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Abstract

Pectinolytic enzymes are greatly important in winemaking due to their ability to degrade pectic poly-
mers from grape, contributing to enhance process efficiency and wine quality. This study aimed to
analyze the occurrence of pectinolytic yeasts during spontaneous fermentation of Argentine Bonarda
grape, to select yeasts that produce extracellular pectinases and to characterize their pectinolytic ac-
tivity under wine-like conditions. Isolated yeasts were grouped using PCR-DGGE and identified by
partial sequencing of 26S rRNA gene. Isolates comprised 7 genera, with Aureobasidium pullulans as
the most predominant pectinolytic species, followed by Rhodotorula dairenensis and Cryptococcus

saitoi. No pectinolytic activity was detected among ascomycetous yeasts isolated on grapes and dur-
ing fermentation, suggesting a low occurrence of pectinolytic yeast species in wine fermentation eco-
system. This is the first study reporting R. dairenensis and Cr. saitoi species with pectinolytic
activity. R. dairenensis GM-15 produced pectinases that proved to be highly active at grape pH, at
12 °C, and under ethanol and SO2 concentrations usually found in vinifications (pectinase activity
around 1.1 U/mL). This strain also produced cellulase activity at 12 °C and pH 3.5, but did not pro-
duce �-glucosidase activity under these conditions. The strain showed encouraging enological prop-
erties for its potential use in low-temperature winemaking.

Key words: Aureobasidium pullulans, Cryptococcus saitoi, pectinolytic activity, Rhodotorula

dairenensis, winemaking.

Introduction

Pectinolytic enzymes are polysaccharidases that de-
grade pectins present in middle lamella and primary cell
walls of plants. This ability is widely used in winemaking
as pectinases can help to improve liquefaction, juice yield,
clarification, filterability, and to increase the release of
color and flavor compounds entrapped in grape skins
(Fleet, 2008; Alimardani-Theuil et al., 2011; Martín and
Morata de Ambrosini, 2014).

Grape skin forms a physical barrier to diffusion of
anthocyanins, tannins and aroma contained in the skin
cells. The permeability of skin cell walls to these com-
pounds can be increased by partial hydrolysis of their struc-

tural polysaccharides (pectins, cellulose and hemicellu-
loses), a process that can be facilitated by pectinolytic prep-
arations. These enzymes are complex mixtures mainly
comprised of pectinases, but also other desirable activities
like cellulases, hemicellulases and acid proteases. Cellu-
lases and hemicellulases are also responsible for an in-
crease in the extraction of grape juice, and the improvement
in the clarification of wines (Romero-Cascales et al., 2008).

Nowadays, commercial pectinase preparations are
obtained from fungi and apart from desirable activities,
they generally contain undesirable enzymes like pectine-
sterase (Alimardani-Theuil et al., 2011) and �-glucosidase
(Romero-Cascales et al., 2008) that can negatively affect
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the quality of wines. Yeasts are known to produce mostly
polygalacturonases (Alimardani-Theuil et al., 2011), and
they could therefore be a preferable source of pectinases.
Considering the key role of yeasts in winemaking, selection
of pectinolytic yeasts for enology is an alternative approach
to fungal pectinases. Although some pectinolytic wine
yeasts have already been described (Fernández et al., 2000;
Fernández-González et al., 2004), further studies are
needed.

“San Rafael” Designation of Origin (DO), an area in
central-west Argentina, represents an important wine re-
gion in South America. Despite its long viticulture and
enology history, very little is known about the microorgan-
isms involved in spontaneous fermentations. Currently, Ar-
gentine Bonarda is one of the red grape varieties with
increasing enological interest in the country.

Cold-active enzymes are attractive for usage in food
industry since low-temperature conditions favor conserva-
tion of sensory and nutritional properties in the product
(Sahay et al., 2013). A previous study reported cold-active
pectinase activity by yeasts isolated from wine grapes (Me-
rín et al., 2011). However, the presence of pectinolytic
yeasts during fermentation and their enzymatic activities
under winemaking conditions have not been described.

