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Abstract

Dilated cardiomyopathy (DCM) is characterized by ventricular dilatation, and it is a common cause of heart failure and cardiac
transplantation. This study aimed to explore potential DCM-related genes and their underlying regulatory mechanism using
methods of bioinformatics. The gene expression profiles of GSE3586 were downloaded from Gene Expression Omnibus data-
base, including 15 normal samples and 13 DCM samples. The differentially expressed genes (DEGs) were identified between
normal and DCM samples using Limma package in R language. Pathway enrichment analysis of DEGs was then performed.
Meanwhile, the potential transcription factors (TFs) and microRNAs (miRNAs) of these DEGs were predicted based on their
binding sequences. In addition, DEGs were mapped to the cMap database to find the potential small molecule drugs. A total of
4777 genes were identified as DEGs by comparing gene expression profiles between DCM and control samples. DEGs were
significantly enriched in 26 pathways, such as lymphocyte TarBase pathway and androgen receptor signaling pathway.
Furthermore, potential TFs (SP1, LEF1, and NFAT) were identified, as well as potential miRNAs (miR-9, miR-200 family, and
miR-30 family). Additionally, small molecules like isoflupredone and trihexyphenidyl were found to be potential therapeutic drugs
for DCM. The identified DEGs (PRSS12 and FOXG1), potential TFs, as well as potential miRNAs, might be involved in DCM.
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Introduction

Dilated cardiomyopathy (DCM) is characterized by the
dilatation of the myocardium, generally associated with
systolic dysfunction. DCM, which affects the left ventricle
more often than the right, commonly leads to heart failure,
and it can result in arrhythmias, thromboembolism and
premature death (1). The etiology of DCM is multifactorial,
and involves idiopathic, familial, genetic, viral or immune
factors (2,3). Nowadays, the molecular mechanism of
DCM is still unclear due to its heterogeneity. Therefore,
exploring the underlying mechanism of DCM and search-
ing for potential genes involved in DCM are of great
significance to human health.

Previous studies revealed that genes, transcription
factors (TFs) and microRNAs (miRNAs) are involved
in DCM. Mutation in some genes, such as TNNT2, has
been suggested to cause DCM (4). The dysregulation
of gene expression, like in prospero-related homeobox
factor 1 (PROX1), is also involved in DCM. PROX1 can
directly repress the expression of fast-twitch skeletal
muscle genes (e.g., troponin T3, troponin I2, and myosin
light chain 1) at transcriptional level (5). Cardiac-specific

knockout of PROX1 causes overexpression of fast-twitch
genes, and thus leads to a change from slow-twitch to
fast-twitch muscle phenotype, as well as postnatal devel-
opment of fatal DCM (5). Moreover, GATA4 is one of
the cardiac TFs crucial for normal cardiogenesis, and
its heterozygous mutations, like p.V39L, p.P226Q and
p.T279S, have been found in sporadic DCM patients (6).
These mutants can decrease the transcription regulatory
activity of GATA4 and reduce the synergistic activation
between NKX2-5 and GATA4 (6). In addition, miRNAs like
miR-1, miR-29c, miR-30c, miR-30d, miR-149, miR-486,
miR-499 are down-regulated in murine phospholamban
mutant model of DCM, and the individual silencing of
these miRNAs can contribute to cardiac cell loss and heart
failure (7).

As a powerful technique, gene expression micro-
array analysis based on bioinformatics has been widely
applied to identify DCM-related genes, possible molecular
functions, and biological signal pathways. Based on inde-
pendent microarray datasets like GSE3585, GSE3586,
and GSE1869, a gene expression signature consisting of
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27 genes (e.g., MYH6, MYH10, CCL2, PHLDA1, SNCA,
FRZB, SFRP4, SPOCK, CTGF, G0S2, ETV5, and RAR-
RES1) has been identified for DCM, as well as the
down-regulation of immune response processes (8). By
integrating gene expression profiles with protein-protein
interaction (PPI) network analysis, Lin et al. (9) have con-
structed specific co-expressed PPI networks for DCM
and non-DCM samples. Hub proteins in the DCM network
tend to be differentially expressed, and two DCM-related
functional modules (muscle contraction and organ morpho-
genesis) have also been identified (9). Using the micro-
arrays of GSE3586, Xiao et al. (10) identified the functional
modules related to heart failure with different etiologies.
However, these studies focused mainly on genes, and little
is said about the TFs or miRNAs that regulate gene expres-
sion, or about the potential molecular drugs for DCM treatment.

