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Abstract

The molecular mechanism of nasopharyngeal carcinoma (NPC) is poorly understood and effective therapeutic approaches are
needed. This research aimed to excavate the attractor modules involved in the progression of NPC and provide further
understanding of the underlying mechanism of NPC. Based on the gene expression data of NPC, two specific protein-protein
interaction networks for NPC and control conditions were re-weighted using Pearson correlation coefficient. Then, a systematic
tracking of candidate modules was conducted on the re-weighted networks via cliques algorithm, and a total of 19 and 38
modules were separately identified from NPC and control networks, respectively. Among them, 8 pairs of modules with similar
gene composition were selected, and 2 attractor modules were identified via the attract method. Functional analysis indicated
that these two attractor modules participate in one common bioprocess of cell division. Based on the strategy of integrating
systemic module inference with the attract method, we successfully identified 2 attractor modules. These attractor modules
might play important roles in the molecular pathogenesis of NPC via affecting the bioprocess of cell division in a conjunct way.
Further research is needed to explore the correlations between cell division and NPC.
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Introduction

Nasopharyngeal carcinoma (NPC), a malignant tumor
of the nasopharynx, has a strong geographical distribution
with a high incidence in Southern China (1). Despite
advances in technology and improved treatment outcome
of NPC, local recurrence still represents a major mode of
failure particularly in patients with locally advanced disease
(2). A combination of factors, including viral, environmental
and hereditary, has been indicated to be associated
with NPC (3). However, the understanding of NPC at the
genetic level is poor and effective therapeutic approaches
are needed.

Complex human diseases, such as cancers, are caused
by dysregulations of biological networks (4). During the past
few years, high-throughput experimental technologies and
large amounts of protein-protein interaction (PPI) data made
it possible to study proteins systematically (5). As is known,
functionally related genes are frequently co-expressed
across various organisms constituting conserved transcrip-
tion modules (6), where modules are groups of genes
whose expression profiles are highly correlated across the
samples (7). The established methods now begin with

identifying differentially expressed genes (DEGs) between
two conditions, and then performing a functional analysis
to identify the disease-related genes (8). However, this
often restricts the analyses to well-annotated biological
processes.

Attract, proposed by Mar et al. (9), is a knowledge-
driven analytical approach for identifying and annotating
the gene-sets that best discriminate between different
cell phenotypes. This method conducts analysis on the
biologically related modules that differentiate the pheno-
types, and the modules are regarded as attractors. The
attract method can find meaningful, discriminatory gene
sets between different cell phenotypes, not restricted to
the well-annotated genes.

Therefore, in this paper, to further reveal the mecha-
nism of NPC, systemic analysis was conducted on gene
expression profile of NPC via integrating systemic module
inference. The attract method was applied to determine
the attractor modules that were identified by the clique-
merging algorithm. The results might indicate potential
biomarkers for early diagnosis and therapy of NPC, and
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give insight to reveal the pathological mechanism under-
lying this disease.

Material and Methods

Data recruitment and preprocessing
Prior to analysis, data recruitment was conducted from

ArrayExpress database (http://www.ebi.ac.uk/arrayexpress/).
The gene expression profile of NPC, with accessing num-
ber of E-GEOD-53819, was downloaded to investigate the
molecular mechanism of NPC. E-GEOD-53819 is on Agilent-
014850 Whole Human Genome Microarray 4x44K G4112F
Platform, and is composed of 36 samples (18 NPC primary
tumors and 18 non-cancerous nasopharyngeal tissues).

For data preprocessing, Micro Array Suite 5.0 (MAS 5.0)
algorithm was used to revise perfect match and mismatch
probe values (10). Robust multichip average method (11)
and quantile based algorithm (12) were carried out to
perform background correction and normalization to elim-
inate the influence of nonspecific hybridization. Meanwhile,
a gene-filter package was used to discard probes if they
could not match any genes. The values from multiple probes
mapping to the same gene symbol were averaged. Finally, a
total of 11,843 genes were gained for subsequent analysis.

PPI network construction
In the present study, all human PPI relationships were

obtained from the Search Tool for the Retrieval of Interacting
Genes/Proteins database (STRING, http://string-db.org/). In
STRING database, each interaction has a combined score.
All of the protein IDs were converted into gene symbols, and
IDs that could not mark any genes were removed. Under the
threshold value of a combined score X0.8, a PPI network
including 5,531 nodes and 22,728 highly correlated interac-
tions was constructed. Furthermore, the 11,843 genes in the
gene expression profile were mapped to the PPI network, and
a new PPI network with 4,985 nodes was established.

