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Abstract

The Yacoraite Formation (NW Argentina) displays important microbialitic deposits of varied features throughout its six sub-basins. With the
discovery of important microbialitic hydrocarbon reservoirs and the interest in lacustrine systems due to recent hydrocarbon finds in the pre-
salt Cretaceous series of the South Atlantic, the importance of these organo-sedimentary structures has increased considerably. Because of
this, in the past decade, numerous works in Yacoraite Formation have focused on its microbialites. In this study, we provide an updated sum-
mary of the existing background and state of knowledge of the microbialites in the Yacoraite Formation, which occupy different stratigraphic
positions in diverse sub-basins separated by several kilometers. Due to this, these structures have developed under diverse conditions, giving
rise to a great variety of structures and morphologies, useful as reliable and high-resolution proxies for paleoenvironmental studies and to
discuss important ecological paradigms. In addition, microbialites of Yacoraite Formation show promising petrophysical conditions to be
evaluated as reservoir rocks. Based on the large number of deposits mentioned throughout this work, and the morphological and structural
variety of their microbialites, we can highlight Yacoraite Formation as one of the most important microbialite-bearing units in Argentina and
South America.
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INTRODUCTION Besides, the Yacoraite Formation exhibits a remarkable eco-
The Yacoraite Formation (Maastrichtian-Danian) (Turner nomic interest for the region, due to its role as a hydrocarbon
1959) is one of the units of the Salta Group rift basin (Marquillas source rock and reservoir in Northwest Argentina (e.g,, Boll
and Salfity 1989, Salfity and Marquillas 1994) (Fig. 1). Due to and Hernandez 1985; Boll 1991, Cesaretti et al. 2000, Grosso
its extension and mixed carbonate/siliciclastic nature, this for- etal. 2013).
mation is considered the most characteristic of the Balbuena The type section of this formation is located at the Yacoraite
Subgroup (Moreno 1970), the middle unit of the Salta Group. ravine, south of the Uquia station, which is the western tribu-
tary of the Grande River in the Humahuaca ravine. The name
Yacoraite was used by Groeber (1952) to describe the set of
sediments under the designation of Calcareous-Dolomitic
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The paleontological record of the Yacoraite Formation is
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ifera, and vertebrates, such as fishes and crocodiles, have been

most well-known worldwide since 1970s (e.g., Alonso 1980,

‘ Gonella 2019). In addition, the unit exhibits an interesting
Inmemorian. and diverse record of microbialites (Marquillas et al. 2005,
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Figure 1. Location of the main sub-basins: TC (Tres Cruces), LO (Lomas de Olmedo), A (Alemania), M (Metén), R (Rey), and S (Sey), and
the isopach map of the Yacoraite Formation. Thicknesses are shown in hundreds of meters. The numbers correspond to different localities
in which the authors mentioned the presence of microbialitic beds: I: Maimarg, 11: Juella, 1Il: Alfarcito, IV: Cabra Corral, V: Amblayo. The
references showing the microbialite descriptions and interpretations are summarized in Table 1. Modified from Marquillas et al. (2005)
and Diaz-Martinez et al. (2018). In addition, a general column with the (litho)stratigraphy of the Yacoraite Formation and its divisions into

members is shown.

Microbialites are the result of the interaction between ben-
thic and detrital microbial communities and/or chemical sed-
iments, constituting an excellent example of organo-sedimen-
tary structures in marine, coastal, or freshwater environments
(e.g., Burne and Moore 1987, Riding 2008). Based on their
internal structure, they can be grouped into five categories:

* stromatolites, when microbialites show a laminated inter-
nal structure and grow attached to the substrate;
oncolites, when microbialites show a laminated internal
structure developing concentrically around a core;
thrombolites, when there is no internal laminated pattern
and instead agglomerations or thrombi are formed;
dendrolites, when microbialites show an internal structure
with a dendritic or branched growth pattern;

leiolites, whose internal structure is composed of fine
grains, lacking textural arrangement (e.g,, Burne and Moore
1987, Riding 201 1).

The knowledge about the microbialites of the Yacoraite
Formation dates back to XVIII century, long before this unit
was defined by Turner (1959). D’Orbigny (1842) reported
in the Miraflores syncline area (Potosi, Bolivia) the existence
of amarine calcareous supposedly to be Mesozoic in age, later
defined as Triassic due to its lithostratigraphic similarity with
the European Muschelkalk (central and western Europe).
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In this unit, a type of stromatolitic structure originally named
calcaire ondullé was described, which would become one of the
most distinctive elements for correlation in this formation.
Brackebusch (1883, 1891) investigated the correlation
of these Argentinian Mesozoic beds, which are included in
a sequence mainly made of red sandstones, calcareous sand-
stones, and limestones; furthermore, based on comparisons
with homologous fauna of the Bahia Group in Brazil, this
author proposed a Cretaceous age for them. These strata
were designated as “Petroliferous Formation” and later as
“Salta System.” This proposal was supported by Steinmann
et al. (1904), Steinmann (1906), and Keidel (1910), who
named the Bolivian post-Paleozoic series “Arenisca de Puca” or
“Areniscas Rojas” (Pucasandstein) and was considered correla-
tive with the “Petrolifera Formation” in northwestern Argentina.
These authors mentioned the domic stromatolites, named as
Pucalithus (red rock in Quechua language), and considered
equivalent to the calcaire ondulée of D’Orbigny, standing out
for their abundance, intense red color and their “mamelonar”
surface (for further details, see Console-Gonella et al. 2012).
Later, Bonarelli (1913) suggested an alternative hypothesis
and proposed the names “Lower Sandstones” and “Dolomitic
Calcareous” for these units. Bonarelli (1921) and Cossman
(1925) suggested that the “Lower Sandstones” would corre-

spond to the Permo-Triassic and the “Dolomitic Calcareous” to
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the Triassic. Despite not coinciding stratigraphically, Bonarelli
(1927) accepted the presence of Pucalithus and called them
as “peculiar” and “problematic fossils.”