In this study, we re-analyzed the gene expression
profile of GSE3586 to explore the molecular mechanism of
DCM at both the gene expression level and expression
regulation level. Differentially expressed genes (DEGs)
were identified between DCM and normal samples. DEGs
bio-functions, potential TFs, and potential miRNAs, as well
as small molecules that could be employed in the treat-
ment of DCM, were also investigated.

Material and Methods

Microarray data
The gene expression profile of GSE3586 (8) was

obtained from the Gene Expression Omnibus (GEO) data-
base (http://www.ncbi.nlm.nih.gov/geo/) based on the
platform of Human Unigene 3.1 cDNA Array 37.5K v1.0.
A total of 28 samples were available, including 13 DCM
samples from septal myocardial tissue of DCM patients
and 15 normal samples from non-failing donor hearts of
healthy controls.

Data preprocessing and DEGs screening
As the intrinsic background of different chips might

affect the calculation of expression values, the raw data of
each chip were first normalized using the Geoquery pack-
age (version 2.34.0, available at http://www.bioconductor.
org/packages/release/bioc/html/GEOquery.html) (11) in
R language. After, the expression data were log2 trans-
formed, and a linear regression model was constructed to
compare the gene expression in DCM and control samples.
Then, the Benjamini and Hochberg (BH) procedure (12)
was applied to adjust P values and thus obtain false dis-
covery rate (FDR). The Limma package (13) in R language
was used to identify the DEGs in DCM and control samples.
Finally, the log2 fold change (FC)a0 and FDRo0.05 were
chosen as the cutoff values.

Hierarchical clustering analysis
For the identified DEGs, hierarchical clustering analy-

sis was performed by using the pheatmap package

(version 1.0.2, available at http://cran.r-project.org/web/
packages/pheatmap/index.html) created by R Core Team
(Austria).

Pathway analysis of DEGs
All the metabolic and non-metabolic pathways that

involved DEGs were analyzed by using the Gene Set
Analysis Toolkit V2 (WebGestalt2) platform (Vanderbilt
University, Nashville, TN, USA; available at http://bioinfo.
vanderbilt.edu/webgestalt) (14) based on the Wikipathways
database (15). P values less than 0.05 and the number of
involved genes X2 were selected as cut-off criteria.

Potential TFs and miRNAs
TFs and miRNAs play crucial roles in DCM. The

Molecular Signature Database version 3.0 (MSigDB 3.0,
available at http://www.broadinstitute.org/msigdb) (16) con-
tains hallmark, positional, curated, motif, and computa-
tional gene sets, gene ontology, oncogenic signatures,
and immunologic signatures. Among these, motif gene sets
include genes that share a conserved and cataloged cis-
regulatory motif in promoters and in 30-untranslated regions
(30-UTRs). Specifically, motif gene sets contain TF targets
that share a TF binding site recorded in the TRANSFAC
database (version 7.4, http://www.gene-regulation.com/), as
well as miRNA targets that share a 30-UTR miRNA binding
motif. In this study, based on the well-annotated motif gene
sets in MSigDB 3.0, Gene Set Enrichment analysis (GSEA)
(17) was performed to identify the potential TFs and miRNAs
of DEGs by utilizing hypergeometric distribution. The criterion
was set as FDR o0.05.

Identification of potential small molecules associated
with DCM

Currently, the connectivity map (cMap) database in-
cludes 7056 gene-expression datasets that involve 6100
small molecule treatment-control pairs (18). In order to
identify the small molecules that could simulate the nor-
mal or DCM cells, the identified DEGs (up- and down-
regulated genes) were mapped to the small molecules
deposited in cMap database using GSEA (17). The corre-
lation score was calculated, ranging from –1 to 1.

