the non-integrability of a given hamiltonian system. He

considered the Hamiltonian as a complex function, so

that the solutions can be taken as analytical functions

of the time t. He analyzed the monodromy properties

around particular solutions of the system and the con-

ditions for the non-existence of an additional integral

of motion. In Ziglin's original paper the motion of a

rigid body around a �xed point was considered as an

example.

Signi�cant advances in Ziglin's approach were made

by Yoshida [13]: he initially proved a theorem concern-

ing the non-integrability of homogeneous hamiltonian

systems, with two degrees of freedom, where the con-

ditions coming from Ziglin's results can be put in an

explicit and operational form. Some time latter, he es-

tablished a su�cient condition for the non-existence of

an additional �rst integral, global and analytical, for

homogeneous Hamiltonians with N degrees of freedom

[14]. In the last years the non-integrability domains of

several hamiltonian systems were discussed as applica-

tions of Ziglin-Yoshida's approach: H�enon-Heiles sys-

tem [15]; some generalized Toda lattices [16]; the one-

dimensional three body problem [13]; some perturbed

Kepler potentials [17]; the swinging Atwood machine

[18,19]; non-homogeneous polynomial potentials of de-

gree 3 or 4 [20]; truncated Toda lattice of any order

[20]; St�ormer problem [21]; two-dimensional homoge-

neous Hamiltonians with a velocity dependent poten-

tial [22]; the motion of a satellite around a planet with

an arbitrary shape [23]. We note that, in some of these

cases, the initial hamiltonian system has been trans-

formed to a homogeneous one by using a coordinate

transformation.

II. Ziglin-Yoshida analysis for homogeneous

Hamiltonians

The theorem proved by Ziglin depends on non-local

analysis and leads to necessary conditions for an ana-

lytical Hamiltonian to have global analytical �rst inte-

grals in the coordinates (pi; qi). The basic idea is to get

integrability conditions for the variational equations,

around a particular solution, showing that, if they are

not satis�ed, a hamiltonian system with N degrees of

freedom cannot have a complete set of N global ana-

lytical �rst integrals (including the Hamiltonian itself).

The variational equations are obtained by linearization

of the harniltonian equations of motion, around a par-

ticular solution, i.e, by making a very small variation

in the initial conditions and studying the evolution of

the separation of neighboring trajectories. If this evo-

lution is su�ciently complicated, as measured by the

behavior of the monodromy matrix, it is possible to

demonstrate the non-existence of additional analytical

�rsts integrals.

The fact that Ziglin's method is based on the behav-

ior of the variational equations, which are linear equa-

tions, is one of its advantages because we must consider

only �rst order expansions. However, one important

limitation of this procedure comes from this same fact:

it does not allow the analysis of situations were the inte-

grability property is broken at higher orders. Some in-

teresting links between Ziglin's results and the singular-

ity analysis, through Kowalewskaia-Painlev�e test, were

discussed in reference [24]. We will not discuss here

Ziglin's main theorem. Yoshida [13] furnished a general

presentation and a new demonstration of this theorem;

the original formulation of the theorem can be �nd in

[12]. We will expose now Yoshida's results concern-

ing the application of Ziglin's theorem for homogeneous

Hamiltonians. We begin with homogeneous hamilto-

nian systems with two degrees of freedom. The hamil-



tonian equations for a two-dimensional system have the

form

dqi
dt

=
@H

@pi
;

dpi
dt

= �
@H

@qi
; (1)

with

H = (p21 + p22)=2 + V (q1; q2): (2)

We will make the supposition that the potential

V (q1; q2) is a homogeneous potential:

V (aqi) = akV (qi):

There exists, in that case, a particular solution of the

equations (1) with the form

qi = cif(t); pi = cif
0(t); (3)

where f(t) is solution of the equation

f 0 + fk�1 = 0 (4)

and the constant vector ci = (c1; c2) is the solution of

the algebraic equation

ci = (@V=@qi)(c1; c2): (5)

The variational equation of (1), around the partic-

ular solution (3), will be

d�i
dt

= �i;
d�i
dt

= �fk�2Vij�j )
d2�i
dt2

= �fk�2Vij�j ;

(6)

where the Hessian matrix Vij = @2V=@qi@qj is calcu-

lated in qi = ci, and

�qi = �i; �pi = �i:

With the diagonalization of Vij and with the determi-

nation of their eigenvectors and eigenvalues, equation

(6) can be expressed in terms of two variational equa-

tions; the �rst one is called normal variational equation

and the second is the tangential variational equation :

d2�1=dt
2 + �fk�2�1 = 0

d2�2=dt
2 + (k � 1)fk�2�2 = 0;

where

� = Tr[Vij(c1; c2)]� (k � 1):

By applying Ziglin's results to the case of

two-dimensional homogeneous hamiltonian systems,

Yoshida deduced some relations between the values of

the integrability coe�cient � and the existence of do-

mains of the parameters for which the system has not a

second analytical �rst integral, besides the energy. The

following theorem, whose demonstration can be �nd in

reference [13], summarizes Yoshida's results:

Theorem I

Let V (q1; q2) be a homogeneous potential function of

an integer degree k and compute the quantity (integra-

bility coe�cient) � de�ned by

� = Tr[Vij(c1; c2)]� (k � 1); (7)

where Vij is the Hessian matrix V (q1; q2) and (c1; c2)

is a solution of the algebraic equations

c1 = (@V=@q1)(c1; c2)

c2 = (@V=@q2)(c1; c2) (8)

If � is in the region Sk de�ned below, then the two de-

grees of freedom Hamiltonian system

H = (p21 + p22)=2 + V (q1; q2) (9)

is non-integrable, i.e., there cannot exist an addi-

tional integral which is complex analytic in (q1; q2) and

(p1; p2). The regions Sk are de�ned as follows:

c

(i) k3 � 3

Sk = f� < 0; 1 < � < k � 1; k + 2 < � < 3k � 2; :::; j(j � 1)k=2 + j < � <

j(j + 1)k=2� j; :::g;

(ii) S1 = R� f0; 1; 3; 6; :::; j(j + 1)=2; :::g;

(iii) S�1 = R� f1; 0;�2;�5; :::;�j(j + 1)=2 + 1; :::g;

(iv) k � �3

Sk = f� > 1; 0 > � > jkj+ 2; jkj � 1 > � > �3jkj+ 3; :::;

� j(j � 1)jkj=2� (j � 1) > � > �j(j + 1)jkj=2 + (j + 1); :::g;



where j is an integer.

Note that if k = 0;�2, such regions are not de�ned

by Theorem I. Indeed when k = - 2, the system is in-

tegrable. In this case, it will admit a second integral of

motion with the form:

I = (q1p2 � q2p1)
2 + 2(q21 + q22)V (q1; q2) (11)

This integral can be obtained from the Lie symmetries

of the equations of motion which describe the system.

They possess the following three symmetry generators:

U1 = @=@t

U2 = 2t@=@t+ q1@=@q1 + q2@=@q2

U3 = t2@=@t+ tq1@=@q1 + tq2@=@q2 (12)

These symmetry generators correspond to the time

translation symmetry, a scale symmetry and a special

conform symmetry, respectively. If k = 0 or k = 2, a

di�erent analysis is necessary for discussing the integra-

bility or the non-integrability of the system.

III. Homogeneous Hamiltonians w,m two de-

grees of freedom

We will give now some applications of Theorem I for

speci�c classes of homogeneous hamiltonians systems.

(a) Non-integrability of the St�ormer problem

The analysis of the motion of an electrically charged

particle in a dipole magnetic �eld was considered ini-

tially by St�ormer [25]. This problem is an important

one because of its applications to the case of the Earth's

magnetic �eld [26] (A historical summary of researches

on this problem can be found in reference [27]). Several

authors searched without success for the three integrals

of motion which would give the proof of the integrability

of this problem [28]. Dragt and Finn, by using topologi-

cal and numerical techniques, showed that, in this case,

the motion of trapped charged particles is expected to

be non-integrable [29]. Recently Jung and Scholz [30]

and Jung and R�uckerl [31] studied the classical scatter-

ing of the same problem and found numerical evidence

of chaotic behavior.

Let us consider the non-relativistic motion of a

charged particle q, with mass m, in the �eld of a mag-

netic dipole M. The hamiltonian of this system is

H = [p� (q=c)A]2=2m (13)

with

A = (M� r)=r3:

By choosing the z axis in the direction of M, i.e, if

M = (0; 0;M) we get from (13):

c

H = (p2x + p2y + p2z)=2 + (a=r3)(ypx � xpy) + (a2=2r6)(x2 + y2): (14)

with m = 1; r = (x2 + y2 + z2)1=2 and a = qM=c:

The equations of motion of this system are time-independent, axisymmetric and have also a scale symmetry.