This study reports the occurrence of pectinolytic
strains among representative yeasts isolated at different
stages during spontaneous fermentation of Argentine Bo-
narda grape. And it focuses on selection and characteriza-
tion of their enzymatic behavior under wine-like conditions
(pH 3.5, 12 and 28 °C, ethanol and SO2) for their potential
use in winemaking.

Materials and Methods

Study area, sampling and fermentation

Grape samples (Vitis vinifera L.) of cv. Argentine
Bonarda were collected from Cuadro Benegas viticultural
region (lat. 34.62° S, long. 68.45° W) in San Rafael DO,
Mendoza, Argentina, during the 2009 vintage.

Representative bunches of healthy grapes were asep-
tically hand harvested, transported to the laboratory and
kept cold until their study. The collected grapes were
crushed to conduct the spontaneous fermentation in 1 L
Erlenmeyer flasks containing 800 mL of must (reducing
sugars 220 g/L; titratable acidity 4.6 g/L; yeast assimilable
nitrogen (YAN) 310 mg/L; pH 4.2). Progress of the alco-
holic fermentation was monitored daily by measuring
weight loss using flasks with stoppers containing a Müller
valve that allows only CO2 to escape from the system. Fer-
mentations were carried out in duplicate at 25 � 1 °C until
constant weight for two consecutive days.

Yeast isolation

Before the grape crushing, 10 berries were placed in a
flask containing 10 mL of sterile peptone-water (0.1%,

w/v) and were shaken at 165 rpm during 1 h at room
temperature. Aliquots of adequate dilutions of both berry
washing solution and grape must, sampled at 0, 3, 5, 8 and
12 days of fermentation, were plated onto WL Nutrient
Agar. This medium allows presumptive discrimination
among yeast species by colony morphology and color
(Pallmann et al., 2001). Plates were incubated at 25 °C for 5
days for colony development. A representative number of
each colony type was recovered. Isolates were purified by
streak plating and subcultured onto Yeast extract Peptone
Dextrose (YPD: yeast extract, 10 g/L; peptone, 20 g/L; dex-
trose, 20 g/L; agar, 20 g/L) for subsequent identification.

Molecular yeast identification

Yeast isolates were examined with PCR-DGGE to
group them according to their DGGE mobility and repre-
sentative strains of each group were subsequently se-
quenced as described by Rantsiou et al. (2013). Isolates
were subjected to DNA extraction and a DNA fragment
from the D1-D2 loop region of the 26S rRNA gene was am-
plified by PCR using primers NL1GC/LS2 following the
protocol proposed by Cocolin et al. (2000).

The DCodeTM Universal Mutation Detection System
(Biorad, USA) was used for DGGE analysis according to
Cocolin et al. (2000) with minor modifications in the dena-
turing gradient (30 to 50% urea-formamide) and the elec-
trophoresis conditions (constant voltage of 130 V for 4 h).
To obtain species identification, PCR amplification of rep-
resentative colonies from each migration-specific group
was conducted by using primers NL1/NL4 (Kurtzman and
Robnett, 1998). PCR products were purified using the
QIAquick® PCR Purification Kit (Qiagen, Germany) and
sequencing was carried out at MWG Biotech (Germany)
and CERELA (Argentina). Strains were identified by
searching the GenBank database with the BLAST program
(http://www.ncbi.nlm.nih.gov).

Screening of pectinolytic activity among isolated
yeasts

The ability of isolated yeasts to hydrolyze pectin was
assayed using the Petri dish method according to Merín et

al. (2011). The isolates were point-inoculated onto a min-
eral medium containing 0.2% (w/v) citric pectin as carbon
source, at pH 4.5, and incubated at 28 °C for 48-72 h. En-
zyme activity was evidenced by clear halos around the col-
onies against a purple-brown background after addition of
Lugol’s solution.