Results

Screening, hierarchical clustering, and pathway
analysis of DEGs

After data normalization (Figure 1A and B) and dif-
ferential expression analysis, a total of 4777 DEGs were
identified in DCM and normal samples, including 2711
up-regulated genes and 2066 down-regulated genes.
Genes like PRSS12 (protease serine 12, log2 FC=
–0.167 and FDR=0.003) and FOXG1 (forkhead box G1,
log2 FC =–0.156 and FDR=0.045) were significantly down-
regulated in DCM samples in comparison with normal
samples. In addition, the expressions of 13 DEGs were
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elevated more than 2-fold, while only 1 gene (CCL2)
was down-regulated more than 2-fold. For the identified
DEGs, hierarchical clustering analysis was performed,
and samples were classified into two clusters (Figure 1C).
Surprisingly, 2 normal samples were clustered with DCM
samples rather than with normal samples. This might be
caused by intrinsic deviation of the clustering tool (namely,
the pheatmap package), potential sub-healthy state of
control individuals, and experimental deviation. In general,
samples in normal and DCM groups could be distin-
guished based on DEGs expression. After pathway analy-
sis based on Wikipathways database (15,19), a total of
26 significant pathways were identified (Table 1), among
which 8 pathways were associated with signaling and
2 pathways were involved in cancer. A total of 124 DEGs
(e.g., POLA2, TMED7, SLC25A24, NF2, and COL4A2)
were significantly enriched in "lymphocyte TarBase path-
way" (P value=9.35� 10–16), while 28 DEGs (e.g.,
NCOR2, DSTN, RAC1, PIK3R1, and FHL2) were sig-
nificantly enriched in "androgen receptor signaling path-
way" (P value= 9.12� 10–7).

Potential TFs and miRNAs
The top 10 target sites and corresponding TFs with a

highly significant correlation are listed in Table 2, and SP1,
lymphocyte enhancer factor-1 (LEF1), and nuclear factor of

activated Tcells (NFAT) were among the most significant TFs.
SP1 and LEF1 collectively targeted 191 genes; LEF1 and
NFAT collectively targeted 149 genes, like down-regulated
PRSS12; SP1 and NFAT collectively targeted 147 genes;
SP1, LEF1, and NFAT collectively targeted 58 genes.

In addition, the potential miRNAs of DEGs were
screened, and miR-9, miR-200 family, and miR-30 family
were among the most significant miRNAs (Table 2). More
specifically, miR-9, miR-200 family, and miR-30 family
collectively targeted the down-regulated FOXG1.

Potential small molecules associated with DCM
Based on the cMap database, we performed GSEA for

DEGs to screen for possible small molecule drugs. Finally,
20 small molecules were identified as having a highly
significant correlation with DCM (Table 3), including
6 negatively correlated and 14 positively correlated small
molecules. Among these molecules, isoflupredone and
trihexyphenidyl could be potential small molecule drugs
for DCM treatment, and DL-thiorphan and milrinone might
trigger DCM (Table 3).

Discussion

DCM is characterized by ventricular dilatation, and it
commonly leads to heart failure. Although many studies

Figure 1. Normalization of gene expression data and hierarchical clustering of differentially expressed genes (DEGs). A, gene
expression profiles before normalization. White boxes represent normal samples, while gray boxes stand for dilated cardiomyopathy
samples. B, gene expression profiles after normalization. C, hierarchical clustering of DEGs. Yellow boxes represent normal samples,
while gray boxes stand for dilated cardiomyopathy samples. The green and red bars represent low and high expression levels,
respectively. GSMxxxxx: the accession number of a certain sample in the Gene Expression Omnibus database.
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have been devoted to exploring the pathogenesis of DCM,
the mechanism of DCM development and progression
still remains largely unknown. In the present study, we
identified the DEGs between DCM and normal samples,
performed pathway analysis for DEGs, and predicted
potential TFs, miRNAs, and small molecules related with
DCM.

Bioinformatics gene expression microarray analysis
has been widely used to identify DCM-related genes.
Based on the microarrays of GSE3586, Barth et al. (8)
found 1353 up-regulated transcripts and 384 down-
regulated transcripts by using 2-class unpaired signifi-
cance analysis of microarrays with the criteria of FDR
o0.05 and fold change X1.2. However, we screened out
4777 DEGs by utilizing Limma package with the criteria of
FDR o0.05 and log2 FCa0. The differences in DEGs
number between our study and the previous study might
be caused by the different analysis methods and criteria;
however, our method and criteria are the most commonly
used in DEG screening.

