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ABSTRACT 

 

Brewer’s spent grain and corn steep liquor or yeast extract were used as the sole organic forms for proteinase 

production by Streptomyces malaysiensis in submerged fermentation. The influence of the C and N 

concentrations, as well as the incubation periods, were assessed. Eight proteolytic bands were detected 

through gelatin-gel-electrophoresis in the various extracts obtained from the different media and after 

different incubation periods, with apparent molecular masses of 20, 35, 43, 50, 70, 100, 116 and 212 kDa. 

The results obtained suggest an opportunity for exploring this alternative strategy for proteinases production 

by actinomycetes, using BSG and CSL as economically feasible substrates. 
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Proteinases are industrially important enzymes, which 

catalyze the hydrolysis of a peptide bond in a protein molecule, 

and they are used in various industries such as the detergent, 

leather, textile, pharmaceutical industry and for waste 

treatment. Microbial proteinases, especially from Bacillus sp., 

have traditionally held a predominant share of the industrial 

enzyme market worldwide (1). Several extracellular 

proteinases have been obtained from streptomycetes (2) and 

many of them have been characterized as serine- and 

metalloproteinases (3, 4, 5) 

Brewer’s spent grain (BSG) is a by-product of the brewery 

industry, and is the barley malt residue obtained after wort 

elaboration, with a cellulose content ranging from 9% to 25% 

of the dry matter (6). According to Mussato et al. (7), breweries 

in Brazil generate approximately 1.9 millions tons of BSG per 

year. Although part of it is used as animal feed, it is still largely 

underused. However it is an interesting source as the raw 

material for the production of a variety of products including 

lactic acid (7) and breads (8). Recently it has been used for 

enzyme production, such as arabinoxylan-degrading enzymes 

(9), and also cellulases and hemicellulases for bioethanol 

production (7). 

Corn steep liquor (CSL), a major by-product of the corn 

wet-milling industry, is also an inexpensive substrate available 

on a large scale (10), and is capable of replacing yeast extract 

(YE)  as a rich source of nutrients such as organic nitrogen and
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vitamins. This cheap residue has been successfully used in 

some culture media for the production of glucose isomerase 

(11), cellulase (12) and protease (13).  

This present report deals with the production of 

proteinases by Streptomyces malaysiensis AMT-3 isolated 

from a Brazilian cerrado soil (14), using BSG as the carbon 

source, and CSL or YE as the nitrogen source. Stock cultures 

were maintained on yeast extract-malt extract-agar plates 

containing (g/L): malt extract, 10; yeast extract, 4; glucose, 4 

and agar, 15, after incubation at 28ºC for 10 days. For spore 

production the streptomycete was cultivated for 15 days in this 

same medium and spore suspension, prepared according to 

Hopwood et al. (15), was maintained in 20% (v/v) glycerol at -

20° C. 

Cells were cultivated in a salt mineral medium containing 

(g L-1): KH2PO4, 9.0; K2HPO4, 1.5; MgSO4.7H2O, 0.2; CaCl2, 

0.05; MnSO4.7H2O, 0.01 and ZnSO4.7H2O, 0.001, 

supplemented with different combinations of BSG as the 

carbon source, and CSL or YE as the nitrogen source. The 

different combinations that generated the eight (8) culture 

mediums were as follows: [1] YE 0.1% (w/v) and BSG 0.5% 

(w/v); [2] YE 0.1% (w/v) and BSG 2.5% (w/v); [3] YE 1.2% 

(w/v) and BSG 0.5% (w/v); [4] YE 1.2% (w/v) and BSG 2.5% 

(w/v); [5] CSL 0.1% (w/v) and BSG 0.5% (w/v); [6] CSL 0.1% 

(w/v) and BSG 2.5% (w/v); [7] CSL 1.2% (w/v) and BSG 

0.5% (w/v); [8] CSL 1.2% (w/v) and BSG 2.5% (w/v). 

Erlenmeyer flasks (250-mL), containing 50 mL of each 

medium, were inoculated with 50µL of a spore suspension (4.4 

x 109 spores/mL). Cells were incubated at 28ºC, under shaking 

conditions (200 rpm) for 6 days. At 24 hour intervals flasks 

were collected, in duplicates, and the contents were centrifuged 

for 10 min (2,500 g) at 4°C, after which the supernatants, 

which were passed through a 0.45 µm filtration unit, were 

collected for further analysis. 

The extracellular proteinase activity was detected by 10% 

sodium dodecylsulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) containing 0.1% gelatin (16). The crude extracts 

were mixed with SDS-PAGE sample buffer (4) in a proportion 

of 7:3 (extract:buffer - v/v). After electrophoresis (200 mV, 4 

hours, 4oC) the gel strips were submerged in Triton X-100 for 

30 minutes in an ice bath and than incubated in 50 mM 

phosphate buffer, pH 7.0, for 4 h at 37°C. The possible 

presence of protein aggregates was evaluated by preparing the 

extracts in two different ways: (a) a non-reduced sample was 

mixed with SDS-PAGE buffer and (b) a reduced sample was 

prepared by boiling for 5 min in SDS-PAGE buffer containing 

2 mM DTT (dithiothreitol). Thereafter, the extracts were 

analyzed in SDS-PAGE in the presence or absence of gelatin. 

