Acessibilidade / Reportar erro

Pore pressure prediction based on rock stress applied to Marmousi seismic data

Abstract

This paper focuses on the modeling of a sedimentary basin where the exploration of oil and gas takes place. In the modeling, we calculate the vertical variation of pore and rock pressure, which serve as natural pumps for the accumulation of fluids, where we use post-migration surface seismic data and information as necessary. We compare two methods of pore pressure calculation. In the first case, we calculate stress due to vertical loading created by gravitational geological overburden. In the second case, we propose a more complex method to calculate the stress distribution based on the mechanics of solids under gravity loading, using the concept of the first tensor invariant and the linear behavior of Hooke’s law. We prove the use of the P and S velocities and density information to calculate rock, pore, and effective pressure distribution, useful for characterizing potential zones for oil and gas accumulation. The proposed method allows formulation of rock pressure from different calculations instead of as a simple overburden pressure value. The joint analysis of the calculated sections can be used to identify patterns and correlations, outline and characterize the target zones, and make practical geological conclusions.

KEYWORDS:
pore pressure; low-pressure zone; high-pressure zone; rock pressure; solid mechanics; seismic data

Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br