Moreover, the previous study has proven that the
immune response process is involved in end-stage DCM
(8), and we identified that the lymphocyte TarBase path-
way and androgen receptor signaling pathway were

significantly enriched by DEGs between DCM and normal
samples. Reportedly, the lymphocyte is an important part
of the immune system and has a vital role in heart function
(20). Neutrophil/lymphocyte ratio is associated with the
low function capacity in DCM patients (21). In androgen
receptor signaling pathway, the androgen receptor is
involved in the inflammation response and affects
myocardial function directly (22). Thus, we suggested that
lymphocyte TarBase pathway and androgen receptor
signaling pathway might play roles in DCM via immune
system.

Generally, TFs can play pivotal roles in regulating the
transcription process of encoding genes. In this study,
we also predicted potential TFs of DEGs, such as LEF1,
NFAT, and SP1. Being expressed in pre-B and T lym-
phocytes, LEF1 is a regulatory participant in lymphocyte
gene expression and differentiation (23). The transcrip-
tional activity of LEF1 is related to heart function via
plakoglobin (24). Besides, the translocation of b-catenin-
TCF/LEF-1 complex into the nucleus is involved in Wnt/
wingless signal transduction pathway activated by ATP
depletion to modulate the expression of genes, which can
regulate cell proliferation, apoptosis, and differentiation
(25,26). Thus, we speculated that LEF1 might be related

Table 1. Biological pathways enriched by differentially expressed genes (DEGs) in dilated cardiomyopathy.

Pathway P value Gene count Genes

Muscle cell TarBase 7.25E–16 107 POLA2, TMED7, SLC25A24, NF2, LUZP1, et al.
Lymphocyte TarBase 9.35E–16 124 POLA2, TMED7, SLC25A24, NF2, COL4A2, et al.

Insulin signaling 3.14E–13 54 MAPK8, MAP2K5, MINK1, RAF1, RAC1, et al.
Epithelium TarBase 5.61E–11 81 TMED7, SLC25A24, COL4A2, CUL4B, STX7, et al.
G protein signaling pathways 7.13E–11 36 AKAP9, GNG12, AKAP5, GNG3, PDE4B, et al.

MAPK signaling pathway 2.77E–10 49 MAPK8, TRAF6, MAP2K5, BRAF, MINK1, et al.
EGF-EGFR signaling pathway 1.24E–09 49 MAPK8, MAP2K5, BRAF, SH3GL3, RAF1, et al.
Integrated pancreatic cancer pathway 2.32E–09 50 MAPK8, CDKN2B, LTBP1, LEFTY1, RAF1, et al.
TSH signaling pathway 2.54E–09 28 PDPK1, BRAF, RAF1, CDK4, PIK3R1, et al.

Myometrial relaxation and contraction pathways 3.79E–09 46 RGS16, GNG12, RYR1, GNG3, PDE4B, et al.
Translation factors 5.32E–09 23 EIF3C, EIF4B, EIF3D, EIF1AX, EIF4A2, et al.
Calcium regulation in the cardiac cell 1.10E–08 43 RGS16, GNG12, RYR1, GNG3, CAMK1, et al.

Focal adhesion 3.33E–08 48 MAPK8, MAP2K5, BRAF, COL4A2, PAK7, et al.
Signaling pathways in glioblastoma 4.53E–08 29 PDPK1, CDKN2B, MAP2K5, BRAF, MAP2K7, et al.
Squamous cell TarBase 8.19E–08 41 HOXA7, TMED7, NF2, CUL4B, PPP1R7, et al.

Regulation of actin cytoskeleton 1.01E–07 42 GNG12, SSH2, BRAF, FGF13, PAK7, et al.
Adipogenesis 1.13E–07 37 NCOR2, EPAS1, MEF2A, CDKN1A, RETN, et al.
Electron transport chain 1.13E–07 32 ATP5L, NDUFA5, NDUFV2, ATPIF1, NDUFC1, et al.
mRNA processing 1.68E–07 37 HNRNPA1, SNRPA1, CELF2, SRRM1, DHX9, et al.

