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Abstract

The fundamental role of N-methyl-D-aspartate (NMDA) receptors in
many cortical functions has been firmly defined, as has its involve-
ment in a number of neurological and psychiatric diseases. However,
until recently very little was known about the anatomical localization
of NMDA receptors in the cerebral cortex of mammals. The recent
application of molecular biological techniques to the study of NMDA
receptors has provided specific tools which have greatly expanded our
understanding of the localization of NMDA receptors in the cerebral
cortex. In particular, immunocytochemical studies on the distribution
of cortical NMDA receptors have shown that NMDA receptors are
preferentially localized on dendritic spines, have disclosed an un-
known fraction of presynaptic NMDA receptors on both excitatory
and inhibitory axon terminals, and demonstrated that cortical astro-
cytes do express NMDA receptors. These studies suggest that the
effects induced by the activation of NMDA receptors are not due
solely to the opening of NMDA channels on neuronal postsynaptic
membranes, as previously assumed, but that the activation of presyn-
aptic and glial NMDA receptors may mediate part of these effects.
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Glutamate (Glu) receptors of the N-meth-
yl-D-aspartate (NMDA) type have a funda-
mental role in the functions of the cerebral
cortex, being implicated in developmental
processes, transmission of sensory informa-
tion, synaptic plasticity, learning and memory,
neurotoxicity, and in a number of neurologi-
cal and psychiatric diseases (1,2).

NMDA receptors are formed by different
subunits belonging to two classes: NMDAR1
(NR1) and NMDAR2 (NR2) (3-7). The first
subunit to be characterized, NR1, exhibits
the basic features of the NMDA receptor
when expressed in Xenopus oocytes (8), and
can exist in several isoforms generated by

alternative splicing (9). It has recently been
shown that targeted disruption of the NR1
gene abolishes classical NMDA neuronal
responses (10), thus demonstrating that NR1
is an essential subunit of the NMDA recep-
tor, and confirming previous suggestions
based on expression studies of cDNA in
heterologous cells and on the widespread
distribution of NR1 mRNA in the central
nervous system (4). The second class of
NMDA receptor subunits, NR2, includes four
different subunits, NR2A-D, encoded by
separate genes (3,11-13). No splice variants
have been reported for NR2A, B, or C,
whereas NR2D exists in two forms, NR2D1
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and NR2D2 (13). Electrophysiological ex-
periments indicate that NR2 subunits pro-
duce detectable currents only when they are
coexpressed with NR1 (3,11-13), and in situ
hybridization shows that they are differen-
tially expressed in the brain (3,11-13) and
during development (3,6,14). These find-
ings have generated the notion that NR2
subunits play a modulatory role. Indeed, it
has been shown that the combination of NR1
with different NR2 subunits modifies both
electrophysiological and pharmacological re-
sponses (3,4,11-13,15-20).

Advances in the knowledge of the molec-
ular biology of NMDA receptors have made
available, among others, potent and specific
tools for studying the localization of these
receptors at the cellular level. This minire-
view succinctly describes the results of a
series of recent anatomical investigations on
the localization of NMDA receptors in the
cerebral cortex of adult mammals. Notwith-
standing the limitations inherent in each of
the anatomical techniques employed to gen-
erate the data reported here (which have
been discussed in the original publications),
the availability of these probes has made it
possible to define with sufficient detail the
basic features of the pattern of NMDA re-
ceptor localization in the mammalian cere-
bral cortex.

The outstanding features of NMDA re-
ceptor localization and their functional im-
plications can be summarized as described
below.

NMDA receptors are present in many
but not in all neurons of the cerebral
cortex. Moriyoshi et al. (8) reported that
“(NMDAR1)....mRNA is expressed in al-
most all the neuronal cells throughout the
brain regions” (p. 36). Since then it has been
assumed that virtually all cells express
NMDA receptors. Subsequent in situ hy-
bridization and immunocytochemical stud-
ies have shown that NMDA receptors ex-
hibit a widespread distribution in the cere-
bral cortex (21-24), but semiquantitative

analyses suggest that the population of corti-
cal neurons not expressing NMDA receptors
is likely to be much larger than previously
assumed (about 20%) (22,24).

In situ hybridization and immunocy-
tochemical studies have shown that neurons
expressing NMDA receptors appear to be
less numerous in layer IV than in layers II-III
and V-VI (24). Since the afferent input
reaches the cerebral cortex through Gluergic
thalamocortical axons mostly in layer IV
(25), this observation is in agreement with
the notion that thalamocortical transmission
is largely mediated by non-NMDA receptors
(26-30), and suggests that the impact of
NMDA receptor activation on cortical func-
tion is more important in late rather than in
early stages of cortical processing.

In cortical neurons NMDA receptors are
mostly formed by NR1 and NR2A and/or B
subunits. This statement is supported by the
observations that i) NR1, NR2A, and NR2B
are highly expressed by cortical neurons,
whereas NR2C and D are weakly expressed
(3,4,11-13,15,21-24,31-33); ii) NR1 and
NR2A and B exhibit similar distribution pat-
terns, both at the light and at the electron
microscopic level (3,11-13,15,24,31-33); iii)
NR1 and NR2A/B immunoreactivity (IR) is
colocalized in most cortical neurons (24),
and iv) “triple subunit” heteromeric NMDA
receptors (NR1 + NR2A + NR2B) are pres-
ent in the cerebral cortex (6).