Enzyme assays

Production of extracellular enzymatic extracts

For enzyme production, yeasts showing pectinolytic
activity on plates were inoculated in a basal liquid medium
(containing per L of 50 mM citric-citrate buffer: dextrose,
20 g; soy peptone, 10 g; meat peptone, 10 g; yeast extract,
10 g) at pH 3.5, proximate to wine pH. The cultures were
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incubated under shaking conditions (100 rpm) at 12 and
28 °C for 5 or 3 days, respectively. Cells were removed by
centrifugation (5000x g, 15 min at 4 °C) and supernatants
were filtered (0.22 �m) to obtain cell-free supernatants (en-
zymatic extracts) on which all the enzymatic activities were
assayed throughout this study.

The assessment of enzymatic activities in the present
work was always carried out at the same temperature of the
enzymatic production, at 12 or 28 °C, as appropriate.

Pectinolytic activity

Pectinolytic activity was assayed by measuring the
amount of reducing sugars released from a pectin disper-
sion (0.25% pectin in 50 mM citric-citrate buffer, pH 3.5)
using 3,5-dinitrosalicylic acid (DNS) reagent (Miller,
1959). Galacturonic acid was used as standard (Sigma,
USA). The reaction mixtures (enzymatic extract/substrate
1/10) were incubated at 12 or 28 °C, at the corresponding
enzyme production temperature, for 30 min as previously
described (Merín et al., 2011). One pectinase unit (U) is de-
fined as the enzymatic activity that releases 1 �mol of re-
ducing sugar per min under the assay conditions.

Other cold-active hydrolytic activities of enological interest

Cellulase and xylanase activities were assayed in en-
zymatic extracts obtained at 12 °C as described above by
measuring the reducing sugars according to Miller (1959).
Cellulase was measured using microgranular cellulose
(Whatman CC41) and xylanase using birchwood xylan
(Sigma, USA) as substrates at a concentration of 0.25%
(w/v) in 50 mM citric-citrate buffer (pH 3.5). The enzy-
matic reactions were carried out at 12 °C for 30 min. One
cellulase or xylanase unit is defined as the enzymatic activ-
ity that releases 1 �mol of reducing sugar (as glucose or
xylose, respectively) per min under the assay conditions.

�-Glucosidase activity was assayed by incubating
100 �L of enzymatic extract with 100 �L of 15 mM D-(+)-
cellobiose (Fluka, USA) solution in citric-citrate buffer (pH
3.5) at 12 °C for 30 min. Glucose produced was quantified
using the enzymatic colorimetric test (GOD-POD) (Aré-
valo-Villena et al., 2007). One �-glucosidase unit is de-
fined as the enzymatic activity that releases 2 �mol of
glucose from cellobiose per min under the assay conditions.

Extracellular protease activity was assayed qualita-
tively by point-inoculation of yeasts on plates of skim milk
agar and gelatin agar at pH 4.5, according to the method de-
scribed by Charoenchai et al. (1997). Skim milk agar plates
were directly examined for clear zones surrounding yeast
growth after incubation at 12 °C for 3-5 days, whereas gela-
tin agar plates were flooded with 10 mL acetic acid (50 g/L)
before examination for clear zones around the yeast cells.

Appropriate enzyme and substrate blanks, as well as
calibration curves, were included in all quantitative enzy-
matic assays.

T. delbrueckii BTd259 (Maturano et al., 2012) was
used as positive control for pectinolytic and other hydro-
lytic activities.

Influence of enological parameters on pectinolytic activity

The effects of ethanol, sulfur dioxide (SO2) and a
combination of ethanol and SO2 on pectinase activity were
evaluated in cell-free supernatants (enzymatic extracts pro-
duced as described in previous section) under standard en-
zymatic assay conditions. The substrate was supplemented
with ethanol and total SO2 at final concentrations of 15%
(v/v) and 120 mg/L, respectively, and reactions were car-
ried out at 12 and 28 °C, as appropriate. Reaction mixtures
assayed under the same conditions at their respective tem-
peratures but in absence of ethanol and SO2 corresponded
to the reference activity.

