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Abstract

In the present study, using noise-free simulated signals, we performed
a comparative examination of several preprocessing techniques that
are used to transform the cardiac event series in a regularly sampled
time series, appropriate for spectral analysis of heart rhythm variabil-
ity (HRV). First, a group of noise-free simulated point event series,
which represents a time series of heartbeats, was generated by an
integral pulse frequency modulation model. In order to evaluate the
performance of the preprocessing methods, the differences between
the spectra of the preprocessed simulated signals and the true spectrum
(spectrum of the model input modulating signals) were surveyed by
visual analysis and by contrasting merit indices. It is desired that
estimated spectra match the true spectrum as close as possible, show-
ing a minimum of harmonic components and other artifacts. The merit
indices proposed to quantify these mismatches were the leakage rate,
defined as a measure of leakage components (located outside some
narrow windows centered at frequencies of model input modulating
signals) with respect to the whole spectral components, and the
numbers of leakage components with amplitudes greater than 1%, 5%
and 10% of the total spectral components. Our data, obtained from a
noise-free simulation, indicate that the utilization of heart rate values
instead of heart period values in the derivation of signals representa-
tive of heart rhythm results in more accurate spectra. Furthermore, our
data support the efficiency of the widely used preprocessing technique
based on the convolution of inverse interval function values with a
rectangular window, and suggest the preprocessing technique based
on a cubic polynomial interpolation of inverse interval function values
and succeeding spectral analysis as another efficient and fast method
for the analysis of HRV signals.
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Introduction

Since the initial experiments of Akselrod
et al. (1,2), Pomeranz et al. (3) and Pagani et
al. (4), who suggested that the spectral anal-
ysis of heart rhythm variability (HRV) could
be used as a novel and powerful noninvasive
tool for indirect assessment of the sympatho-
vagal modulating activity of cardiovascular
function, the technique has been extensively
used, not only in basic research, but also in
clinical medicine (5-8). In the frequency do-
main, three underlying frequency bands have
been defined through the HRV spectrum
observation (1-10) and named: a) “high-fre-
quency band” or “respiratory sinus arrhyth-
mia related band”, which occurs at about the
mean breathing frequency of the patient or
experimental animal; b) “low-frequency
band” or “Mayer wave-like sinus arrhythmia
related band”, which occurs at about 0.1 Hz
spontaneous vasomotor activity, and c) “very-
low-frequency band”, which is the band of
less than 0.05-Hz frequencies. Power alter-
ations in the high-frequency band have been
attributed to changes in cardiac parasympa-
thetic activity, whereas in the low-frequency
band they have been related to changes in
both sympathetic and parasympathetic ac-
tivities (1-8). In contrast, the physiological
elucidation of the very-low-frequency band
power is much less established (8), albeit
some researchers have related it to ther-
moregulatory activity, to the renin-angio-
tensin system and to other systems that in-
volve humoral factors (1,2,9,10).

The analysis of signals in the frequency
domain can be performed either by classical
techniques, such as Blackman-Tukey’s
correlogram and Welch’s periodogram (11)
- both based on the fast Fourier transform
(FFT) algorithm (12) -, or by autoregressive
modern techniques (11). However, the pro-
cessing of a series of non-equidistant point
events, constituted by successive heartbeats
(cardiac event series), and their analysis in
the frequency domain are not straightfor-

ward. Spectra can be estimated only from
regularly sampled signals (11), although some
techniques propose the direct estimation of
the spectra of unevenly sampled data (13,14),
but these algorithms are computationally
cumbersome. Therefore, the cardiac point
processes must be first submitted to math-
ematical approaches, denoted in this report
as preprocessing procedures, to produce a
series of equidistantly sampled data suitable
for spectral analysis. This implies that differ-
ent spectra can be defined by different forms
of preprocessing. Moreover, the signal of
HRV can be either heart period or heart rate,
defined as the reciprocal values of each other.
These signals have the same informative
content, but the results obtained from each
have shown considerable discrepancies, in-
asmuch as the relationship between them is
non-linear (15).

