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Abstract

Regional cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) in young and elderly participants were assessed using
pulsed arterial spin labeling (ASL) and blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI)
techniques in combination with inhalation of CO2. Pulsed ASL and BOLD-MRI were acquired in seventeen asymptomatic
volunteers (10 young adults, age: 30±7 years; 7 elderly adults, age: 64±8 years) with no history of diabetes, hypertension,
and neurological diseases. Data from one elderly participant was excluded due to the incorrigible head motion. Average
baseline CBF in gray matter was significantly reduced in elderly (46±9 mL � 100 g–1 �min–1) compared to young adults
(57±8 mL � 100 g–1 �min–1; P=0.02). Decreased pulsed ASL-CVR and BOLD-CVR in gray matter were also observed in elderly
(2.12±1.30 and 0.13±0.06 %/mmHg, respectively) compared to young adults (3.28±1.43 and 0.28±0.11 %/mmHg,
respectively; Po0.05), suggesting some degree of vascular impairment with aging. Moreover, age-related decrease in baseline
CBF was observed in different brain regions (inferior, middle and superior frontal gyri; precentral and postcentral gyri; supe-
rior temporal gyrus; cingulate gyri; insula, putamen, caudate, and supramarginal gyrus). In conclusion, CBF and CVR were
successfully investigated using a protocol that causes minimal or no discomfort for the participants. Age-related decreases in
baseline CBF and CVR were observed in the cerebral cortex, which may be related to the vulnerability for neurological disorders
in aging.
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Introduction

Aging has been associated with motor changes and
cognitive decline that can seriously interfere with quality of
life (1,2). In addition, age-related cerebrovascular alterations
have been reported (3,4). Therefore, the study of cerebral
perfusion in advanced age is important to understand neuro-
vascular mechanisms that underlie the reported changes
and their relationship with age-related pathologies. Thus,
noninvasive assessment of cerebral blood flow (CBF) and
cerebrovascular reactivity (CVR) may provide additional
information about the integrity of cerebrovascular reserve.

Magnetic resonance imaging (MRI) techniques, such
as arterial spin labeling (ASL) and blood oxygenation level-
dependent (BOLD) contrast, have been widely used in
combination with vasoactive challenges to map CVR, such
as acetazolamide (ACZ) administration, breath-holding test
(BHT) and CO2 inhalation (5). Because ACZ administration

is invasive and BHT is highly dependent on participant’s
collaboration, CO2 inhalation is an attractive alternative. CO2

causes great but reversible dilation of cerebral arteries and
arterioles, and increased CBF. Although different mecha-
nisms have been proposed to explain the relationship
between hypercapnia and CBF, the decrease in perivascular
pH appears to be the main mechanism (6). Because the
resistance of smooth muscles of blood vessels is sensitive to
regional pH variation, hypercapnia results in a decrease of
cerebrovascular resistance, and consequently global vaso-
dilation. However, other mechanisms involving nitric oxide
and prostanoids were reported to contribute to hypercapnic
cerebral vasodilation, but they seem to be specific to different
species (7). Therefore, an increase in arterial partial pressure
of CO2 (PaCO2) leads to an increase in global CBF, due to
increased vascular blood velocity (8). Moreover, the CBF
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response to hypercapnia may vary across brain regions,
but hypercapnia does not significantly alter cerebral metab-
olism (9).

Although BOLD-MRI has been extensively used in
functional studies and also for CVR assessment in com-
bination with a hypercapnic challenge (10–13), its signal
depends on a complex relationship between CBF, cere-
bral blood volume, and oxygen extraction. In contrast, ASL
technique uses blood water as an endogenous contrast
resulting in an entirely noninvasive alternative to assess
cerebral blood flow quantitatively (14–17), which makes it
particularly useful for cerebrovascular reserve assess-
ment in longitudinal studies (14,18,19). Among different
ASL methods, pulsed ASL uses a single, short, adiabatic
radiofrequency pulse to label a large volume adjacent to
the image plane, resulting in a high labeling efficiency and
low energy deposition, but also, a low signal-to-noise ratio
(SNR) (15). Commonly, pulsed ASL measures are con-
ducted with a single post-labeling delay (PLD) between
the labeling and the image acquisition. Then, they rely
heavily on the arterial arrival time (AAT), resulting in errors
on CBF quantification if PLD is not chosen appropriately
(20). Considering the well-known AATchanges with aging,
an adequate PLD for each subject group was chosen in
the present study as recommended by the ISMRM Per-
fusion Study Group and the European Consortium for ASL
in Dementia (21).

