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Abstract

The human gut microbiota is a complex and dynamic community of microorganisms living in our intestines and has emerged as
an important factor for colorectal adenocarcinoma (CRC). The purpose of our study was to investigate the microbiota
composition in Brazilian CRC patients compared with a local control population (CTL) to find out which changes could be
considered universal or regional features in CRC microbiota. Fecal samples were obtained from 28 CRC and 23 CTL
individuals. The 16S rRNA gene was used for metagenomic analysis. In addition to the anthropometric variables, the clinical
stage (TNM 2018) was considered. Patients with CRC had a significant increase in alpha diversity and a higher percentage of
genus Prevotella and a decreased proportion of Megamonas and Ruminococcus. Additionally, the proportion of
Faecalibacterium prausnitzii was associated with a better prognosis in the first stages of CRC, and Fusobacterium nucleatum
proved to be an important marker of colorectal carcinogenesis and tumor aggressiveness. Although regional differences
influence the composition of the microbiota, in the case of CRC, the microhabitat created by the tumor seems to be a major
factor. Our results contribute to a better understanding of the carcinogenic process, and even in different environments, some
factors appear to be characteristic of the microbiota of patients with CRC.
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Introduction

Colorectal cancer (CRC) is one of the most common
neoplasms worldwide. The prevalence of CRC is about
4.8 million people, and the number of new cases
increases each year. There are many factors involved in
somatic cell transformation through the wrong path of
mutations in colorectal carcinogenesis (1). The heredity
component in colon cancer is between 12 and 35% (2),
reflecting the environmental importance in its develop-
ment. This process occurs due to the sum of genetic
predisposition, disruption in immune system response,
environmental damage such as through food, and micro-
biota alterations (3).

The human gut microbiota is a complex and dynamic
community of microorganisms living in our intestines and
has emerged as an important factor for CRC (4). In addition
to colon cancer, disorders in the microbiota composition are
associated with many diseases. Therefore, inflammatory
bowel disease, type 2 diabetes mellitus, and CRC all have

a common ground: they are proven to be linked with
intestinal dysbiosis that results in homeostasis changes
and affects local and systemic immunity, creating a chronic
inflammatory environment (4). In this environment, host
defenses, cell cycle, apoptosis, and anti-oxidative defenses
are modulated and reactive oxygen species and nitrous
oxide system production leads to DNA damage (5).

Previous data show that the geographic location of the
host has the strongest association with microbiota
modulation, indicating the relevance of the environment
in this modulation and suggesting that CRC microbiota
signature can be different in different countries and
cultures (6). Recent studies indicate that although the
same disease is being studied, differences in the micro-
biota may produce different changes that may result in a
better or worse patient response (7). The Brazilian popu-
lation has particularities due to its great ethnic and cultural
variety and there are few studies that evaluated the
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microbiota in Brazilian CRC patients (8–10). In this regard,
the purpose of our study was to investigate microbiota
composition of Brazilian CRC patients compared with a
local control population, in order to determine which
changes can be considered universal or regional features
of the CRC microbiota. In addition, our data can contribute
to establish a possible microbiota signature that can be
used as a predictor for CRC diagnosis, prognosis, and
future treatment.

Material and Methods

Ethical statement
Subjects who agreed to participate in the study signed

an informed consent form. This research was performed
according to the relevant guidelines and regulations. The
study was approved by the local Institutional Ethics
Review Board in Brazil (CEP - Comitê de Ética em
Pesquisa at Unicamp), under reference number 8.857.49/
14 for the data collected from control subjects and protocol
number 2.144.670/17 for the data collected from cancer
patients.

Study design and population
This was an observational cross-sectional single

center study (Colorectal Unit of Campinas State Univer-
sity, Unicamp, Brazil) with CRC patients and control
subjects (CRC, colorectal adenocarcinoma patients and
CTL, subjects who underwent CRC screening with normal
colonoscopy or adenomas). The following exclusion criteria
were applied: current use of antibiotics or chemotherapy,
adenomas with high grade dysplasia, subjects without
criteria for colorectal screening colonoscopy, previous
colectomy procedures, intestinal stomas, radiotherapy,
inflammatory bowel disease, chronic liver disease, and
familial adenomatous polyposis.