As pointed out above, the numerous meth-
ods of preprocessing the HRV signal and the
reciprocal mode to define them will result in
dissimilar spectra. It is essential that the
estimated spectra exhibit a minimum of har-
monic components and other artifacts, there-
fore being as accurate as possible. In previ-
ous studies, De-Boer et al. (16,17) and Berger
et al. (18) presented an evaluation of the
performance of four common spectral tech-
niques for analysis of HRV. Berger et al.
(18) recommended their algorithm, based on
the convolution of inverse interval function
values with a rectangular window, as the
most efficient for the derivation of heart rate
signal from the electrocardiogram. These
studies employed a group of noise-free simu-
lated cardiac event series generated by an
integral pulse frequency modulation (IPFM)
model, and the performance of the prepro-
cessing methods was assessed by means of a
visual contrast between the estimated spec-
tra (spectra of the preprocessed simulated
HRV signals) and the true spectrum (spec-
trum of the model input modulating signal).
In the present report we show a more com-
prehensive survey (assessing 15 types of
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spectra) and a well-defined comparison (us-
ing merit indices to quantify the mismatches
between the estimated spectra and the true
spectrum) of the several methods that can be
employed in the signal preprocessing for the
analysis of HRV.

Methods

Signal simulation

For the evaluation of the performance of
the several methods that can be employed in
the signal preprocessing for the analysis of
HRV, we used as input signals for the pre-
processing algorithms three noise-free com-
puter-simulated temporal series of heartbeat
intervals generated by an IPFM model.

Information embedded in a series of point
events will be described by an IPFM model
if, and only if, any two consecutive point
event occurrence times, t[n] and t[n + 1], are
related by the following equation

T m m t dt
t n

t n

= +
+

∫ [ ( ) ]
[ ]

[ ]

0 1

1

Eq. 1

where T is the integrator’s threshold value,
m1(t) is the modulating signal, and m0 is a
constant that links the unmodulated point
events rate (intrinsic frequency) with the
inverse of the integrator’s threshold value by
the relation ƒ0 = m0/T (17-21). The IPFM
model can also be seen as a device that
integrates its input signal m(t) = m0 + m1(t)
until the integrated value M(t) reaches a
fixed threshold value T, at which time the
device generates a point event, resets the
integrator to zero and initiates a new cycle of
integration. The IPFM model was first em-
ployed in electrophysiology for the study of
the nerve cell impulse generation process
(19) and later Hyndman and Mohn (20) sug-
gested it as a functional description of the
cardiac sinus node electrophysiology. For
the sinus node pacemaker cells, the value
M(t) resembles the membrane potential that

rises until the threshold value is reached and
causes an action potential to occur. The dia-
stolic depolarization contribution is related
to the value m0, and the humoral and auto-
nomic neural influences are represented by
the value m1(t). Obviously, when m1(t) in-
creases, equivalent to the preponderance of
sympathetic influence, the intervals between
the point events shorten, contributing to an
increase in heart rate.

In the simulation of the heartbeat inter-
vals by the IPFM model, the L feasible modu-
latory activities that are lumped together in
the value m1(t) have been considered as os-
cillatory components and consequently mod-
eled by sinusoidal signals,