Statistical analysis

Analysis of variance (ANOVA) and Fisher’s LSD
test (p < 0.05) were applied to all experimental data, using
STATGRAPHICS Plus 5.1 (Manugistics, Rockville, MD,
USA). Data normality and variance homogeneity in the re-
siduals were verified by modified Shapiro-Wilks and Leve-
ne’s test, respectively.

Nucleotide sequence and yeast strain accession
numbers

Partial sequence of the 26S rRNA gene of the most
representative strains were submitted to the GenBank data-
base available at NCBI under accession numbers:
JF414133 (Saccharomyces cerevisiae), JF414134
(Candida zemplinina), JN637171 (Cryptococcus saitoi),
JN637172 (Rhodotorula dairenensis).

The latter two strains were also deposited at the
Banco Nacional de Microorganismos (BNM) Culture Col-
lection (Buenos Aires, Argentina) under accession num-
bers: BNM 538 (Cryptococcus saitoi GM-4) and BNM 539
(Rhodotorula dairenensis GM-15).

Results and Discussion

Isolation and identification of representative yeasts
from Argentine Bonarda grape and fermenting must

Alcoholic fermentation of Argentine Bonarda must
was completed in 12 days. The red wine had a final pH of
4.1 and a final ethanol concentration of 11.7% (data not
shown).

A total of 48 yeast colonies were isolated from grape
surface, fresh must and spontaneous fermentation on WL
medium. The 22 colonies isolated from grapes and must
comprised 8 groups with different morphology. During the
fermentation process, the diversity of the yeast colony mor-
phology decreased and only 6 different types were ob-
served. Consequently, the 48 colonies were classified into
14 morphological groups (Table 1), characterized by their
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specific color, consistency and surface, as previously de-
scribed (Pallmann et al., 2001; Urso et al., 2008).

All the colonies of each morphological pattern were
subjected to PCR-DGGE to establish species-specific mi-
gration groups. Profiles of each DGGE migration group are
presented in Figure 1.

Seven different DGGE profiles were generated. Co-
migrating DGGE bands were considered to belong to the
same species. After sequencing, 7 yeast genera were identi-
fied, corresponding to A. pullulans, R. dairenensis, Cr.

saitoi, C. zemplinina and S. cerevisiae species and
Hanseniaspora/Kloeckera sp. and Metschnikowia sp. (Ta-
ble 1). The identified yeasts are among the most frequently
described on grape skins and fresh musts from diverse re-
gions around the world (Merín et al., 2011; Barata et al.,

2012; Rantsiou et al., 2013), and during wine fermentation
(Fleet, 2008; Urso et al., 2008; Rantsiou et al., 2013).

Occurrence of pectinolytic yeasts isolated during
spontaneous fermentation of Argentine Bonarda
grape

Out of 48 representative yeast isolates, 11 (23%) be-
longing to 3 species showed pectinolytic activity on agar
plates (Figure 2). According to a recent review by Ali-
mardani-Theuil et al. (2011), of approximately 700 yeast
species identified to date, only very few produce pectino-
lytic enzymes, which is in accordance with our results.

The total number of representative yeasts isolated
from grapes, fresh must and fermentations is shown in Fig-
ure 2A. Among the yeast isolated from grapes and must, A.

pullulans was the most abundant species with 8 isolates,
followed by Hanseniaspora sp. with 6, Metschnikowia sp.
and R. dairenensis, both with 3, and Cr. saitoi with 2 iso-
lates.

Figure 2B shows that pectinolytic yeasts were only
isolated from grape berry surfaces and fresh must. A.

pullulans was the predominant pectinolytic species, repre-
senting 73% of the total number of isolates able to degrade
pectin. Besides, all A. pullulans isolates produced pecti-
nases. Similar results have previously been observed in
wine grapes, with A. pullulans as the most frequent cold-
active-pectinase-producing species (Merín et al., 2011,
2014), and in tropical environments where this species rep-
resented the highest proportion (22%) of pectinolytic mi-
croorganisms (Buzzini and Martini, 2002). The results
suggest that this pectinolytic microorganism is more preva-
lent in plant materials, soil and water.