Although studies have reported lower baseline CBF and
CVR levels in elderly compared to young adults, recent
studies using ASL have reported different results in aging:
global gray matter CBF reduction (22,23), no global gray
matter CBF reduction (4,24), or region-specific gray matter
CBF alterations (2,3,25). In addition, few CVR assessments
have been done using ASL and CO2 inhalation in elderly
people (1,26). Despite their disadvantages, BOLD-MRI or
transcranial Doppler ultrasound in combination with breath-
holding is more common due to their clinical availability and
easiness to implement (12,13).

Therefore, in the present study, pulsed ASL and BOLD-
MRI techniques were combined with inhalation of CO2 to
assess age-related effects on regional CBF and CVR in
healthy participants. We investigated changes in CBF and
BOLD response to CO2 using an experimental setup that
minimizes participant’s discomfort, and MRI sequences
available for clinical routine.

Material and Methods

Participants
Seventeen asymptomatic volunteers (10 young adults,

age: 30±7 years; 7 elderly adults, age: 64±8 years) with
no history of diabetes, hypertension, and neurological
diseases participated in this study. All participants read
and signed an informed consent approved by the Ethics in
Research Committee of the Hospital das Clínicas, Facul-
dade de Medicina de Ribeirão Preto before participating

in the study. Exclusion criteria included the presence of a
pacemaker, orthosis or prosthesis incompatible with the
magnetic resonance environment; claustrophobia; demen-
tia or cognitive impairment; diabetes, hypertension and
neurological diseases; and not signing the consent form.

MRI acquisition
Experiments were performed on a 3T Philips Achieva

System (Philips Achieva, The Netherlands), using an
8-channel head coil for reception and a body coil for trans-
mission. Pulsed ASL images were acquired using a 2D
single-shot EPI sequence with the following parameters:
TR/TE=3000/15 ms, matrix=64� 64, FOV=240� 240 mm2,
number of slices=12, slice thickness=5 mm, gap=0.5 mm,
labeling plan thickness=200 mm, number of control/label
pairs=40. PLDs were 1500 and 2000 ms for young and
elderly adults, respectively (21). For CVR evaluation, ASL
images were acquired twice: 40 control/label pairs under
normocapnia and 40 control/label pairs under hypercapnia.
BOLD images were acquired using a 2D single-shot EPI
sequence with the following parameters: TR/TE=2000/30 ms,
matrix=128� 128, FOV=230x230 mm2, number of slices=30,
slice thickness=4 mm, no gap. BOLD-CVR paradigm con-
sisted of 5 epochs of hypercapnia (14 s each) intercalated by
6 epochs of normocapnia (30 s each). Hypercapnic epochs of
14 s were chosen to assess the temporal characteristics of
the hemodynamic response, such as time-to-peak (TTP) and
full-width-at-half-maximum (FWHM). ASL, under normocapnia
and hypercapnia, and BOLD scans were randomized and
interleaved with anatomical scans. In addition, a high-reso-
lution 3DT1 weighted image was acquired with the following
parameters: TR/TE=7/3.1 ms, matrix=240� 240, excitation
angle=8°, FOV=240� 240 mm2, number of slices=160, slice
thickness=1 mm. Total acquisition time was 40 min, including
other sequences acquired for clinical diagnosis.

All participants were instructed to abstain from con-
suming coffee and alcohol for at least 12 h before the MRI
section since both substances have a vasomotor effect.
All MRI sections were performed in the morning to avoid
variability due to diurnal CBF fluctuations.

Hypercapnic challenge
Hypercapnia was achieved by inhalation of CO2.

A device consisting of micro-controlled valves was devel-
oped in the Departamento de Física (Faculdade de Filosofia,
Ciências e Letras de Ribeirão Preto, Universidade de São
Paulo, Brazil) to deliver CO2 mixed with medical air through a
nasal cannula. The device was controlled using Presen-
tation software (Neurobehavioral Systems Inc., USA), and
synchronized with image acquisition. Figure 1 shows the
experimental setup. Briefly, CO2 goes into the device through
the flowmeter. The opening of the valves is triggered with MR
pulses. When the valves open, CO2 goes through a rubber
tube into the MR room, where it mixes with medical air in a
T-shaped connector. Then, this gas mixture is delivered to
the participant through a nasal cannula, which also has a
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connection with an MR-compatible vital sign monitor (Veris
MR, Medrad Inc., USA). The delay between opening of the
valves and delivery of the gas mixture to the participant was
less than 2 s; therefore, the first image acquired in each
sequence under hypercapnia was excluded from analysis.
Although the experiment was set up to deliver a gas mixture
with 5% of CO2, participants were also able to breathe room
air through the nasal cannula in addition to the gas mixture.
We used this setup instead of a mask to minimize
participant’s discomfort. Moreover, the MR-compatible vital
sign monitor was used to continuously check and record the
physiological parameters (end-tidal CO2, SpO2, heart rate
and respiration rate) during the experiments.