m t a l f l t
l

L

1
1

2( ) [ ] sin ( [ ] )=
=
∑ π Eq. 2

where a[l] and ƒ[l] are, respectively, the am-
plitude and the frequency of the l-sinusoid
(17,18). In the current study, we simulated
three time series of 512 data (henceforth
referred to as time series #1, #2 and #3), for
which the model’s threshold value T was
1.05 s, m0 = 1, and the other parameters were
established in the following fashion: a) m1(t)
= 0.3sin(2π0.16t) for time series #1; b) m1(t)
= 0.3sin(2π0.12t) + 0.3sin(2π0.16t) for time
series #2, and c) m1(t) = 0.3sin(2π0.07t) +
0.3sin(2π0.16t) + 0.3sin(2π0.28t) for time
series #3. The parameters used in the forma-
tion of the time series #1 and #2 were chosen
to carry out the same simulations previously
reported by De-Boer et al. (16,17) and Berger
et al. (18). In addition, we simulated a third
time series, in which the modulating signal
was comprised of three oscillatory compo-
nents with frequencies equal to 0.07, 0.16
and 0.28 Hz. The values of T = 1.05 s and
m0 = 1 imply, by definition, an intrinsic
frequency of 57 beats per minute. The fre-
quencies chosen for the oscillatory compo-
nents correspond approximately to the fre-
quencies usually found in the HRV spectra
of humans. De-Boer et al. (17) showed ana-
lytically that a modulation depth of a = 0.3
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results in heartbeat intervals whose length is
up to approximately 30% different from the
mean value.

Signal preprocessing

The term preprocessing is employed in
the current report to designate the math-
ematical approaches used in the derivation
of an equidistantly sampled time series from
irregularly sampled cardiac event series. The
several spectra that were studied in this re-
port (listed in Table 1) are defined below.

The spectrum of heart periods (or spec-
trum of intervals) is the spectrum of the
interval tachogram, which is defined as the
series of heartbeat intervals as a function of
interval number (9,16-18,22,23). In this man-
ner, the intervals can be visualized as regu-
larly spaced, but, as a consequence, the units
of the frequency axis of these spectra are
“cycles per beats” rather than “Hertz”. In a
different way, if the intervals should be con-
sidered evenly spaced with distances equal

to the average interval length, the frequency
unit will be “cycles per second” or “Hertz
equivalent”. This method has been exten-
sively used (4-8) since it was first suggested
by Sayers (9).

Additionally, a large class of spectra arises
from a spectral estimation of the series ob-
tained by a regular sampling of sectionally
continuous functions derived from the car-
diac event series. We labeled this class as
spectrum of sampled sectionally continuous
interval function. For the determination of
these functions, numerous possibilities ex-
ist, and in the current study we used the
following ones: a) The function values are
maintained constant from the time of occur-
rence of the nth cardiac event, t[n], to the
time of occurrence of the succeeding one,
t[n + 1], and this constant value can be the
instantaneous heart period (ƒ(t) = t[n + 1] -
t[n] for t[n] ≤ t < t[n + 1]) or the delayed heart
period (ƒ(t) = t[n] - t[n - 1] for t[n] ≤ t <
t[n + 1]). These sectionally continuous inter-
val functions are known as instantaneous
heart period signal and delayed heart period
signal, respectively (21). b) The function val-
ues are determined through the convolution
of the instantaneous heart period signal with
a rectangular window of width equal to twice
the sampling period of the posterior sam-
pling procedure, divided by the window
width. It is important to note that the convo-
lution of a signal with a rectangular window
in the time domain corresponds, in the fre-
quency domain, to the multiplication of the
Fourier transform of this signal with a low-
pass filter with a transfer function equal to

H f
f T

f
w( )

sin ( )= π
π Eq. 3

where Tw is the window width (12). Conse-
quently, when this type of preprocessing
technique is used, the power spectrum esti-
mate can be improved if multiplied by the
correction factor [Tw/H(ƒ)]2. Furthermore,
the spectral estimate can be considered ac-
curate only for 0<ƒ<ƒs/4, where ƒs is the

Table 1 - Spectrum types of heart rhythm variability derived from the various prepro-
cessing techniques used to transform the cardiac event series into a regularly sampled
time series.