The remaining pectinolytic species corresponded to
the basidiomycetous yeasts R. dairenensis and Cr. saitoi,
representing 18% and 9% of the total pectinolytic isolates,
respectively (Figure 2B). Two thirds of the representative
isolates of R. dairenensis and half of the Cr. saitoi isolates
produced pectinases. Yeasts belonging to these two genera
have previously been described as pectinolytic microorgan-
isms (Federici, 1988; Nakagawa et al., 2004; Turchetti et
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Table 1 - Identification at species level of morphological groups of yeasts isolated from grapes, fresh must and fermenting must, based on the migration of
the bands obtained by PCR-DGGE.

Morphological group Isolation source of yeast groups DGGE pattern DGGE gel lane Species identificationa

7, 11 Grape, fresh must, fermenting must I 1, 5 Hanseniaspora sp.

10, 12, 13, 14 Fermenting must II 2, 6, 7, 9 Saccharomyces cerevisiae

1, 2 Grape III 3, 4 Rhodotorula dairenensis

9 Fermenting must IV 8 Candida zemplinina

8 Grape, fresh must, fermenting must V 10 Metschnikowia sp.

3, 4, 5 Grape, fresh must VI 11, 12, 13 Aureobasidium pullulans

6 Grape VII 14 Cryptococcus saitoi

aOne representative isolate from each DGGE pattern was identified by sequencing of the D1-D2 loop region of 26S rRNA gene and comparison with
BLAST tool in GenBank.

Figure 1 - DGGE profiles of yeasts isolated from Argentine Bonarda
grapes and must during spontaneous fermentation. Correlations between
lane designations and colony groups as well as Roman numerals and
DGGE patterns are indicated in Table 1. The bands common to all isolates
are single stranded DNA artifacts that were not influenced differentially
by the gradient (Cocolin et al., 2000).



al., 2008), particularly the species R. mucilaginosa (Vaz et

al., 2011; Sahay et al., 2013) and R. glutinis (Taskin, 2013),
which are phylogenetically closely related to R.

dairenensis. Nevertheless, to our knowledge, this is the first
study reporting pectinase activity by R. dairenensis and Cr.

saitoi species.

Most yeasts present on wine grape at harvest time and
during fermentation belong to ascomycetous species (Fleet,
2008; Urso et al., 2008; Barata et al., 2012). Nevertheless,
only a few ascomycetous species have been reported to pro-
duce pectinases in wine ecosystem such as Kluyveromyces,
Candida, Metschnikowia and some S. cerevisiae strains
(Fernández et al., 2000; Fernández-González et al., 2004).

In this study, no pectinolytic activity was detected among
ascomycetous yeasts, either non-Saccharomyces or S.

cerevisiae isolates (Figure 2). Comparable results have re-
cently been obtained in studies of pectinolytic yeasts iso-
lated from viticultural and enological environments (Merín
et al., 2011, 2014), which are in agreement with findings re-
ported by other authors. In an extensive screening survey,
Buzzini and Martini (2002) demonstrated that pectinase ac-
tivity was rarely found within ascomycetes in tropical envi-
ronments, observing this ability in only 1.5% of studied
ascomycetes. Charoenchai et al. (1997) did not detect
pectinolytic activity in ascomycetous wine yeasts.