Clinical data, location, and stage of CRC (TNM 2018),
history of breastfeeding and type of delivery, and morbidity
were analyzed. The anatomic classification of the tumor’s
location was proximal colon (cecum, ascending colon,
transverse colon), distal colon (descending colon, sigmoid,
rectum), or synchronic. One day before colonoscopy, all
participants received a liquid diet and ingested 500 mL of
10% mannitol diluted in 1000 mL of water. On the day of
colonoscopy, the same nurse in the clinic collected the first
stool, avoiding contamination and loss of material. All feces
were solid. The feces were collected in a sterile toilet seat
liner (ColOffs, Brazil). About 200 mg of the sample was
transferred to a tube (STRATEC Biomedical AG, Germany)
that preserves DNA/RNA and immediately frozen at
� 80°C for one week until DNA extraction.

Metagenome profile
Total DNA of fecal samples was extracted using the

Stool PSP Spin DNA kit (STRATEC Biomedical AG), an
integrated system for collecting, transporting, and storing

fecal samples and subsequent DNA purification. For
microbiota profiling, the hyper-variable region (V3-V4) of
the bacterial 16S rRNA gene was amplified following the
Illumina 16S Metagenomic Sequencing Library Prepara-
tion guide (USA), which uses the following sequence:
338F-50TCGTCGGCAGCGTCAGTGTGTATAAGAGACAG
CCTACGGGNGGCWGCAG-3 and 785R-50 GTCTCGTG
GGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGG
TATCTAATCC-30 (2� 300 bp paired-end and insert size of
B550 bp).

Bioinformatics analysis
To determinate the taxonomic composition of bacterial

communities, we analyzed the V3 and V4 portion of 16S
gene rRNA using the Illuminas MiSeq platform. The DNA
sequencing library was built according to platform instruc-
tions. Using pared readings of 300 bp and MiSeq v3
reactors, the end of each reading was overlapped to
generate high-quality full readings of the V3 and V4 region.
More than 100,000 readings per sample were generated,
which is sufficient for metagenomics research. The fastq
sequences were analyzed using Illumina 16S Meta-
genomics software (analysis software version: 2.4.60.8;
reference taxonomy file: gg_13_5_species_32 bp.da), which
performs taxonomic classification of the V3 / V4 region
of the 16S rRNA gene using the GreenGenes database.
The analysis of gut microbiota genera was performed by
the Galaxy software (open-source) and LDA-LEfSe (The
Huttenhower Lab, USA), an algorithm for the identification of
large biomarkers, which characterizes differences between
biological conditions. The LEfSe program provides a list of
the different taxa between the control group and the patient
group with statistical and biological significance, classifying
them according to effect size. The abundant taxa from the
control group (green) or the patients (red) are given a
positive or negative linear discriminant analysis (LDA) score,
respectively (LDA rate 42 and significance o0.05, deter-
mined by the Wilcoxon test). LDA by effect size (LEfSe) was
used to identify taxa that discriminated microbiota profiles of
control and patient groups. Alpha diversity analysis was
performed using the phyloseq package2 (MicrobiomeAna-
lyst: R version 3.6.3 (2020-02-29); web-based tool). The
results were plotted across samples and reviewed as box
plots for each group (11).

Statistical analysis
The sample size was calculated based on the relative

contribution of proteobacteria percentage. Assuming for a
and b errors of 5% (power 95%), 26 subjects were needed
in each group. The calculations were performed using G*
Power software version 3.1.2 (program concept and
design written by Franz University Kiel, Germany, which
is freely available for Windows).

Fischer exact and the chi-squared tests were used
for qualitative variables and a frequency table was built
for categorical variables. Data from cancer patients and
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control groups are reported as means±SD or medians
and interquartile range (IQR, 25–75%) for continuous
variables. The Mann-Whitney U-test (non-parametric
distribution) was used for comparison of continuous
variables between categories. To correlate intestinal
bacterial species with clinical stage disease, the Spear-
man test was used.

The significance level was 5% (P-value o0.05) and
the SPSS v. 25.9 software (IBM Inc., USA) was used for
statistical analysis.

Results

Study population characteristics
Between 2017 and 2018, a total of 51 subjects were

included, 28 in CRC and 23 in CTL.
The baseline characteristics of the groups are detailed

in Table 1. There were no significant differences between
the groups regarding age (65.18±12.27, 52.04±10.08,
P=0.292), body mass index (26.39±5.06, 27.14±5.52
kg/m2, P=0.526), and gender (P=0.75).