Data analysis
Data processing was performed using BrainVoyager

QX (Brain Innovation BV, The Netherlands), Statistical
Parametric Mapping (SPM12, University College London,
UK), an open-source toolbox for ASL image (ASLtbx) (27),
and routines developed by our group in Matlab (The
MathWorks, Inc., USA). First, ASL and BOLD images
were corrected for head motion. For ASL data, a separate
realignment of the control and label image series was
performed (27). Data was excluded if the translational or
rotational movement was greater than 1 mm or 1°, re-
spectively. Data from one elderly participant was excluded
due to incorrigible movement artifacts.

After realignment, the subtraction of both ASL phases
(control – label) was performed to obtain perfusion-weighted
maps for both conditions, normocapnia and hypercapnia.
Spatial SNR of the global perfusion signal was calculated
as the ratio between the mean perfusion signal in the brain
and the background noise level, which was estimated as
the standard deviation of the noise signal obtained in two
regions of interest outside the brain.

CBF maps were calculated using a model described
by Golay et al. (28), assuming some parameters: labeling
efficiency, 0.95; brain/blood partition coefficient, 0.98 for

GM, and 0.84 for white matter; apparent tissue relaxation
longitudinal time, 1100 ms, and arterial blood longitudinal
relaxation time, 1680 ms. With quantitative normocapnic
(CBF0) and hypercapnic (CBF) values, ASL-CVR was cal-
culated using Equation 1.

CVR¼ 100�
DCBF
CBF0

DEtCO2
ð1Þ

CBF and ASL-CVR maps were spatially smoothed
with a Gaussian filter (FWHM=4 mm), coregistered to the
anatomical images and normalized to the MNI standard
space. A voxel-wise analysis between groups for CBF and
ASL-CVR maps was performed using a 2-sample t-test
(Po0.001, uncorrected) and no cluster size threshold.

For BOLD images, temporal correction between slices,
temporal filtering using a high-pass filter of 0.01 Hz, spatial
smoothing with a Gaussian filter (FWHM=4 mm), coregis-
tration to anatomical images and normalization to the MNI
standard space were performed in this order. Then, a
general linear model was used to obtain statistical maps
in response to hypercapnia. Hemodynamic responses
were fitted to a Gaussian function to obtain their amplitude
and time-to-peak. BOLD-CVR was calculated as the sig-
nal amplitude divided by the increase in end-tidal CO2

(DEtCO2).
CBF, ASL-CVR, and BOLD amplitude, TTP, FWHM

and CVR values were obtained for GM. Data are reported
as means±SD. Statistical analysis was performed using
ANOVA and t-test, or corresponding non-parametric tests.
Statistical significance was set at Po0.05 (two-sided).

Results

Baseline CBF
During normocapnia, physiological parameters were

within normal limits for all subjects. Average end-tidal CO2

was 35±3 mmHg. Perfusion images showed high SNR
(13.1±3.6). Moreover, mean CBF across the entire GM

Figure 1. Schematic experimental setup. CO2

goes through the flowmeter into a device consisting
of micro-valves controlled by a software and
synchronized with image acquisition. When the
valves open, CO2 goes through a rubber tube into
the magnetic resonance (MR) room, where it mixes
with medical air. This gas mixture is delivered to
the participant through a nasal cannula, which also
has a connection with an MR-compatible vital sign
monitor (capnography) to continuously check and
record the physiological parameters (end-tidal CO2,
SpO2, heart rate and respiration rate) during the
experiments.
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decreased with age (linear fit, slope=–0.33, r=–0.64, P=0.02;
Figure 2), but no gender difference was observed. Sepa-
rating the results by age groups, CBF in GM was signifi-
cantly reduced for elderly (mean: 46, median: 48, ±SD:
9 mL � 100 g–1 �min–1) compared to young adults (mean: 57,
median: 59, ±SD: 8 mL � 100 g–1 �min–1; P=0.02). Figure 3
shows averaged CBF maps for both groups.