The fact that pectinolytic yeasts were only found on
grape surfaces and must, whereas non-pectinolytic yeasts
dominated the middle and last fermentation stages (Figu-
re 2), suggests that a higher incidence of pectinolytic spe-
cies may be observed in nutrient-poor environments like
the grape surface and other plant surfaces, and in marine
and glacial ecosystems (Nakagawa et al., 2004; Turchetti et

al., 2008). It seems that pectinolytic yeasts play an ecologi-
cal role on the grape surface since they can utilize pectin
from cell walls releasing intracellular sugars to surface.
Conversely, microorganisms in musts do not require pecti-
nolytic activity to acquire carbon sources because of the
abundance of readily usable sugars. This is consistent with
results reported by Barata et al. (2012), who observed that
the microbiota of truly intact berries after véraison is domi-
nated by basidiomycetous yeasts (e.g. Cryptococcus spp.,
Rhodotorula spp., Sporobolomyces spp.) and A. pullulans;
while visually intact berries may bear microfissures and
softens, increasing nutrient availability and explaining the
possible dominance by the oxidative or weakly fermen-
tative ascomycetous populations (e.g. Candida spp.,
Hanseniaspora spp., Metschnikowia spp.) approaching
harvest time.

According to our results, the microfissures and soft-
ens on visually intact berries could be due to the action of
pectinases produced by pectinolytic yeasts on grapes, like
A. pullulans and basidiomycetous yeasts found in this
study, which would release intracellular substrates from
grape, thus sustaining the growth of non-pectinolytic asco-
mycetous yeasts on the grape berry surface.

Characterization of enzymatic activities

Hydrolytic activities under winemaking conditions

All yeasts showing extracellular pectinase activity on
plate were also assayed in liquid medium at 28 °C and pH
3.5 to select the best pectinolytic yeasts under winemaking
conditions (data not shown). Of the 11 pectinolytic yeasts,
two A. pullulans strains (GM-1 and GM-2) and two basi-
diomycetous yeasts (R. dairenensis GM-15 and Cr. saitoi

GM-4) produced the highest activities at grape pH (0.967,
1.325, 1.260, 0.930 U/mL, respectively). These activities
are higher than those produced by other yeasts, such as
Saccharomyces strains: 0.107-0.679 U/mL (Oliveira et al.,
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Figure 2 - Occurrence of pectinolytic yeasts among representative yeasts
isolated from grapes, fresh must and fermentation (sampling time: days 3
to 12) of cv. Argentine Bonarda. Number of isolates of yeast species (A)
and of pectinolytic yeast species (B) found on grapes and during spontane-
ous fermentation. Aureobasidium pullulans, Hanseniaspora sp.,
Metschnikowia sp., Rhodotorula dairenensis, Cryptococcus saitoi,
Candida zemplinina and Saccharomyces cerevisiae.



2006) and Zygoascus hellenicus strains: 0.025-0.220 U/mL
(Ahansal et al., 2008). However, the pectinolytic activities
cited were displayed at pH 5.0.

The studied strains exhibited similar pectinolytic ac-
tivity to that previously reported for A. pullulans at pH 3.5
and 12 °C, which has already been characterized (Merín et

al., 2011). Consequently, considering that this is the first
study reporting pectinase production by R. dairenensis and
Cr. saitoi, both strains (GM-15 and GM-4) were selected to
characterize their enzymatic activity under wine-like con-
ditions.

Because of the interest in cold-active enzymes, pecti-
nolytic and other hydrolytic activities useful in vinification
were further assayed in yeast enzymatic extracts produced
at pH 3.5 and 12 °C. Pectinase activity in both strains was
significantly higher than activity showed by T. delbrueckii

BTd259 control strain, particularly in R. dairenensis

GM-15 (1.104 U/mL) (Table 2), and also higher than pecti-
nolytic activities produced by other yeasts, like
Saccharomyces and Zygoascus hellenicus strains
(0.100-0.679 U/mL), even at 30 or 50 °C (Oliveira et al.,
2006; Ahansal et al., 2008).

Cellulase and hemicellulase enzymes degrade cellu-
lose and hemicelluloses, respectively, present in grape cell
walls. Consequently, they are responsible for an increase in
the extraction of juice and color, and for improvement in
the clarification of wines (Romero-Cascales et al., 2008).
Of the secondary enzymes assayed, only cellulase activity
was detected in GM-15 enzymatic extract with a consider-
able activity (0.549 U/mL) at 12 °C (Table 2).