The molecular mass of the proteinases was calculated by 

comparison against the mobility of the molecular mass 

standards (Pharmacia): myosin (212 kDa), α-2 macroglobulin 

(170 kDa), β-galactosidase (116 kDa), phosphorylase b (97 

kDa), albumin (66 kDa), ovalbumin (45 kDa), carbonic 

anhydrase (30 kDa), trypsin inhibitor (20.1 kDa) and β-

lactalbumin (14.4 kDa). 

Eight proteolytic bands were detected in the various 

extracts obtained from the different media and after different 

incubation periods (Fig 1 and 2). The results were the same for 

the duplicates tested. These bands correspond to molecular 

masses of 20, 35, 43, 50, 70, 100, 116 and 212 kDa, and band 

116 kDa, present in all conditions tested, was the most 

characteristic one. The possible presence of protein aggregates 

was eliminated, since the same protein profile was obtained 

after the extracts, boiled in SDS and DTT, were analyzed in 

SDS-PAGE in the presence or absence of gelatin (data not 

shown). 

In terms of the BSG concentration, or even the type of 

nitrogen source, CSL or YE, the results obtained were variable, 

and a common proteolytic profile could not be established. So, 

in general, the combination of BSG at 0.5 or 2.5% (w/v) with 

CSL or YE, at 0.1 or 1.2% (w/v) was adequate for proteinase 

production. Extracellular proteinase production in 

microorganisms is highly influenced by media components, 

viz. a variation in C/N ratio, the presence of some easily 
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metabolizable sugars, such as glucose, and the presence of 

metal ions (2, 17, 18, 19). Due to these factors, a large 

heterogeneity can be observed in the proteinase production in 

response to the type and concentration of the substrates in the 

culture medium, which could explain the variability of the 

results obtained. 

 

 

 

Figure 1. Gelatin–SDS–PAGE showing proteinases in the culture supernatant of S. malaysiensis grown under different concentrations of BSG 

and CSL, for a period ranging from 3 to 6 days. (A) BSG 0.5% + CSL 0.1%, (B) BSG 2.5% + CSL 0.1%, (C) BSG 0.5% + CSL 1.2% and (D) 

BSG 2.5% + CSL 1.2%. Lanes 1–4 correspond to the different days (3-6 days). The calculated molecular masses (in kDa) of the proteinases are 

indicated on the left side of the Figure. 
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Figure 2. Gelatin–SDS–PAGE showing proteinases in the culture supernatant of S. malaysiensis grown under different concentrations of BSG 

and YE, for a period ranging from 3 to 6 days. (A) BSG 0.5% + YE 0.1%, (B) BSG 2.5% + YE 0.1%, (C) BSG 0.5% + YE 1.2% and (D) BSG 

2.5% + YE 1.2%. Lanes 1–4 correspond to the different days (3-6 days). The calculated molecular masses (in kDa) of the proteinases are 

indicated on the left side of the Figure. 
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The proteolytic bands were generally more intense after 

4–6 days fermentation, however, occasionally, even after 3 

days they could be detected, as observed, for instance, when 

2.5% (w/v) BSG and 1.2% (Fig. 1D) or 0.1% (w/v) CSL (Fig. 

1B) were used. However, under other conditions, such as when 

0.5% (w/v) BSG and 1.2% (w/v) CSL (FIG 1C), or when 2.5% 

(w/v) BSG and 1.2% (w/v) YE (Fig 2D) were employed, the 

proteolytic profile was detected only after five days, and was 

only more intense after six days incubation.  

Streptomyces malaysiensis was tested previously for 

proteinase production using wheat bran (WB) and YE (4) and 

the same eight proteolytic bands were detected. They were 

characterized as serine-proteinases (212, 116, 100, and 35 kDa) 

and metallo-proteinases (20, 43, 50 and 70 kDa) classes. Our 

results indicate that the proteolytic enzymes obtained here are 

the same as those observed earlier, although the quantification 

of proteinases seemed to be different. Indeed this is a very 

interesting result, which indicates that for a possible future 

biotechnological application, different low cost residues, such 

as BSG and WB, could be used for the production of the same 

proteinases. Considering that BSG is readily available, and 

considering also the differences in costs of both CSL and YE, it 

is evident that these results are of significant importance, which 

points out the possibility of using BSG and CSL as sole 

sources of C and N for proteinase production. According to the 

literature BSG is not a very commonly used substrate, and at 

the present time, as far as we know, there are no citations 

describing proteinase production using only these two residues.  

In conclusion, S. malaysiensis AMT-3, a strain isolated 

from a Brazilian cerrado soil, was able to grow and produce 

proteinases using BSG and CSL, which are low-cost substrates 

and are therefore very interesting for enhancing the potential 

use of this proteolytic strain in biotechnological applications. 
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