A voxelwise analysis using a 2-sample t-test showed
age-related decreases in CBF for different brain regions
in both hemispheres (Figure 4): inferior, middle and supe-
rior frontal gyri; precentral and postcentral gyri; superior
temporal gyrus; cingulate gyri; insula, putamen, caudate,
and inferior parietal lobule (supramarginal gyrus). No re-
gion showed significantly increased CBF in elderly.

Cerebrovascular reactivity
For CVR evaluation, subjects were subjected to a

hypercapnic challenge. During hypercapnia, physiological

parameters stayed within normal limits for all subjects,
except for end-tidal CO2 that significantly increased for
both experiments, with pulsed ASL (DEtCO2=6±3 mmHg)
and with BOLD-MRI (DEtCO2=7±3 mmHg). Moreover,
CBF and BOLD signal increased in the entire GM for
both groups. However, CVR values were significantly
lower for elderly subjects (Table 1; Po0.05). No regional
or gender differences were observed. Moreover, evaluat-
ing the temporal dynamics of CBF under hypercapnia, no
habituation to CO2 inhalation was observed.

From BOLD images, it was possible to obtain the hemo-
dynamic response evoked by hypercapnia. There was a
great inter-subject variability regarding response ampli-
tude for both groups (Figure 5A and B). Significantly
reduced amplitude (P=0.0003) and FWHM (P=0.026), and
increased time-to-peak (P=0.047) were observed for elderly
participants in GM. However, no regional differences were
observed for both groups, although there was a tendency of
time-to-peak to be greater in posterior regions for elderly
participants (P=0.06). Taken together, the results suggest
that cerebrovascular reactivity is reduced and slower in
healthy aged subjects.

Moreover, no significant correlation was observed between
ASL-CVR and BOLD-CVR, and between ASL-CVR and
baseline CBF for global GM. However, a significant positive
correlation was observed between BOLD response param-
eters (CVR, amplitude, TTP and FWHM) and baseline CBF
for GM (Figure 6).

Discussion

The protocol used in this study allowed the quantifi-
cation of CBF as well as assessment of CVR in response
to a hypercapnic challenge in young and elderly adults.
Decreased CBF and CVR were observed in healthy elderly

Figure 3. Averaged normocapnic cerebral blood flow (CBF) maps for young (upper row) and elderly healthy adults (bottom row).

Figure 2. Decrease in normocapnic cerebral blood flow (CBF)
with aging (linear fit, slope=–0.33, r=–0.64, P=0.02).
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Figure 4. Statistical Parametric Map of differences in regional cerebral blood flow (CBF) between young and elderly adults under
normocapnia. The colormap indicates brain regions where CBF is higher in young adults compared to the elderly adults (Po0.001, t-test
uncorrected for multiple comparisons).

Table 1. Pulsed arterial spin labeling (ASL) and blood oxygenation level-dependent (BOLD) contrast results from gray matter in
hypercapnic condition.

ASL BOLD

CBF (mL � 100 g–1 �min–1) CVR (%/mmHg) Amplitude (%) TTP (s) FWHM (s) CVR (%/mmHg)

Young 57±8 3.28±1.43 1.84±0.84 13.73±0.95 7.04±0.86 0.28±0.11
Elderly 46±9 2.15±1.51 0.94±0.39 14.84±1.57 6.06±0.94 0.13±0.06
P value 0.02 0.013 0.0003 0.047 0.026 0.004

Data are reported as means±SD. CBF: cerebral blood flow; CVR: cerebrovascular reactivity; TTP: time-to-peak; FWHM: full-width-
at-half-maximum; P value was obtained comparing elderly to young adults (t-test).
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compared with healthy young adults, suggesting some
degree of vascular impairment with aging.

To assess baseline CBF, we used a pulsed ASL method
available for clinical use in the hospital where images were
acquired. CBF maps showed satisfactory SNR (29). Al-
though pulsed ASL has the advantages of high labeling
efficiency and small energy deposition, it is highly dependent
on AAT, which may cause errors in CBF quantification if PLD
is not chosen appropriately (15,20). For CBF quantification,
ideally, the PLD has to be longer than the longest value of
AATso that all labeled blood is delivered to the tissue before
image acquisition. However, in this case, SNR is compro-
mised since ASL signal decays with T1 after labeling. On the
other hand, if PLD is not long enough, some brain areas may
present a low signal (no labeled blood), or very high signal
(labeled blood still in large vessels). In both cases, CBF
quantification is not accurate. Therefore, two PLD values
were used, 1500 and 2000 ms, for young and elderly adults,
respectively, as recommended by the ISMRM Perfusion

Study Group and the European Consortium for ASL in
Dementia (21).