�-Glucosidase enzymes hydrolyze glycosilated com-
plexes releasing volatile compounds that contribute to wine
aroma (Rodríguez et al., 2007). However, commercial
pectinases containing �-glucosidases may cause a loss of
color in red wines because some of these enzymes are able
to degrade anthocyanins, glycosilated polyphenols that are
mainly responsible for the red color of wine (Romero-
Cascales et al., 2008). The fact that �-glucosidase was not
detected in the enzymatic systems analyzed (Table 2) is a
positive feature when the yeast enzymes are applied to red
winemaking.

Protease activity was also assayed on plate at 12 °C.
Neither of the strains secreted proteases into the medium,
unlike the T. delbrueckii BTd259 control strain (Table 2).

Effect of ethanol and sulfur dioxide on pectinolytic activity

Wine is a complex system that presents a combina-
tion of factors such as pH, temperature, ethanol and SO2,
among others. Since the sum of the responses of each of the
single parameters does not necessarily predict the com-
bined response of such parameters (Grimaldi et al., 2005),
the combined effect of ethanol and sulfur dioxide on enzy-
matic activity should be studied.

To acquire high quality products, the enology sector
uses different technologies like low temperature vinifica-
tion (Gómez-Míguez et al., 2007; Fleet, 2008) and due to
the potential value of cold-active enzymes, research on
these enzymes is increasing conspicuously in these years.
Therefore, the individual and combined effect of 15% (v/v)
ethanol and 120 mg/L SO2 on pectinolytic activity was as-
sessed at 12 and 28 °C (Figure 3). At 12 °C, 15% (v/v) etha-
nol and 120 mg/L SO2 as individual parameters hardly
affected pectinolytic activity (retaining around 80-90% of
relative activity), except for GM-4 pectinase, which was
greatly inhibited by ethanol (conserving only 12% of rela-
tive activity). The combination of ethanol and SO2 reduced
pectinolytic activity to 50 and 70%, for GM-4 and GM-15,
respectively.

At 28 °C, the ethanol concentration assayed reduced
the pectinolytic activity of GM-4 by 50% and of GM-15
only by 20%. Nevertheless, emphasis must be laid in the
fact that at the SO2 concentration assayed (120 mg/L, the
highest concentration generally observed in must at the be-
ginning of the fermentation), activity increased by 33%
(GM-4) and 22% (GM-15), compared with the reference
activity. The combination of ethanol and SO2 assayed at
28 °C slightly reduced GM-4 activity by 20%, while it en-
hanced GM-15 activity by 30% (Figure 3).

With respect to GM-4 pectinase activity, the com-
bined effect of the two parameters produced a relative ac-
tivity intermediate between the response to ethanol and SO2

as single parameters at both temperatures. On the other
hand, GM-15 pectinase behaved differently at the two tem-
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Table 2 - Hydrolytic activities of enological interest of selected pectinolytic strains assessed at low temperature (12 °C) and grape pH (3.5).

Hydrolytic activities of enological interest Cr. saitoi GM-4 R. dairenensis GM-15 T. delbrueckii BTd259†

Pectinase (U/mL) 0.858 � 0.087b 1.104 � 0.034c 0.423 � 0.031a

Cellulase (U/mL) ND 0.549 � 0.068 ND

Xylanase (U/mL) ND ND 0.243 � 0.005

�-Glucosidase (U/mL) ND ND 0.0026 � 0.0004

Protease (skim milk and gelatin) - - +

†Control strain for enzymatic activities (Maturano et al., 2012).
Different superscript letters within the same row indicate significant differences according to the LSD test (p < 0.05). Data are mean values (n = 3) � SD.
ND - not detected.



peratures assayed. Temperature seemed to affect the rela-
tive activity in presence of ethanol and SO2, since at 12 °C
the activity was negatively affected, but unexpectedly, at
28 °C the enzymatic activity was slightly increased. At the
higher temperature, SO2 probably counteracts the negative
effect of ethanol on the relative activity. This could be ex-
plained by the unique ability of SO2 to act as an oxidizing or
a reducing agent that enables it either to inactivate enzyme
systems by splitting their disulfide linkages (Cecil and
Wake, 1962) or activate certain hydrolytic enzyme sys-
tems, probable by bringing about conformational changes
(Malhotra and Hocking, 1976).