Diurnally regulated genes with circadian orthologs 2.15E–07 20 UGP2, HSPA8, PPP2CB, DAZAP2, EIF4G2, et al.
Integrin-mediated cell adhesion 2.15E–07 31 PDPK1, VAV3, MAP2K5, PXN, BRAF, et al.
Androgen receptor signaling pathway 9.12E–07 28 NCOR2, DSTN, RAC1, PIK3R1, FHL2, et al.

TGF beta signaling pathway 1.14E–06 38 MAPK8, TRAF6, RAF1, RAC1, MAP2K1, et al.
miRs in muscle cell differentiation 2.69E–06 14 PRKCE, PRKD3, PRKCB, PRKAR1B, PRKCZ, et al.
Proteasome degradation 2.93E–06 22 PSMA3, UBA1, PSMA2, PSME2, PSMB7, et al.

Integrated breast cancer pathway 6.81E–06 22 MYCBP2, CDC25A, PHB, CERK, VEGFA, et al.
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with DCM. In addition, NFAT is expressed in immune-
system cells and plays a vital role in the transcription of
cytokine genes and other genes which were critical for the
immune response (27). NFAT is also a critical regulator of
cardiac development and myocyte maturation (28), and
the translocation of dephosphorylated NFAT-3 to nucleus
in DCM can activate the calcineurin signaling pathway
(29), whose activation can induce atrial hypertrophy
during atrial fibrillation (30). Specifically, LEF1 and NFAT
collectively targeted the down-regulated PRSS12, which
is also named neurotrypsin or motopsin. Reportedly,
neurotrypsin can produce C-terminal agrin fragment that
plays crucial roles in the initiation and maintenance of
neuromuscular junctions and is a biomarker of muscle
wasting in congestive heart failure patients (31). This
evidence indicated that these TFs might play roles in
DCM. Also, SP1 can regulate the expression of NF-kB
related cytokines, and is associated with inflammation in
aortic aneurysm and heart failure (32). Also, SP1 partic-
ipates in androgen receptor signaling pathway. Although
there is very few evidence showing that SP1 is involved in
DCM, we speculated that SP1 might associate with DCM,
as SP1 and NFAT collectively targeted 147 genes.

miRNAs can post-transcriptionally regulate gene
expression, and act as pivotal modulators in DCM (7). In
this research, potential miRNAs of DEGs were identified,
and miR-9 was the most significant one. miR-9 can
regulate NFATc3-mediated hypertrophy signaling (33),
and NFAT was identified in our study. Gladka et al. (34)
reported that miR-9 was involved in dilated cardiac
hypertrophy on a regulatory perspective, and miRNAs in
miR-200 family are related with DCM and heart failure
(35). miR-200a can regulate b-catenin expression and
subsequently modulate Wnt/b-catenin signaling (36),
while there is little information that focuses on the function
of miR-200b or miR-200c in DCM. Besides, miR-30c and
miR-30d are down-regulated in murine model of DCM,
and their silencing contributes to cardiac cell loss and
heart failure (7). Specifically, miR-9, miR-200 family, and
miR-30 family collectively targeted the down-regulated
FOXG1, which belongs to the forkhead box family, and the
deletion of Foxm1 leads to diminished DNA replication
and mitosis in cardiomyocytes, and ventricular hypoplasia
in Foxm1-/- mouse line (37). Therefore, we speculate that
miR-9, miR-200 family, and miR-30 family might play vital
roles in DCM.

Table 2. Top 10 potential transcription factors and miRNAs of differentially expressed genes (DEGS) in dilated cardiomyopathy.

Target sequence Regulator P value Target genes

Transcription factor
hsa_GGGCGGR SP1 9.24E–169 ARHGAP26, TRIM24, RYR1, PRSS12, RAB2A, et al.

hsa_AACTTT Unknown 1.33E–134 PRSS12, PPP2CB, CACNA1H, CTBP2, MORF4L2, et al.
hsa_TTGTTT FOXO4 3.92E–117 ASPA, HAS2, MIS12, PCDH7, FBXO32, et al.
hsa_CTTTGT LEF1 2.71E–112 GBE1, TRIM24, MORF4L2, PPP1R16B, MYH10, et al.