PPI network re-weighting
As it is known, the reliabilities of the interactions are

reflected by their weights, and the lower the scores of the
interactions the more likely are the interactions to be false
positives (13). In the present study, the Pearson correla-
tion coefficient (PCC) (14) was used to re-weight the new
PPI network. The absolute value of the PCC was used as
the re-weighted value of the new PPI network. In this
case, two specific PPI networks with each edge assigned
a re-weighted value were built for NPC and control groups.
Furthermore, the p-value of each interaction under the two
conditions was detected by the one-sided Student’s t-test
(15), and interactions whose P-value was o0.05 were
exacted out to build the destination network.

Identification of modules
It is known that proteins interact with each other, so

they are usually dense modules in PPI networks. In the

present study, the clique algorithm (16) was performed to
identify modules from the destination networks for NPC
and control groups. Generally speaking, the module
mining mainly contained the following two steps:

Identifying maximal cliques. It is well known that the
larger the clique, the more nodes it contains and the
higher the weights (17). Thus, the maximal clique was
selected first in the present study, and the module-
identification algorithm in Genelibs (http://www.genelibs.
com/gb/index.jsp), which was based on the fast depth-first
search with pruning-based algorithm, was utilized to iden-
tify maximal clique for case and control groups. The maxi-
mal cliques whose nodes were X4 and p20 remained for
further analysis.

Refining of modules. Each clique was assigned a
score, which was defined as the weighted interaction
density (WID). The WID was calculated according to the
following formula:

scoreðKÞ¼
P

a2K ;b2K Kða;bÞ
Kj j:ðjK j � 1Þ

where K (a, b) is the weight of the interaction between a
and b calculated using fast depth-first method. The higher
the score, the more important the maximal clique.

Furthermore, the highly overlapped maximal cliques
were merged to form a module. The inter-connectivity
between two cliques was used to determine whether two
overlapped cliques should be merged or not, and the
overlap-threshold value of these two cliques X0.5 was
set as the merge-threshold value. The weighted inter-
connectivity between the non-overlapping proteins of K1

and K2 was calculated according to the following formula:

inter � scoreðK1;K2Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

a2ðK1 �K2Þ
P

b2K2
Kða;bÞ

K1 �K2j j � K2j j �
P

a2K2 �K1

P
b2K1

Kða;bÞ
K2 �K1j j � K1j j

s

Identification of modules with similar composition
In addition, the module correlation density of the

modules from the case and control groups was calculated
according to the following formula:

dccðSnÞ¼
P

p;q2Sn
PCCðða;bÞ;NÞ
Snj j
2

� �

dccðTmÞ¼
P

p;q2Tm
PCCðða;bÞ;MÞ
Tmj j
2

� �

where S = {S1, S2,y, Sn} and T = {T1, T2, y , Tm}
were the sets of modules identified from the networks

Braz J Med Biol Res | doi: 10.1590/1414-431X20176416

Attractor modules for nasopharyngeal carcinoma 2/7

http://www.ebi.ac.uk/arrayexpress/
http://string-db.org/
http://www.genelibs.com/gb/index.jsp
http://www.genelibs.com/gb/index.jsp
http://dx.doi.org/10.1590/1414-431X20176416


of control and NPC groups, respectively. The correla-
tion densities for disease module T were calculated
similarly.

Then, the Jaccard similarity of the modules in
NPC and control conditions were calculated according
to JðSn;TmÞ¼ Sn \ Tmj j= Sn [ Tmj j. The modules with
JðSn;TmÞ � 0:7 were considered similar modules in gene
composition. Moreover, modules with nodes that are too
small in size might be too simple and insufficient to
characterize the relationship between the biomarkers and
the disease. Thus, the modules with nodes X5 were
selected for further analysis.

Identification of attractor modules
To identify differential expression between NPC and

control conditions, we used the attract method (9) on the
above identified modules. In the present study, a gene set
enrichment algorithm named GSEA-ANOVA was applied
to determine the differential expression on the attractor
level data.

Under this implementation, an ANOVA model was first
fit to each gene after their expression was modeled by
a single factor. Taking gene s as an example, it was
modeled according to the following formula:

yðsÞ
rg ¼OþOg þ mrg

where r (r = 1, y, pf) were replicate samples, g are cell
types (g = 1, y, G), O represented the overall mean, Og

denotes the g-th cell type group’s effect on the expression
of the gene s, and mrg reflects the random normal residual
error term.