Spectrum Description

Cluster 1: spectra derived from the heart periods
#1 spectrum of heart period (spectrum of intervals)
#2 spectrum of sampled delayed heart period signal
#3 spectrum of sampled instantaneous heart period signal
#4 spectrum of sampled function of linear-interpolated heart period values
#5 spectrum of sampled function of cubic-interpolated heart period values
#6 spectrum of sampled function of 5-degree-interpolated heart period values
#7 spectrum of sampled instantaneous heart period signal convoluted with

a rectangular window

Cluster 2: spectra derived from the heart rate
#8 spectrum of heart rate (spectrum of inverse intervals)
#9 spectrum of sampled delayed heart rate signal
#10 spectrum of sampled instantaneous heart rate signal
#11 spectrum of sampled function of linear-interpolated heart rate values
#12 spectrum of sampled function of cubic-interpolated heart rate values
#13 spectrum of sampled function of 5-degree-interpolated heart rate values
#14 spectrum of sampled instantaneous heart rate signal convoluted with

a rectangular window

Cluster 3: spectrum of counts
#15 spectrum of counts
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sampling frequency. This method was sug-
gested by Berger et al. (18), who used the
instantaneous heart rate signal instead of the
instantaneous heart period signal as described
here. c) The function values are determined
by means of some kind of interpolation of
the interval function values. The interval
function is defined as the series of heartbeat
intervals as a function of time, in which
impulses are formed only at the event occur-
rence times with an amplitude equal to the
length of the preceding interval (23,24). In
the current study, we employed the efficient
Neville’s algorithm for evaluation of poly-
nomial interpolations (13).

Finally, another spectrum can be assessed
in a straightforward manner from the non-
equidistant cardiac event series in which the
series of cardiac events was replaced with a
train of impulse functions (Dirac’s delta func-
tions),

p t t t n
n

N

( ) ( [ ])=
=

∑δ -
-

0

1

Eq. 4

where N is the number of cardiac events and
t[n] (n ∈ N; 0 ≤n≤N - 1) is the occurrence
time of the nth event. This power spectrum,
known as spectrum of counts (14,16-18,25),
is defined as the low-frequency part of the
squared Fourier transform of the sequence
of impulse functions p(t), and can be analyti-
cally calculated as
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As pointed out by Berger et al. (18), equation
5 embodies terms that compensate for the
truncation effects that are brought about by
the computation of the Fourier transform of
a finite set of impulse functions.

With the exception of the spectrum of
counts, a further set of spectra can be ob-
tained in the same manner as those defined

above if reciprocals of intervals (heart rates)
are considered instead of intervals (heart
periods).

Signal processing

In the processing of equidistantly sam-
pled time series resulting from the prepro-
cessing procedures, the spectra were com-
puted by means of a windowed FFT algo-
rithm (11,12,26), except for the spectrum of
counts which was calculated using equation
5. For the sake of comparison with the previ-
ous works of De-Boer et al. (16,17) and
Berger et al. (18), the amplitude spectrum
(the square root of the power spectrum) was
adopted. This method has been extensively
used to accentuate the presence of harmon-
ics and other artifacts, which is helpful in the
evaluation of the performance of the spectra
(16-18).

Performance evaluation

In an attempt to evaluate the various esti-
mated spectrum performances mentioned in
Table 1, their shapes were compared to that
of the spectrum of the IPFM model modulat-
ing signal (true spectrum), responsible for
the generation of the simulated heartbeat
interval series. These comparisons can be
made both by visual analysis (16-18), in
which we look for the presence of harmonic
peaks and other artifacts in the estimated
spectra, or by contrasting merit indices, de-
signed for evaluating the performance. As
previously noted, it is desired that estimated
spectra match the true spectrum as closely as
possible and therefore the merit indices used
in this study were empirically designed in
order to quantify these mismatches. In this
study, we proposed the following indices:
a) the foremost, named leakage rate (SL), is
defined as a measure (in percentage) of total
leakage spectral components with respect to
the whole components. The leakage compo-
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maining spectrum. b) The numbers of leak-
age spectral components with amplitudes
greater than 1% (n1%), 5% (n5%) and 10%
(n10%) of the total spectral components.