Distal colon (57.1%) was the most frequent CRC
location. Regarding TNM classification, early stages were
the most common, accounting for 42.9% of the sample
(stages 0 and I), stage II 25%, stage III 28.6%, and stage
IV 3.6%.

Intestinal microbiota analysis
Regarding alpha diversity (Figure 1), analyzed with

Simpson and Shannon models, CTL had greater diversity
(Po0.01). Both models consider the number of present
species and the relative abundance of each species
(Simpson’s values vary between 0 and 1 and Shannon’s
between 1.5 and 3.0). There was no significant difference
in the proportion of the main bacterial phyla (Figure 2).

LEfSe (Figure 3) results indicated genus differences
between groups (rate with an LDA score 42 and a
significance of o0.05, Wilcoxon signed rank-test) with
Prevotella predominance in CRC and Megamonas and
Ruminococcus predominance in CTL.

There were no differences between groups regarding
the species Akkermansia muciniphila, Faecalibacterium
prausnitzii, Lachnospira pectinoschiza, Peptostreptococus
anaerobius, Escherichia coli, and Enterococus faecalis.

Higher amounts of Prevotella copri (P=0.029), Bacter-
oides fragilis (P=0.032), and Fusobacterium nucleatum
(P=0.03) were observed in CTL and a greater abundance
of Bacteroides vulgatus (P=0.002), Bacteroides stercoris
(P=0.01), Bacteroides uniformis (P=0.02), and Phas-
colarctobacterium faecium (P=0.01) occurred in CRC
(Figure 4).

There was an inverse correlation between cancer
stage and Prevotella copri (Spearman R=–0.5866,
P=0.003), Lachnospira pectinoschiza (Spearman R=–
0.4222 P=0.041), Faecalibacterium prausnitzii (Spearman
R=–0.488 P=0.016), and Streptococcus bovis (Spearman

R=–0.482 P=0.012), i.e., the higher the clinical stage, the
lower the amount of these species (Figure 5).

Discussion

Our study found that Brazilians with CRC have an
altered gut microbiota composition, characterized by
increased alpha diversity and different amounts of some
genera and species.

Similar to our results, other Brazilian studies have also
found an increase in alpha diversity in CRC biopsy
samples (8,10). In the same way, B. fragilis, a symbiotic
organism common in the human intestinal tract, was found
to be more abundant in tumor samples (12) and CRC stool
samples (8). This species can adhere to the inflamed
mucosal surface of patients with colon cancer, alter
intestinal permeability, and increase metastatic potential
(13). There are two subtypes, one of which is entero-
pathogenic (14). The toxin released by this subtype
(Bacteroides fragilis toxin) increases cell proliferation,
the release of pro-inflammatory factors by the colonic
epithelium, and damage to DNA (15).

Although the population studied by de Carvalho et al.
(10), Thomas et al. (8), and our study was from the
Brazilian state of São Paulo, the abundance of some
genera was not similar in the three studies. Thomas et al.
(8) and de Carvalho et al. (10) showed that the genus
Odoribacter was increased in the CRC group (8,10),
which was not found in our samples. The genus Rumino-
coccus was found depleted in the CRC group by de
Carvalho et al. and our study but not by Thomas et al.
Similarly, de Carvalho et al. (10) and Thomas et al. (8)
diverged in the abundance of other genera. These
differences may be due to the 16S rRNA region of choice on
the bacterial community for sequencing the 16S gene (16).

Similar results regarding alpha diversity were shown
among groups in a large meta-analysis from 5 countries
that included 413 subjects with CRC, 143 adenomas, and
413 controls (17). In contrast, some studies have
described a decrease in alpha diversity associated with
CRC in stool samples (18). In an Austrian study, the alpha
diversity showed no difference between healthy control
subjects with advanced adenomas and CRC patients (19).

Individuals with CRC have a higher percentage of
genera Prevotella and Acidaminobacter and a relatively
decreased proportion of Megamonas and Ruminococcus.
Prevotella has already been associated with increased
production of IL-17 in the mucosal cells of patients with
CRC (20,21). Acidaminobacter was also found to be over-
represented in CRC stool samples (22). Ruminococcus
genera are related to the fermentation of complex
carbohydrates and producers of short-chain fatty acids.
This genus and Megamonas were increased in the control
group in our study, which is in line with other studies (19).