Then, we assumed that the expression values among
all of the cell types were equivalent and a null hypothesis
L: O1 = O2 = y = Og was proposed. The average
expression for cell type g was calculated according to the
following formula:

yðsÞ:g ¼ 1
pg

Xpg
r ¼ 1

yðsÞ
rg

The F-statistic was computed for gene s based on the
ANOVA model.

FðsÞ ¼ MSSs

RSSs

where MSSs represents the mean treatment sum of
squares, which was determined as follows:

MSSs ¼ 1
G� 1

XG
g¼ 1

pg yðsÞ
:g � yðsÞ

::

h i2

RSSs denotes the residual sum of squares:

RSSs ¼ 1
S�G

XG
g¼ 1

Xpr
r ¼ 1

yðsÞ
rg � yðsÞ

::

h i2

where S represents the total number of samples. After
this, we calculated the overall average value according to
the following formula:

yðsÞ
:: ¼ 1

G

XG
g¼ 1

1
pg

Xpg
r ¼ 1

yðsÞ
rg

 !

It is well known that the F-statistic captures the
strength of association of a gene’s expression over the dif-
ferent cell types. The larger the F-statistic value, the larger
the type-specific expression change of the cell (18). In
the present study, to test this relationship more formally,
we used a t-test and a Welch modification to determine
the difference of the F-statistic.

Taking module M that consisted of A genes as
example, the t-statistic value was obtained according to
the following formula:

TM ¼
1
A

PA
s¼ 1

FðsÞ
� �

� 1
V

PV
r ¼ 1

FðrÞ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
M
A

� �
þ S2

V
V

� �r
where V represents the total number of well-annotated
genes within a module and and represent the sample
variances, which are defined as:

S2
A ¼ 1

A� 1

XA
r ¼ 1

FðrÞ � 1
A

XA
s¼ 1

FðsÞ
 !2

s2v ¼
1

V � 1

XV
r ¼ 1

FðrÞ � 1
V

XV
s¼ 1

FðsÞ
 !2

At last, we performed Welch-Satterthwaite equation to
specify the degrees of freedom:

w¼
S2
A
A þ S2

V
V

� �2
S4
A

A2ðA� 1Þ þ
S4
V

V2ðV � 1Þ

In short, attract used an F-statistic from an ANOVA
model to assess condition-specific changes in expression
across two conditions. The ANOVA model collapsed down
to being equivalent to a two-sample t-test in this study.
To increase the sensitivity of the differences between the
global distribution of F-statistics and the module distribu-
tion, we performed multiple-testing by using Benjamini-
Hochberg FDR-based method to adjust the P-values (19).
Finally, these pathways with adjusted P-values o0.05
were regarded as attractor modules.

Functional enrichment analysis of genes in differential
modules

The differential expressions are related to functional
changes. In the present study, Gene Ontology (GO)
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enrichment analysis based on Database for Annotation,
Visualization and Integrated Discovery (DAVID) (20) was
performed in genes contained in the differential modules.
The bioprocesses with a P-value o0.05 were considered
to be significant for NPC.

Results

PPI network re-weighting
To determine the significant biomarkers for NPC, first

the data of gene expression profile of NPC and PPI data
were recruited and preprocessed. Based on the data, a
PPI network was constructed. To further assess the reli-
ability of protein interactions, the PPI network re-weighting
was conducted on the original network, and the absolute
PCC values for each interaction was used as the
re-weighted PPI network value. The distributions of the
re-weighted values of interactions in NPC and control
groups are shown in Figure 1. We found that the number
of interactions in two groups were all in descending order
according to the re-weighted values. In addition, the
number of interactions in the NPC group was higher than
that in the control group when the interaction correlation
arranged 0.0B0.5, and the number of interactions in NPC
group was lower than that in the control group when the
interaction correlation arranged 0.6B1.0. Moreover, under
the threshold P-value of o0.05, two re-weighted PPI
networks were separately gained for NPC and control
conditions, with 5,423 and 7,480 interactions, respectively.