hsa_CAGGTG E12 4.39E–97 ARHGAP26, RYR1, CCNYL1, PRSS12, TMEM26, et al.
hsa_GGGAGGRR MAZ 4.39E–97 ZBTB10, RYR1, PRSS12, FGD2, RAB2A, et al.
hsa_TGGAAA NFAT 2.97E–96 ZBTB10, ASPA, PRSS12, FAM120C, HIST2H2BE, et al.
hsa_SCGGAAGY ELK1 4.89E–68 MDM4, PTPN23, RAB2A, DPP8, COMMD6, et al.

hsa_CAGCTG AP4 5.70E–63 ACVR1, RYR1, ASPA, TSC22D3, SPIN2A, et al.
hsa_CACGTG MYC 5.43E–57 ZBTB10, PPCS, CCNYL1, SPIN2A, RAB2A, et al.

miRNA

has_TTTGCAC miR-19a, miR-19b 3.24E–46 UBL3, ZBTB10, PLXNC1, INO80, DLC1, et al.
hsa_CAGTATT miR-200b, miR-200c, miR-429 3.30E–46 PHACTR3, CCNYL1, NPM1, FOXG1, YPEL2, et al.
hsa_TGTTTAC miR-30a-5p, miR-30c, miR-30d,

miR-30b, miR-30e-5p

1.35E–44 ZDHHC17, ACVR1, UBN1, FOXG1, YPEL2, et al.

hsa_ACCAAAG miR-9 1.23E–42 LRRTM4, FAF2, CUL4A, FOXG1, YPEL2, et al.
hsa_GTGCCTT miR-506 3.97E–42 FAF2, FAM53B, TMEM184B, RYR1, UBN1, et al.
hsa_TGAATGT miR-181a, miR-181b, miR-181c,

miR-181d

2.13E–41 HECA, ACSL1, INO80, EPHA4, PNRC2, et al.

hsa_TTGCACT miR-130a, miR-301, miR-130b 2.68E–41 HECA, ACVR1, FAM53B, ACSL1, INO80, et al.
hsa_TGCTGCT miR-15a, miR-16, miR-15b, miR-195,

miR-424, miR-497

4.00E–40 ZBTB10, ACSL1, LUZP1, TSC22D3, VAMP8, et al.

hsa_GCACTTT miR-17-5p, miR-20a, miR-106a,
miR-106b, miR-20b, miR-519d

3.46E–39 HECA, LUZP1, EPAS1, INO80, EPHA4, et al.

hsa_TGCTTTG miR-330 3.37E–38 DIP2B, ACVR1, MAP2K5, LUZP1, NF2, et al.

miRNAs: microRNAs.
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Furthermore, the expression patterns of DEGs be-
tween normal and DCM samples were mapped to cMap
database, and a series of small molecules were predicted
to correlate with DCM. Small molecules isoflupredone and
trihexyphenidyl were found to be potential drugs for the
prevention and treatment of DCM. Isoflupredone is mainly
used in inflammatory diseases, and it is effective in the
endotoxin-induced mastitis and can significantly improve

lung function in inflammatory airway disease (38,39).
Additionally, trihexyphenidyl is considered a treatment
option for idiopathic cervical dystonia (40), while it is
unknown whether trihexyphenidyl has effects on DCM.
Therefore, it needs to be further researched whether these
two small molecules are useful in treating DCM.

In conclusion, our study identified DEGs between
DCM and control samples (e.g., PRSS12 and FOXG1),
and these DEGs participated in significant pathways
such as lymphocyte TarBase pathway and androgen
receptor signaling pathway. Potential TFs (LEF1, SP1
and NFAT) and miRNAs (miR-9, miR-200 family, and
miR-30 family) might play roles in DCM. Furthermore,
two small molecules (isoflupredone and trihexyphenidyl)
might be capable of treating DCM. This result might
provide new insight into understanding the molecular
mechanism of DCM and finding new therapeutic targets
of DCM.

More experiments are needed to verify these results,
as they were obtained through bioinformatics analysis.
We are planning to perform gene overexpression and
silencing analysis to investigate the roles of potential
DCM-related genes, transcription factors, and miRNAs
in DCM. Moreover, we are also planning to use animal
models to study the therapeutic effects of the potential
drugs isoflupredone and trihexyphenidyl, identified in this
research.
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