The following quantities are conserved: the energy and the z component of the angular momentum:

Lz = xpy � ypx:

If we choose cylindrical coordinates (�; �; z), the Hamiltonian (14) becomes

H = (p2� + p2�=�
2 + p2z)=2 + (a2�2=2)(�2 + z2)�3 + ap�(�

2 + z2)�3=2 (15)



and p� = Lz = constant.

As far as the motion in � and z is concerned we

can regard H(p�; pz; p� = constant, �; z) as a reduced

Hamiltonian describing the two-dimensional motion in

the (�; z) plane. In particular, if we take p� = 0 the

reduced Hamiltonian will be

H = (p2� + p2z)=2 + (a2�2=2)(�2 + z2)�3 (16)

If the original Hamiltonian (15) is integrable with a

third integral of motion, then the reduced Hamiltonian

(16) should be integrable too. This reduced Hamil-

tonian (16) has a homogeneous potential with degree

k = �4:

V = (a2�2=2)(�2 + z2)�3 (17)

From (8), we get the algebraic equations:

c1 = a2c1(c
2
1 + c22)

�3 � 3a2c31(c
2
1 + c22)

�4

c2 = �3a2c21c2(c1 + c22)
�4: (18)

A solution for (18) is

c1 = (�2a2)1=6; c2 = 0:

The Hessian matrix becomes

�
�
�
�

�5 0
0 3=2

�
�
�
�

(13)

and, therefore, the integrability coe�cient � for the po-

tential (16) will be

� = Tr[Vij(c1; c2)]� (k � 1) = 3=2: (19)

In this case, Theorem I gives us the following non-

integrability domains:

S�4 = f� > 1; 0 > � > �2;�5 > � > �9; ::g: (20)

As �, from (19), falls in the region S�4, we conclude

that the potential (17) is a non-integrable one; there-

fore, the non-integrability of the St�ormer problem, de-

scribed by the Hamiltonian (15), is proved. Another

proof of the non-integrability was given independently

by Noguera [32], who showed the inclusion of the Be-

noulli shift as a subsystem of the invariant manifolds of

the Lyapounov's orbit in the isolated equilibrium point.

It can be observed that if we make a generalization

of the potential (17), by including the possibility of an

anisotropy

V = �2(�2 + 
z2)�3;

with 
 > 0, the integrability coe�cient becomes 
 =

3
=2 and, by Theorem I, the system will be out of the

domain of non-integrability if 
 2 (0; 2=3), although its

integrability is not assured.

(b) Hamiltonians with the form H = p21=2+p22=2+

qm1 qn2 (Aq
2
1 +Bq22)

p

We analyze now the non-integrability domains for

systems with Hamiltonians with the general form

H = p21=2 + p22=2 + qm1 qn2 (Aq
2
1 +Bq22)

p (21)

This kind of Hamiltonian has a homogeneous potential

of degree k = m+n+2p. We will suppose that k is an

integer. If we take the algebraic equations (8), for this

case, we get

c

c1 = mcm�1
1 cn2 (Ac

2
1 +Bc22)

p + 2Apcm+1
1 cn2 (Ac

2
1 +Bc22)

p�1

c2 = ncm2 c
n�1
2 (Ac21 +Bc22)

p + 2Bpcm1 c
n+1
2 (Ac21 +Bc22)

p�1 (22)

d



As the general situation is very complicated for dis-

cussing all possibilities, we will consider some particular

cases.

(i) Take c2 = 0 and c1 6= 0. This solution occurs if

n = 0. Equations (22) lead to

c1 = [(m+ 2p)Ap]1=(2�k); c2 = 0 (23)

The potential will have the form

V = qm1 (Aq21 +Bq22)
p (24)

with degree k = m+2p. If we calculate the integrability

coe�cient �, we �nd

� = 2Bp=kA: (25)

If A = B; we get

� = 2p=k = 2p=(m+ 2p): (26)

The reduced Hamiltonian (16) of the St�ormer problem

that we have found above is a particular case of (24),

with m = 2, p = �3, k = �4, � = 3=2: Other interest-

ing particular cases are:

(a) If k � 3 (m > 0 and p > 0), the integrability coef-

�cient will be within the interval (0,1) and out of the

domain of non-integrability furnished by Theorem I;