Identifying modules from the PPI networks
In order to identify the disrupted modules from the

re-weighted PPI networks, the maximal cliques were
searched via the fast depth-first method. A total of 4,769
and 4,029 maximal cliques were identified for NPC and

control conditions, respectively. Under the threshold node
values of X4 and p20, 863, and 598 maximal cliques
were separately determined for NPC and control groups,
respectively. The frequency distribution of cliques is
shown in Figure 2. In addition, the WID value was intro-
duced to determine the importance of the maximal cliques.
Figure 3 shows the distribution of WID values in the
two conditions. Under the overlap-threshold value of the
inter-connectivity between two groups X0.5, 19 and 38
modules were identified for the NPC and control groups,
respectively.

Identification of attractor modules
Prior to determining the differential modules between

the two groups, modules with similar gene composition
were determined via the Jaccard similarity parameter.
Under the Jaccard similarity cutoff value of X0.7, 8 pairs
of modules, which we named Module 1B Module 8, were
gained.

As mentioned above, attract can identify and annotate
the gene-sets (modules) that best discriminate different cell
phenotypes and might be associated with the occurrence
and development of a certain disease. In the present study,

Figure 1. Pearson correlation coefficient distribution of interac-
tions in the nasopharyngeal carcinoma group and the control
group.

Figure 2. Frequency distribution of maximal cliques in the
nasopharyngeal carcinoma group and the control group.
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the attract method was used to perform analysis on the
module pairs. Under the threshold P-value of o0.05, 2
modules were considered as attractor modules. Module 1
(P=0.042) and Module 3 (P=0.047) were considered to be
significant for NPC (Figure 4). The details are shown in
Table 1.

Functional analysis of genes in attractor modules
To further determine the biological functions of attrac-

tor modules, GO analysis was conducted based on
DAVID. Under the cutoff P-value of o0.05, the bioprocess
of cell division was identified for both modules (Table 1). In
this case, these two attractor modules might affect the
bioprocess of cell division to perform their function during
the occurrence and development of NPC.

Discussion

Over the past several years, radiotherapy equipment
and techniques have been improved tremendously, and
several genes, such as BCAT1 (21), MST1R (22) and
FEZF2 (23), were indicated to be aberrantly expressed
in NPC. However, the molecular mechanisms of NPC
have not been elucidated clearly yet, and the five-year
survival rate of NPC patients has not radically changed
and remains around 50–60% (21). Therefore, it is of great
importance to comprehensively disclose the pathologi-
cal mechanism and explore new approaches for NPC
treatment.

The traditional expression-based analysis methods
search for genes that are differentially expressed between
different conditions, then a meta-analysis follows to iden-
tify potential functional interpretations of these genes (24).
Network strategies, such as co-expression networks, have
been largely performed to select the initial significant
gene lists, and the potential functional roles are predicted
based on a post-hoc application (25). For annotating
large datasets, it is indeed a useful way. However, the
subsequent analyses are invariably restricted to well-
annotated genes. Conversely, the attract method first
identifies the candidate gene sets, then decomposes the
module-defined gene lists into highly correlated sub-
groups and extends those by going back to the entire
body of data to find additional genes that are highly
correlated with each individual subgroup (9). Therefore,
the attract method can not only identify the well-annotated
gene sets, but can also integrate novel elements via
their correlated expression patterns to the well-annotated
functions.

In the present study, attractor modules for NPC were
excavated via integrating systemic module inference with
the attract method. By defining each module as a signal

Figure 3. Distribution of weighted interaction density values in the
nasopharyngeal carcinoma group and the control group.

Figure 4. Attractor modules identified according to the method of integrating clique-merging algorithm and attract.
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attractor, we identified two attractor modules, Module 1
and Module 3. Functional analysis showed that both
modules were related to the bioprocess of cell division.
Next, we attempted to further disclose the relationships
between the bioprocess of cell division and development
of NPC. Cell division is an essential process for healthy
growth of an organism. Advanced studies in complex
genetic mechanism are attempting to explain how normal
cells become tumorigenic. Numerous studies have indi-
cated that mutation accumulation in genes that control cell
division can cause cancer by accelerating cell division
rates or inhibiting normal controlling systems (26–28). Cell

division cycle checkpoint has been conducted on ther-
apeutic strategies of NPC (29,30). Our study identified two
cell division-related attractor modules in NPC, confirming
the critical roles of uncontrolled cell division bioprocess in
the development of NPC.

Based on the strategy of integrating systemic module
inference with the attract method, we successfully iden-
tified two cell division-related attractor modules in NPC.
These two attractor modules were predicted to play sig-
nificant roles during the occurrence and development of
NPC, and may provide useful information for identifying
better therapeutic strategies for this disease.
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