Results

Figure 1A-C shows the interval tacho-
grams of the first 250 (of 512) simulated
values of time series #1, #2 and #3, respec-
tively. These graphs illustrate the increased
irregularity (complexity) in the output signal
of an IPFM model when more than one
modulatory element are lumped together to
compound the input model signal. It is a
highly laborious task to analyze the nature of
the modulating signals only by simple obser-
vation of Figure 1C.

For the spectral analysis of the prepro-
cessed signals, some commonly used time
windows (Bartlett, Hanning, Hamming and
Blackman) (26) were first tested and we
utilized the Blackman window since this
invariably produced the least leakage rate in
amplitude spectra.

Figure 1D-F shows the amplitude spectra
estimated from the time series #1, #2 and #3,
respectively, preprocessed by means of a
polynomial cubic interpolation (spectrum of
sampled function of cubic-interpolated heart
period values). The spectrum shown in Fig-
ure 1D contains, in addition to a peak related
to modulatory frequency (0.16 Hz), a sec-
ond and third harmonic peak (0.32 Hz and
0.48 Hz, respectively). The spectra of Figure
1E and 1F embody peaks at sum and differ-
ence frequencies of the model’s modulating
frequencies. In Figure 1E, which shows the
spectrum related to the signal composed by
the modulating frequencies ƒ1 = 0.12 Hz and
ƒ2 = 0.16 Hz, the main artifactual peaks are
0.4 Hz (ƒ2 - ƒ1), 0.24 Hz (2ƒ1), 0.28 Hz (ƒ1 +
ƒ2) and 0.32 Hz (2ƒ2). In the spectrum of
Figure 1F, the most salient artifactual peaks
are 0.02 Hz (ƒ2 - 2ƒ1), 0.09 Hz (ƒ2 - ƒ1),
0.12 Hz (ƒ3 - ƒ2), 0.14 Hz (2ƒ1), 0.21 Hz
(3ƒ1), 0.23 Hz (ƒ1 + ƒ2), 0.30 Hz (2ƒ1 + ƒ2),
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Figure 1 - A, B, C, Interval tachograms of the first 250 (of 512) values of three noise-free
simulated time series produced by means of an IPFM model in which the threshold value
was 1.05 s and the input signals consisted of a summation of modulating sinusoids with
frequencies equal to 0.16 Hz (A), 0.12 and 0.16 Hz (B), and 0.07, 0.16 and 0.28 Hz (C). D,  E,
F, Amplitude spectra estimated from the three simulated time series preprocessed by
means of a polynomial cubic interpolation (spectrum of sampled function of cubic-interpo-
lated heart period values).

nents are those located outside some narrow
windows (spectrum signal bands) centered
at frequencies of IPFM model modulating
signals. We have experimentally determined
that a width of 12 ∆ƒ (where ∆ƒ = ƒs/N) for
these windows is a sufficient value to isolate
the peaks related to the modulating signals
from the harmonics and artifacts of the re-
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0.32 Hz (2ƒ2), 0.35 Hz (ƒ1 + ƒ3), 0.37 Hz
(3ƒ1 + ƒ2) and 0.44 Hz (ƒ2 + ƒ3), where the
modulating frequencies are ƒ1 = 0.07 Hz, ƒ2

= 0.16 Hz and ƒ3 = 0.28 Hz. As can be seen,
besides interval tachograms, the intricacy of
spectra markedly increases with the number
of modulatory elements at the model input.

For the present analysis, the 15 types of
amplitude spectra grouped in Table 1 were
divided into three clusters, as follow: a) cluster
1 aggregated the set of spectra derived from
the intervals (heart periods), which are spec-
tra #1 to #7, b)  cluster 2 aggregated the set of
spectra derived from the reciprocals of inter-
vals (heart rates), which are spectra #8 to
#14, and c) cluster 3 consisted of the spec-
trum of counts (spectrum #15).

Figure 2A-C presents the computed leak-
age rate of the spectra estimated from the
time series #1, #2 and #3, respectively, while
Figure 2D-F exhibits the numbers of leakage
spectral components (n1%, n5% and n10%).