(b) If k = m+ 2p = 1, then

� = 2p (27)

and the system will be non-integrable if p 6=

3; 5; 14; :::; j(j + 1)=4;

(c) The potential

V = (q21 � q22)
2

was considered by Matinyan, Prokhorenko and Sawidy

[33], as an particular case coming from time-dependent

Yang-Mills equations, with spherical symmetry. It is a

non-integrable system as can be seen from the calcula-

tion of the integrability coe�cient � = �1. Theorem I

guarantees the non-integrability of this potential that

has the degree k = 4;

(ii) There exists a symmetric case the case (i): c1 =

m = 0 and c2 6= 0, for the potential

V = qn2 (Aq
2
1 +Bq22)

p (28)

where

c2 = [(n+ 2p)Bp]1=(2�k)

and

� = 2Ap=kB; (29)

(iii) An important particular case of (21) was analyzed

by Yoshida [13]: it occurs if we take m = n = 0: The

potential, in this case, is

V = (Aq21 +Bq22)
p (30)

with k = 2p:

The integrability coe�cient, from (7) and (8), will

be

a)� = B=A; b)� = A=B: (31)

In the isotropic case, A = B and � = 1. The po-

tential, in this case, will be out of the domain of non-

integrability. If A 6= B, A and B being positive, and

k � �3, one of the integrability coe�cients will be in

the domain of non-integrability. If k = �1 we have

a con�rmation of the non-integrability of the Kepler

anisotropic problem. In this case, A and B being arbi-

trary, the unique possibility of integrability will happen

for A = B, i.e, for the usual Kepler problem. A similar

situation occurs if k = 1;

(iv) Consider now the H�enon-Heiles homogeneous sys-

tem:

V = q21q2 + (e=3)q32 : (32)

It is a particular case of (21), with m = 0; n = 1;

A = 1, B = e=3, p = 1. A direct veri�cation shows

that equations (22) have the following solutions:

a) c1 = 0; c2 = 1=e

b) c21 = (2� e)=4; c2 = 1=2:

They conduce, by Theorem 1, to the following regions

where the system is a non-integrable one:

a) fe < 0; 1 < e < 2; 2=7 < e < 2=5; :::g;

b) fe < 1; 2 < e < 3; 6 < e < 8; :::g:

If we put this regions together, we get the non-

integrability domain for potential (32):

fe < 1; 1 < e < 2; 2 < e < 3; 6 < e < 8; :::g:



Only the cases where e = 1, e = 6 and e = 16 are known

as integrable,

(v) If m = n and A = B; the potential, from (21),

becomes

V = qn1 q
n
2 (q

2
1 + q22)

p (34)

and the equations (22) have the solution

c1 = c2 = [1=(k2p�1]1=(k�2)

with k = 2(n+ p). The integrability coe�cient will be

� = (p� n)=(p+ n)

In Table 1, we give some particular cases for these

conditions.

We observe that if V = qn1 q
n
2 =[q

2
1 + q22 ]

(n+1) then

k = �2 and the system can be integrated.

(vi) If p = 0, the potential (21 ) takes the form

V = qm1 qn2 (36)

and k = m+ n. We have the following algebraic equa-

tions to be satis�ed:

c1 = mcm�1
1 cn2 ; c2 = ncm1 c

n�1
2 : (37)

One solution is

c1 = m[n�2]=[2(k�2)]n�n[2(k�2)]; c2 = (n=m)1=2c1

(38)

and the integrability coe�cient is � = �1:

In Table 2, several particular situations are pre-

sented in this case. The integrability (or non-

integrability) was analyzed by using Theorem I; the

integrable cases can be found by making the explicit

determination of the second integral of motion.

(c) The swinging Atwood machine

The lagrangian for the so-called swinging Atwood

machine (SAM) system, studied by Tu�llaro et al. [18],

is

c

L = (1=2)(M +m)r
02 + (1=2)mr2�

02 � gr[M �m cos(�)]: (39)

The hamiltonian for this system, obtained from (39) and by using the transformations

q1 = r cos(��); q2 = rsen(��); (40)

is

H(p21 + p22)=2 + g(m+M)(q21 + q22)
1=2fM �m cos[��1arctg(q1=q2)]g (41)



The potential is a homogeneous one with degree k = 1:

The resolution of (8), in this case, leads to the fol-

lowing possible values for c1 and c2 :

c1 = [(M �m)=(M +m)]1=2sen(2m�=�);

c2 = [(M �m)=(M +m)]1=2cos(2m�=�); (42)

and

c1 = [(M +m)1=2 cos[(2m+ 1)�=�]

c2 = [(M +m)1=2 cos[(2m+ 1)pi=�): (43)

The �rst set (42) furnishes a �nite Hessian matrix, if

M 6= m; if m = M this matrix has a divergent be-

havior. The second set (43) generates a null Hessian

matrix that cannot be used for the calculation of the

integrability coe�cient.