For young adults, baseline CBF and its increase in
response to hypercapnia was consistent with other studies
published recently (3,30,31), showing the ability of the
technique to detect global increases in CBF associated with
a vasoactive stimulus. Elderly volunteers showed reduced
baseline CBF in different brain regions. These results are
in agreement with previous studies using ASL methods
(4,22,23,25,32,33). Although some studies reported no
CBF differences with advanced age (4,24), Liu et al. (22)
established that CBF is diminished in elderly even when
accounting for major confounding effects from vascular
alterations. Moreover, the CBF decrease in the elderly has
been associated with degenerative changes in microvas-
culature (33) and linked with subcortical white matter health
(23), which may have implications for the mechanisms of
neurodegeneration (34).

To evaluate CVR, we used a hypercapnic challenge
in combination with pulsed ASL and BOLD-MRI. Recent-
ly, Zhou and colleagues reported similar global CVR
obtained with ASL and BOLD-MRI, showing their comple-
mentary characteristics (35). In the present study, both
methods showed impaired GM CVR with advanced age,
and BOLD-MRI showed a slower hemodynamic response
to CO2. These results are consistent with previous reports
in the literature and have been associated with age-related
arteriosclerosis and vascular stiffening (1,10,36,37).

Although the gas challenge used in our BOLD experi-
ment is shorter than the ones reported in previous studies,
14-s epochs of hypercapnia evoked BOLD responses
comparable to the results from a study that used a precise
control of end-tidal carbon dioxide and oxygen, and epochs
of 80 s (38). The BOLD amplitude and CVR values were
very similar between our study and that from Mark et al.
(38). Also, the maximum EtCO2 reached during a 14-s
hypercapnia (BOLD experiment) was not significantly
different from the one observed during a 4-min hypercapnia
(ASL experiment). Moreover, with this protocol, we were
able to assess the temporal characteristics of BOLD re-
sponse and observe that there is a significant positive cor-
relation between each BOLD parameter and the baseline
CBF. These results confirm a smaller capacity of vasodila-
tion in elderly adults.

Moreover, it has been shown that normal aging is
associated with changes in cerebrovascular function,
structure and cellular metabolism (3,39). Even in the
absence of Alzheimer’s disease and other degenerative
illness, aging is accompanied by a significant decline in
memory, language, and motor functions (1,2,11). There-
fore, cerebral perfusion impairment observed, for exam-
ple, in middle and inferior frontal gyri, and precentral gyrus
may be associated with vulnerability to neurological dis-
orders in the elderly.

However, the present study has some limitations. First,
it is a cross-sectional study limited by great inter-subject

Figure 5. Blood oxygenation level-dependent (BOLD) contrast
response to hypercapnia for (A) young and (B) elderly adults,
showing a great inter-subject variability.
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variability. A longitudinal study would be better in this
case, but it would take years to be done. Second, group
sizes are small, implying that generalizations should be
made with prudence. Especially for the elderly group,
participant recruitment was difficult because diabetes and
hypertension were exclusion criteria, and both are asso-
ciated with perfusion impairment (40). Therefore, this is a
pilot study showing the feasibility of using readily available
ASL sequence to assess CBF and CVR, but more data is
needed to better assess differences between the two
groups. Third, for the hypercapnic challenge, CO2 delivery
was not strictly controlled, since participants were allowed
to breathe room air. This method was chosen considering

the participant’s comfort; and although it may increase
intersubject variability, normalization using ETCO2 was
done to minimize this effect. Finally, pulsed ASL has a
high dependency on AAT, making pseudo-continuous ASL
or multi-PLD methods better choices for perfusion assess-
ment. However, pulsed ASL was chosen because it was
the method available for clinical use in the hospital where
images were acquired.

In conclusion, CBF and CVR were successfully eval-
uated using an ASL sequence available for clinical use
and hypercapnic challenge that causes minimal or no
discomfort for the participants, which may be important for
studies with patients. Age-related decreases in CBF and

Figure 6. Relationship between blood oxygenation level-dependent (BOLD) contrast and pulsed arterial spin labeling (ASL)
measurements across the gray matter for all young and elderly subjects (n=16). CVR: cerebrovascular reactivity; TTP: time-to-peak;
FWHM: full-width-at-half-maximum.
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CVR were observed in the cerebral cortex, showing
altered vascular reserve with aging. Moreover, CBF impair-
ment was observed in some cortical and subcortical
regions, which may be related to vulnerability for neuro-
logical disorders.
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