Figure 2A shows that, for the time series
#1 and cluster 1, spectra #5, #6 and #4
presented the lowest leakage rates (13.97%,
14.39% and 14.84%, respectively), whereas
spectra #2 and #3 presented the highest ones
(41.64% and 40.55%, respectively). For clus-
ter 2, spectra #12, #13 and #11 presented the
lowest leakage rates (8.13%, 8.48% and
9.93%, respectively), whereas spectra #10
and #9 presented the highest ones (37.59%
and 35.69%, respectively). Spectrum #15 of
group 3 presented a leakage rate of 44.57%.
Spectrum #12 presented the lowest leakage
rate (8.13%), whereas spectrum #15 pre-
sented the highest one (44.57%), implying a
variation of 448% between the lowest and
the highest leakage rate.

As shown in Figure 2B, for the time
series #2 and cluster 1, spectra #5 and #4
presented the lowest leakage rates (36.98%
and 37.28%, respectively), whereas spectra
#2, #3 and #1 presented the highest ones
(56.13%, 49.09% and 48.83%, respectively).
For cluster 2, spectra #12 and #13 presented
the lowest leakage rates (18.00% and 18.64%,
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Figure 2 - Values of merit indices calculated to assess the performance of the spectra
estimated from three noise-free simulated time series. These series were produced by
means of an IPFM model in which the threshold value was 1.05 s and the input signals
consisted of a summation of modulating sinusoids with frequencies equal to 0.16 Hz (A, D),
0.12 and 0.16 Hz (B, E), and 0.07, 0.16 and 0.28 Hz (C, F). The 15 types of spectra shown
here are discriminated in Table 1. A, B, C, Leakage rate. D, E, F, Numbers of leakage
spectral components with amplitudes greater than 1% (n1%), 5% (n5%) and 10% (n10%) of
the total spectral components.

respectively), whereas spectrum #9 presented
the highest one (47.58%). Spectrum #15 pre-
sented a leakage rate of 50.55%. Spectrum
#12 presented the lowest leakage rate
(18.00%), whereas spectrum #2 presented
the highest one (56.13%), implying a varia-
tion of 212%.

As shown in Figure 2C, for the time
series #3 and cluster 1, spectra #4 and #5
presented the lowest leakage rates (44.41%
and 45.68%, respectively), whereas spectra

n1%

n5%
n10%

n1%

n5%
n10%



428

Braz J Med Biol Res 31(3) 1998

H.N. Guimarães and R.A.S. Santos

#1 and #2 presented the highest ones (63.78%
and 62.70%, respectively). For cluster 2,
spectra #14, #13 and #12 presented the low-
est leakage rates (29.98%, 31.37% and
31.84%, respectively), and spectra #9 and #8
presented the highest ones (58.19% and
57.47%, respectively). Spectrum #15 of
group 3 presented a leakage rate of 52.95%.
Spectrum #14 presented the lowest leakage
rate (29.98%) and spectrum #1 presented the
highest one (63.78%), indicating a variation
of 113%.

Both the analysis of the numbers of leak-
age spectral components n1%, n5% and n10%

(see Figure 2D-F) and the visual examina-
tion of the spectrum shapes corroborated the
results described above. As evidenced by
Figure 2A-F and the analysis reported above,
the spectrum of sampled function of cubic-
interpolated heart rate values (spectrum #12),
the spectrum of sampled function of 5-de-
gree-interpolated heart rate values (spectrum
#13) and the spectrum of sampled instanta-
neous heart rate signals convoluted with a
rectangular window (spectrum #14) appear
to be the most appropriate for analysis of the
HRV signal in the frequency domain.