For the �rst case, we have, from (7)

� = 2M=(M �m): (44)

Therefore, as the Hamiltonian (41) of this system has

the degree k = 1, the non-integrable cases will be those

for what

� 6= j(j + 1)=2; (45)

j= 0, 1, 2, .... Therefore, if

� =M=m 6= j(j + 1)=[j(j + 1)� 4]; (46)

the system will be a non-integrable one.

Consequently, Theorem I de�nes the following possi-

ble integrability domain for the SAM system: � 2 [1; 3];

at the points where � = j(j +1)=[j(j +1)� 4]: For the

case where � = 3, we can �nd the second integral of

motion that proves the integrability of the system. It

has the form:

c

I = �(r3=2)�
02sen(�=2) + gr2sen(�=2) cos2(�=2) + r2r0�0 cos(�=2) (47)

d

and can be found by several methods including the

Noether symmetries. The Noether symmetry analysis

allows us to say also that there is no additional �rst in-

tegral that is linear in r0, except for the case � = 3 [19].

This result does not forbid the existence of a second

integral of motion with higher order in r0. However,

numerical experiments made by Tu�llaro [34], by using

the Poincar�e sections, suggest that, except for the cases

where � = 1 (possibly) and � = 3 (surely), the system

is a non-integrable one.



IV. Homogeneous Hamiltonians with N degrees

of freedom

A recent theorem demonstrated by Yoshida [14] per-

mits the construction of a direct procedure for deter-

mining the non-integrability domains of a homogeneous

Hamiltonian system with N degrees of freedom:

Theorem II

Let V (qi) be a homogeneous potential of integer de-

gree k, with k 6= 0, � 2, for the following hamiltonian

system with N degrees of freedom:

H = p2i =2 + V (qi): (48)

We de�ne

��i = [1 + 8k�i=(k � 2)2]1=2

where �i are the eigenvalues of the Hessian matrix

Vij [qi = ci], and ci are the solutions of

ci = (@V=@qi)(ci):

If the n numbers ( (��1; :::;��n) are rationally inde-

pendent, then the hamiltonian system (48) has no ad-

ditional global analytical integral, I(qi; pi)= constant,

besides the Hamiltonian itself.

Some observations can be made about this theorem:

i) The quantities ��i = �i+n��i are the di�erences be-

tween the pairs of the so-called Kowalevskaia exponents

(�1; �2; :::; �2n) for this system. They emerge from the

Painlev�e's expansion and characterize the branching of

the solution in the complex plane t. They have, in this

case, the pairing property

�i + �i+n = 2g + 1(i = 1; :::; n) (49)

where g = 2=(k � 2);

ii) Due to this pairing property �i+n and �i can be ra-

tional numbers i� the di�erences ��i are rational num-

bers. One can supposing also that �n is rational; it has

the form ��n = (3k � 2)=(k � 2);

iii) If n = 2, and k = 0; �2, Theorem II leads to the

non-integrability of the system if the nontrivial ��i is

an irrational or complex number.

For calculating the non-integrability domain of a n-

degree of freedom homogeneous Hamiltonian system we

can use the following algorithm:

Step 1:

Solve and �x a solution ci of the algebraic equations

@V (ci)=@ci = ci: (50)

Step 2:

Let Vij(ci) be the Hessian matrix of V (qi)[qi = ci].

Compute the eigenvalues (�1; :::; �n) of this matrix.

Step 3:

The pair of KE (�i; �i+n) are the two roots of the

quadratic equation

�2 � (2g + 1)�+ g(g + 1)(1� �i) = 0; (51)

so that the ��i can be calculated by

�i = [1 + 8k�i=(k � 2)2]1=2; (i = 1; :::; n): (52)

Step 4:

Find the non-integrability domains, where the n

numbers (��1; :::;��n) are rationally independent.