Different responses of related hydrolytic activities to
these compounds have been reported. Ethanol concentra-
tions of 12% (v/v) have been found to decrease polygalac-
turonase activity from S. cerevisiae (Fernández-González
et al., 2004), protease activity from Ananas comosus (Esti
et al., 2011) and �-L-rhamnosidase activity from
Aspergillus terreus (Gallego et al., 2001) to around 20-
50%. Likewise, 15% (v/v) ethanol decreased the activity of
�-glucosidases and �-xylosidases from wine yeasts to
around 35% and 55%, respectively (Rodríguez et al.,
2007). Conversely, ethanol concentrations of 15 to 20%
(v/v) produced significant increases (150-500% relative ac-
tivity) in �-glucosidase (Barbagallo et al., 2004) and �-
xylosidase (Rodríguez et al., 2007) activities from wine
yeasts.

SO2 has been reported to strongly inhibit protease ac-
tivity from Ananas comosus (Esti et al., 2011). Neverthe-

less, polygalacturonase (Fernández-González et al., 2004)
and �-L-rhamnosidase (Gallego et al., 2001) activities
were not affected by 50 mg/L SO2. Rodríguez et al. (2007)
observed that �-glucosidase activity from wine yeasts was
not affected by 150 mg/L SO2, which agrees with our re-
sults that showed a slight increase in pectinolytic activity in
presence of 120 mg/L SO2 compared with the reference ac-
tivity. However, it is important to mention that the authors
cited did not determine the effect of a combination of etha-
nol and SO2 on the enzyme activities assayed.

These outcomes suggest that application of pectinase
of R. dairenensis GM-15 in the production of red wine is
preferably carried out at traditional temperatures
(26-28 °C); although in vinifications at low temperature
(12 °C) it would still retain high residual activity.

In conclusion, the current study has demonstrated that
inoculation of pectinolytic yeasts or addition of pectinases
in the vinification process is necessary since they do not
naturally occur during wine fermentation. Our results also
suggest that pectinolytic yeasts should be isolated from the
grape surface. To our knowledge, this is the first report on
pectinase production by Cr. saitoi and R. dairenensis spe-
cies. The outcomes of the combined effect of ethanol and
SO2 at two possible fermentation temperatures on the pecti-
nolytic activity indicated that the studied enzymes, particu-
larly GM-15 pectinase, performed satisfactorily under
wine-like conditions: at low pH (3.5), at low (12 °C) and
traditional (28 °C) temperature in red winemaking, and in
the presence of potential enzymatic inhibitors like ethanol
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Figure 3 - Relative pectinolytic activity of Cr. saitoi GM-4 and R. dairenensis GM-15 assayed at 12 and 28 °C in presence of 15% (v/v) ethanol or
120 mg/L SO2 or a combination of both compounds. Reference activity (100% of relative activity): 0.736 � 0.071 U/mL at 12 °C and 1.349 � 0.133 U/mL
at 28 °C for Cr. saitoi GM-4, and 0.972 � 0.083 U/mL at 12 °C and 1.483 � 0.091 U/mL at 28 °C for R. dairenensis GM-15. (*): significant difference,
(ns): not significant, according to the LSD test (n = 3, p < 0.05). In all cases SD was lower than 10%.



(15% [v/v]) and SO2 (120 mg/L). R. dairenensis GM-15
also produced cellulase activity at low temperature and at
grape pH, and did not produce �-glucosidase activity
avoiding risks of color loss when it is used in red wine-
making. Further studies regarding effects of these enzymes
on wine processing and quality are needed in order to pro-
pose them in enology.
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