Discussion

In the present study we compared several
methods for the preprocessing of cardiac
event series for the analysis of HRV. Our
major objective was to extend the studies
conducted by De-Boer et al. (16,17) and
Berger et al. (18) in two aspects: a) these
previous studies only investigated the spec-
trum of intervals (16-18), the spectrum of
inverse intervals (17,18), the spectrum of
counts (16-18) and the spectrum of sampled
instantaneous heart rate signal convoluted
with a rectangular window (18). In the cur-
rent study we analyzed a more comprehen-
sive group consisting of 15 types of spectra,
as described in Table 1. b) In the above
mentioned studies the spectra were com-
pared only by means of visual contrasting,

while in the current study, besides visual
analysis, we performed a well-defined com-
parison based on merit indices, designed to
quantify the mismatches between the esti-
mated spectra and the true spectrum.

The spectrum of intervals - owing to its
simplicity - and the spectrum of sampled
instantaneous heart rate signal convoluted
with a rectangular window - owing to its
good performance reported in the study of
Berger et al. (18) - are still the most fre-
quently employed techniques for the study
of HRV signals (1-9). The results obtained in
the present study contraindicate the spec-
trum of intervals, reinforce the efficiency of
the algorithm suggested by Berger et al. (18)
and indicate another simple approach which
is also efficient for the study of HRV, as
discussed below.

We noticed that if the classical methods
of spectral estimation are chosen for the
analysis of HRV, then the multiplication of
the time series with a Blackman window
before the signal processing procedures will
result in a spectrum with the least leakage
rate. In addition, the matched comparison
between the spectra of clusters 1 and 2 and
their own merit indices indicate a marked
decrease in the leakage rate when the heart
rates were used instead of the heart period
values in the derivation of signals represen-
tative of heart rhythm. This result agrees
with data reported by Mohn (22), which
suggested that the spectrum of inverse inter-
vals is superior to the spectrum of intervals.
However, the reasons for these discrepan-
cies are not clear. The influence of the choice
of heart rate or heart period values in the
study of HRV has not been sufficiently con-
sidered. Only a few recent reports (15,27,28)
have speculated this questionable point.

We observed that all spectra present arti-
factual peaks at “sum” and “difference” fre-
quencies of the IPFM model’s modulating
frequencies, sometimes misleading the
identification of the modulatory peaks. It
was observed that the spectrum of sampled
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function of cubic-interpolated heart rate val-
ues is the most suitable for the study of HRV
signals, inasmuch as it more closely matches
the true spectrum at the input of the IPFM
model when the model’s modulating signal
is composed of one or two sinusoidal noise-
free signals. Consequently, we conclude that
the preprocessing technique based on a cu-
bic polynomial interpolation of inverse in-
terval function values is an adequate ap-
proach for the derivation of an equidistantly
sampled time series, representative of the
heart rhythm, from the irregular cardiac event
series. Furthermore, we observed that the
spectrum of sampled function of 5-degree-
interpolated heart rate values and the spec-
trum of sampled instantaneous heart rate
signal convoluted with a rectangular win-
dow also closely match the true spectrum,
particularly for the case of three sinusoidal
noise-free modulating signals. However,
from a computational point of view, the
assessment of regularly sampled data by
means of cubic polynomial interpolation us-
ing Neville’s algorithm is the most efficient

and effortless procedure. Conversely, the
spectrum of intervals, which is among the
techniques most frequently used, is the least
effective estimate in the sense that it di-
verges considerably from the true spectrum.

The results reported here indicate that an
accurate and successful spectral estimation
is a sine qua non of a carefully selected
preprocessing technique. The use of heart
rate values instead of the heart period values
in the derivation of signals representative of
heart rhythm results in more correct spectra.
Furthermore, our data derived from math-
ematical modeling and noise-free simula-
tions reinforce the efficiency of the wide-
spread adopted preprocessing technique
based on the convolution of inverse interval
function values with a rectangular window,
and recommend the technique based on a
cubic polynomial interpolation of inverse
interval function values and succeeding spec-
tral analysis as another efficient, fast and
more effortless computer implementation set
of procedures for the analysis of HRV sig-
nals.
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