In a cohort study with healthy controls and CRC
patients from the United States and Canada, there was an
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increase in Fusobacterium and Porphyromonas and
a decrease in Bacteroides (23). The CRC group had
increased Prevotella copri, Bacteroides fragilis, and
Fusobacterium nucleatum species. In the control group,
there was a predominance of Bacteroides vulgatus,
Bacteroides stercoris, and Bacteroides faecium species.

The increase of Prevotella copri, Lachnospira pecti-
noschiza, Faecalibacterium prausnitzii, and Streptococus
bovis was associated with early cancer stages

Streptococcus bovis (Streptococcus gallolyticus) was
the first species described in the literature to be related to
CRC. McCoy and Mason (24) reported endocarditis due to

Table 1. Baseline characteristics of control (CTL) and colorectal adenocarcinoma (CRC) groups.

Variables CRC CTL P-value

n=28 n=23

Gender (%)

Male 50.0 65.2 0.75

Female 50.0 34.8

Age (mean±SD) 65.18 ± 12.27 52.04 ± 10.08 0.29

BMI (kg/m2) (mean±SD) 26.39 ± 5.06 27.14 ± 5.52 0.52

Home location (%)

Rural 3.6 0 1.00

Urban 96.4 100

Delivery (%)

Vaginal 100 87 0.08

C-section 0 13

Last antibiotic treatment (%)

Weeks 7.1 4.3

1–3 months 14.3 0

3–6 months 3.6 0 0.38

6–12 months 7.1 4.3

More than 12 months 64.3 91.3

Unknown 3.6 0

Smoking Status (%)

Current smoker 10.7 13

Never smoker 82.1 69.6 0.62

Ex-smoker 7.1 17.4

Breastfeeding (%)

Until 6 months 10.7 8.7

6–12 months 21.4 26.1

More than 12 months 28.6 34.8 0.75

Unknown 28.6 17.4

Never 7.1 13

Morbidity (%)

Diabetes 17.9 0 0.07

Hypertension 35.7 13.0 0.18

Thyroid disease 7.1 0 0.28

Dyslipidemia 7.1 4.3 1.00

Lupus 7.1 0 0.28

Diverticular disease 25.0 26.1 0.53

Tumor location (n. %)

Proximal colon (cecum, ascending colon, transverse colon) 10 (35.7) – –
Distal colon (descending colon, sigmoid, rectum) 16 (57.1) – –
Synchronic 2 (7.2) – –

TNM classification (%)

Stages 0 and I 42.9 – –
Stage II 25.0 – –
Stage III 28.6 – –
Stage IV 3.6 – –

Data were compared by Fischer exact test, chi-squared test, or Mann-Whitney U-test. TNM: tumor, node, metastasis.
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this species in a patient with a colon tumor in 1951. The
current study showed a correlation of S. bovis with early
disease stages. This finding may be related to the CRC
individuals having a higher proportion of initial tumors and
all cases being located in the proximal colon. Therefore, it
should not be assumed that the presence of S. bovis is
associated with less tumor aggressiveness, but only with
its proximal location. Results similar to those reported in

the literature are also expected for tissue samples, as a
higher prevalence was observed when the microbiota was
analyzed from biopsies rather than fecal samples (25).
The hypothesis is that such a species can adhere to the
tissue and induce a pro-inflammatory environment that
can lead to tumor progression, especially in pre-neoplastic
lesions (26).

In our study, larger amounts of Prevotella copri and
F. prausnitzii were also observed in the early stages of
disease. Prevotella copri has a controversial role in human
health (27). Some articles relate this species to vegetarian
and fiber-rich diets, suggesting that P. copri helps in fiber
degradation and related to health condition (14,28). It is
associated with the production of short-chain fatty acids,

Figure 1. Comparison of alpha diversity of the colorectal adenocarcinoma (CRC) and the control (CTL) groups using the Shannon and
Simpson indexes. Boxplots showing the median and interquartile range of each group, and each point corresponds to an individual’s
alpha diversity. Mann-Whitney U-test.

Figure 2. Relative abundance of bacterial phyla. Comparison of
metagenomics analysis of bacterial phyla from gut microbiota in
colorectal adenocarcinoma (CRC) patients (n=28) and control
(CTL) subjects (n=23). The data were obtained from sequencing
of the hyper-variable region (V3-V4) of the bacterial 16S rRNA
gene. Points represent the relative abundance of each participant.