Few speci�c cases of homogeneous hamiltonian sys-

tems with three degrees of freedom were studied by us-

ing Theorem II. Yoshida [14] showed that the potential

V = q21q
2
2 + q22q

2
3 + q23q

2
1 ; (53)

leads to

f�1; �2; �3g = f2;�1; 3g

and to

f��1;��2;��3g = f(17)1=2; (�7)1=2; 5g: (54)

The fact that these quantities are not rationally depen-

dent shows that the potential (53) is a non-integrable

one. In the same reference, Yoshida made the conjec-

ture that the potential

V = (�q1)
4+(q1� q2)

4+ :::+(qn�1� qn)
4+ q4n; (55)

where n is an odd integer, would be non-integrable for

any value of n. He arrived at this conclusion by calcu-

lating the quantities ��i and by examining their ratio-

nal dependence.



Ferr�andiz and Sansaturio [23] analysed the problem

of the motion of a satellite (point mass) around a planet

of arbitrary shape, for the speci�c case where it occurs

a perturbation produced only by the term J22. They

reduced the original potential to the homogeneous form

V = a(x2 � y2)=r5, where r = (x2 + y2+ z2)1=2. It can

be showed that

c

f�1; �2; �3g = f7=3;�4; 5=3g=) f��1;��2;��3g = f(�31)1=2=5; 11=5; (�15)1=2=5g;

d

and, therefore, by Theorem II, the non-integrability of

the system is proved. Let us consider the application

of Theorem II to the class of Hamiltonians with the

potential

V = qm1 qn2 q
p
3 ; (56)

with k = m+ n+ p and k 6= 0; 2:

If we follow the steps of the procedure exposed

above, we get the following solutions for (50):

c1 = [p�pn�nmp+n�2][1=2(k�2)]

c2 = [p�m+n�2n�nm�m][1=2(k�2)]

c3 = [p�pnm+p�2mp+n�2][1=2(k�2)] (57)

The Hessian matrix Vij(c1; c2; c3), which is necessary

for applying step 2, will be

�
�
�
�
�
�

n� 1 n1=2m1=2 n1=2p1=2

n1=2m1=2 m� 1 m1=2p1=2

n1=2p1=2 m1=2p1=2 p� 1

�
�
�
�
�
�

(14)

The characteristic equation coming from this matrix is

�3 + �2(3� k) + �(3� 2k) + (1� k) = 0; (58)

and their roots are:

�1 = k � 1 = m+ n+ p� 1; �2 = �3 = �1: (59)

Step 3 leads to

��1 =
(3k � 2)

(k � 2)
;��2 = ��3 = [k2�12k+4]1=2=(k�2)

(60)

According the last step, if the ratio between ��1 e

��2 is non-rational the system will be non-integrable.

This situation will occur in most cases. Consider now

the particular case where m = n = p = 1, k = 3, i.e,

with the potential

V = q1q2q3 (61)

From (60), we get

��1 = 7;��2 = ��3 = (�23)1=2 (62)

and the system is a non-integrable one. There are cases

that are not in the non-integrability domain, for exam-

ple if k= - 3 or k = 12. In these cases, by using The-

orem II, we can say nothing about the integrability of

the potentials.

V. Conclusion

The Ziglin-Yoshida method for the analysis of the

non-integrability domains of hamiltonian systems has

the advantage, in comparison with Melnikov's method,

for example, that it can be applied to more general situ-

ation, not only to perturbed Hamiltonians. In contrast

with the singularity analysis, it is a global procedure

that permits the precise de�nition of non-integrability

regions. Theorems I and II are direct algorithmic pro-

cedures for analyzing the integrability of homogeneous

hamiltonian systems.

In the most general formulation of Ziglin the theo-

rem has not a simple way of application; the method

involves also, in many situations, the resolution of non-

trivial algebraic equations. Except for the case of homo-

geneous Hamiltonians, where Yoshida's theorems can



be applied, few systems were already studied. We also

note that the integrable cases are not fully determined

by this method; only domains (in parameter space),

where the integrable systems could appear, can be es-

tablished. Furthermore, the identi�cation of �rst in-

tegrals, a necessary step for the �nal proof of integra-

bility, has to be made by using other methods. But

the Ziglin-Yoshida analysis is without doubt a power-

ful and interesting global method, based on the linear

analysis of the variational equations, for analyzing the

non-integrability of Hamiltonian systems. The mathe-

matical meaning of this method and the physical apli-

cations will be possibly extended in the near future.

We are grateful to Haruo Yoshida for introducing us

to this method.
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