However, given that few studies have
been devoted to the analysis of NR2C and D
expression in the cerebral cortex, we cannot
rule out a contribution of NR2C and D, and
since both NR2C and NR2D determine im-
portant biophysical properties (15,20), it fol-
lows that the functional properties of corti-
cal NMDA receptors cannot be inferred on
the basis of present knowledge.

The large majority of NMDA receptors
are located postsynaptically on dendrites
and dendritic spines. Electron microscopic
immunocytochemical studies have shown
that both NR1 and NR2A/B IRs are mostly
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present on dendrites and dendritic spines
(21,23,24,31,32). This observation is con-
sistent with i) the location of axon terminals
forming asymmetric synapses (34) and the
nature and location of Glu+ axon terminals
(35,36); ii) previous indications from
radioligand binding (37-41) and in situ hy-
bridization (8; for a discussion, see 22) stud-
ies, and iii) the results of electrophysiologi-
cal (42) and combined electrophysiological-
Ca2+ imaging investigations (43). Overall,
this evidence indicates that the bulk of the
effects of NMDA receptor activation is gen-
erated at distal dendrites and spines, and
supports the view expressed by several in-
vestigators that dendritic spines in cortical
neurons are the site of biophysical events
underlying complex integrative properties
of cortical neurons (44-48).

NMDA receptors are preferentially ex-
pressed by pyramidal neurons. Analysis of
the morphology of NR1 and NR2A/B+ neu-
rons showed that in rat neocortex the large
majority (about 70%) of all labeled neurons
are pyramidal, and that this proportion is
higher in layers II, III, V and VI (21,23,24).
This conclusion is supported by the follow-
ing observations: i) as reported in the pre-
ceding paragraph, NMDA receptors are pref-
erentially located on dendritic spines, which
is a typical, though not exclusive, attribute of
pyramidal neurons (49-51), and ii) Thomson
and collaborators (52) studied excitatory syn-
aptic connections between pairs of cortical
neurons recorded in cortical slices from adult
rats, and characterized the receptor(s) medi-
ating excitatory postsynaptic potentials
(EPSPs). They showed that connections
between pyramidal neurons exhibit proper-
ties typical of NMDA-mediated processes,
even though they are not exclusively medi-
ated by NMDA receptors (53-56). Even
though much caution is required when com-
paring results obtained with different tech-
niques, these results are consistent with
the present conclusion in indicating that in
all likelihood NMDA receptors display a

preferential relation to pyramidal neurons.
Some NMDA receptors are presynaptic

auto- and heteroreceptors. Immunocy-
tochemical studies have shown that some
axon terminals contain NR1 or NR2A/B IR.
Some NR1-NR2A/B+ axon terminals form
asymmetric synapses (57; see also 21,23,
32), and given that these axon terminals are
either Glu- or aspartate (Asp)-positive
(35,36), it follows that NMDA receptors in
axon terminals forming asymmetric synapses
are autoreceptors that can facilitate Glu (or
Asp) release. An unexpected result of our
studies has been the identification of NR1
and NR2A/B in some axon terminals form-
ing symmetric synapses (57). Combining pre-
and post-embedding immunocytochemistry,
we have shown that all NR1 and NR2A/B+
axon terminals forming symmetric synapses
are selectively enriched in gold particles cod-
ing for GABA, thus providing the first evi-
dence that some NMDA receptors are
heteroreceptors (57). These data suggest that
NMDA receptors play a role in the regula-
tion of GABAergic transmission. Overall,
these data are consistent with previous dem-
onstrations that presynaptic NMDA recep-
tors contribute to NMDA-mediated phenom-
ena in other regions of the nervous system
(58-64).

NMDA receptors are expressed by astro-
cytes. Whereas the notion that cortical astro-
cytes express Glu receptors of the α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionate
(AMPA) and kainate (KA) types has been
firmly established (for reviews, see 65-68),
there has been considerable debate on
whether astrocytes express NMDA recep-
tors (see 64,69). Compelling evidence for
astrocytic expression of NMDA receptor
subunits, however, has been provided only
recently in immunocytochemical studies us-
ing specific antipeptide antibodies (69). The
demonstration by electron microscopic im-
munocytochemistry that some cortical astro-
cytes do indeed express NR1 (21,22,69) and
NR2A/B (69) subunits of the NMDA recep-



558

Braz J Med Biol Res 30(5) 1997

F. Conti

tor indicates that at least part of the effects of
NMDA receptor activation in the cerebral
cortex may well be due to astrocytic recep-
tors. These receptors can monitor Glu re-
lease by neighboring axon terminals (35,36)
of thalamic (25) and corticocortical (70) ori-
gin, as well as from axon collaterals of corti-
cal Gluergic neurons (71), and therefore they
can mediate part of the neuron-glia signaling
mechanisms that regulate gene expression
and responses to pathological elevations of
Glu levels of astrocytes, and may participate
in the mechanism(s) subserving activity-de-
pendent cortical plasticity (72).

The data reviewed here indicate that in
three years much has been learnt about the
cellular and subcellular localization of NMDA

receptors in the cerebral cortex. From the pres-
ent analysis, it appears that in some cases
anatomical studies have been confirmatory of
previous findings, whereas in other cases im-
munocytochemical studies have disclosed fea-
tures such as astrocytic and presynaptic local-
ization that had not been described earlier.
Electrophysiological and/or pharmacological
analyses are needed to understand their func-
tional role in health and disease.
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