Figure 3. Linear discriminants analysis (LDA) associated with
effect size (LEfSe) showing differences in genus between the
colorectal adenocarcinoma (CRC) patients and control (CTL)
subjects (rate with an LDA score 42.5 and a significance of
o0.05 determined by the Wilcoxon signed rank-test).
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which is the substrate that nourishes enterocytes and has
anti-inflammatory effects (29). In contrast, other authors
have shown that the increase in the amount of P. copri is

related to inflammatory conditions, such as rheumatoid
arthritis (30) and insulin resistance (31). These controver-
sial results can be justified by the variation in genotypes

Figure 4. Comparison of the relative abundance of bacterial species in the intestinal microbiota of the control (CTL) and colorectal
adenocarcinoma (CRC) groups.

Figure 5. Spearman’s correlation between cancer staging and bacterial composition. Inverse correlation between cancer staging
and A, Prevotella copri (Spearman R=–0.5866 P=0.003); B, Lachnospira pectinoschiza (Spearman R=–0.4222 P=0.041);
C, Faecalibacterium prausnitzii (Spearman R=–0.488 P=0.016); and D, Streptococcus bovis (Spearman R=–0.482 P=0.012).
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of this species, which is mainly modulated by diet,
as demonstrated by De Filippis et al. (21). Furthermore,
bacteria of this genus have been associated with CRC (32).

In contrast, Faecalibacterium prauznitzii is a butyrate-
producing bacteria, being considered the most important
of the human intestinal microbiota, commonly associated
with health status (29,33). Clinical staging is currently the
most important indicator of prognosis in patients with
CRC. However, new strategies to identify prognostic
predictors are being investigated. The species F. praus-
nitzii was found in greater quantity among patients who
had longer postoperative survival (34) and can be a
marker of lower aggressiveness.

Finally, Fusobacterium nucleatum was shown to be an
important marker of colorectal carcinogenesis and tumor
aggressiveness (35). It is known that F. nucleatum can
adhere to the epithelium, and when it invades, it recruits
immune cells and creates an inflammatory environment
by modulating the response of T cells and promoting
metastasis (36,37). A Brazilian study found more
F. nucleatum and Clostridium difficile in the CRC fecal
samples (9). de Carvalho et al. showed higher quantities
of F. nucleatum in tumor tissue, which was associated with
more undifferentiated invasive proximal tumors, loss of
expression of MLH1 and MSH2 PMS2, and worse
prognosis (10). In a study in Sweden using combined
tests for Escherichia coli and F. nucleatum, CRC was
detected with a specificity of 63.1% and a sensitivity of
84.6% (38). Similarly, our findings were compatible with
current data and confirmed that F. nucleatum can be
considered an important marker of colorectal carcinogen-
esis and tumor aggressiveness, since alterations in
tumor environment may favor proliferation of opportunistic
bacteria (39). As seen previously, this species is found in
greater numbers in patients with CRC around the world
and in Brazil. Zeller et al. (40), using a similar method,

evaluated French subjects and found that F. nucleatum
was one of the four most important species correlated with
cancer diagnosis.

Our study had limitations. First, the sample size was
small, and the cross-sectional design did not allow deter-
mination of cause-effect relationships. In addition, to under-
stand the functional features of the species, all its genetic
compounds must be analyzed, which is possible using the
shotgun method rather than by 16S RNA. Another
characteristic of this sample that may have affected the
results was that almost 43% were early-stage tumors.

Conclusions
We have demonstrated that gut dysbiosis is asso-

ciated with CRC. Patients with CRC had a significant
increase in alpha diversity and a higher percentage of the
genus Prevotella and a decreased proportion of Mega-
monas and Ruminococcus. Additionally, the proportion of
F. prausnitzii was associated with a better prognosis in the
first stages of CRC, and Fusobacterium nucleatum proved
to be an important marker of colorectal carcinogenesis
and tumor aggressiveness. Although regional differences
influence the composition of the microbiota, the micro-
habitat created by CRC seems to be a major factor. Our
results contribute to a better understanding of the
carcinogenic process, and, even in different environ-
ments, some factors appear to be characteristic of the
microbiota of patients with CRC.
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