Between 1980 and early 2000s, the presence of micro-
bialites in the Yacoraite Formation was discussed in several
contributions, doctoral theses, and conference papers (e.g.,
Palma 1984, Marquillas 1984, 1985, Marquillas and Salfity
1989, 1994, Marquillas et al. 2003, 2005, 2007, Cénsole-
Gonella 2011, Cénsole-Gonella et al. 2009, 2012, 2017).
However, those were mostly limited to brief mentions or
descriptions within a regional paleoenvironmental and
sedimentological context (see Cénsole-Gonella et al. 2012,
Roemers-Oliveira et al. 2015).

In recent years, with the discovery of important hydrocar-
bon reservoirs in microbialitic levels, the study of these orga-
no-sedimentary structures has gained great importance (e.g.,
Grotzinger and Al-Rawahi 2014, Muniz and Bosence 2015).
A good example of these systems is the Brazilian pre-salt,
with important reservoirs in mostly or partially (according
to different interpretations) microbialitic and bioclastic car-
bonate facies, deposited in lacustrine to shallow marine envi-
ronments during the Sag phase (e.g., Rangel and Carminatti
2000, Thompson et al. 2015, Abelha and Petersohn 2018).
However, due to the limited subsurface data, reservoir distri-
bution, and heterogeneities, the study of these systems must
be complemented by analogues.

Because of its deposition during the sag phase of the Salta
rift, microbialites and carbonatic facies of Yacoraite Formation
attracted geoscientists attention as an important tool for the
study of Brazilian pre-salt. However, the great variety in the
organo-sedimentary facies of this formation limits generaliza-
tion at different scales of work (Rangel and Carminatti 2000,
Durieux and Brown 2007, Romero-Sarmiento et al. 2019,
Gomes et al. 2020, Ruiz-Monroy 2021). Numerous works
were focused on the study and understanding of microbialitic
systems of Yacoraite Formation from a stratigraphic, sedimen-
tary, paleoenvironmental, paleobiological /paleontological, and
petrophysical point of view (e.g., Hamon et al. 2012, Cénsole-
Gonella and Marquillas 2014, Villafafie 2016, Bunevich et al.
2017, Cénsole-Gonella et al. 2017, Ruiz et al. 2018, de Valais
and Cénsole-Gonella 2019, Deschamps et al. 2020, Gomes
et al. 2020, Villafade et al. 2021, Granier and Lapointe 2022,
Tomds et al. 2022).

The aim of this study was to provide an updated summary
of the current background and state of knowledge of the micro-
bialites in the Yacoraite Formation, northwestern Argentina,
published during the past decades.

GEOLOGICAL SETTING

The Salta Group records the sedimentary accumulation of
a continental rift basin developed from Early Cretaceous to
Eocene time (e.g., Viramonte et al. 1984, Salfity and Marquillas
1994, Marquillas et al. 2005). Its origin and evolution are linked
to a regional extensional context in northwestern Argentina
(Marquillas et al. 2011). The deposits of this group are accu-

mulated in six sub-basins, which surround the Salta-Jujuy high,

3/18

namely, Tres Cruces, Lomas de Olmedo, Metdn, Alemania
(Reyes 1972, Salfity 1982), El Rey (Salfity 1980), and Sey
(Schwab 1984) (Fig. 1).
From bottom to top, the Salta Group is subdivided into
three subgroups:
*  Pirgua Subgroup (Upper Barremian-Upper Campanian)
corresponding to the syn-rift stage (Valencio et al. 1977);
*  Balbuena Subgroup (Upper Cretaceous-Lower Paleocene)
corresponding to the early post-rift stage (Moreno 1970);
*  SantaBarbara Subgroup (Paleocene-middle Eocene) cor-
responding to the late post-rift stage (Del Papa et al. 2010).

The basin was developed entirely on Precambrian and
Paleozoic basement, and the different formations of Salta Group
rest either on Pampean rocks or on the Lower Paleozoic for-
mations of northern Argentina (Acefiolaza and Toselli 1981).

The Yacoraite Formation belongs to the Balbuena Subgroup
(Upper Cretaceous-lower Paleocene) and was deposited during
the initial stage of thermal subsidence of the Salta Group
(Marquillas et al. 2005). It is a succession widely exposed in the
provinces of Salta, Jujuy, and northern Tucuman (Marquillas
et al. 2005) (Fig. 2). It is composed of dominantly calcare-
ous deposits (partly dolomitic) organized in tabular strata,
with intercalations of pelites and sandstones, as well as tufts
and vulcanites (Marquillas and Salfity 1994). Since Yacoraite
Formation has a Maastrichtian-Danian age (Marquillas 1985),
the Cretaceous-Paleogene boundary occurred during its accu-
mulation (Marquillas ef al. 2005).

Yacoraite Basin has been defined as a restricted, shallow,
and extensive carbonate intracontinental basin (epicontinen-
tal sea), far from the direct and permanent influences of the
open sea (Marquillas 1985). Sedimentary facies indicate shal-
low shoreface conditions alternating with sublittoral deposits.
Dominance of wave structures, both fair and stormy weather,
suggests a wave-dominated regime with subordinate tidal influ-
ence (Marquillas 1985, Marquillas et al. 2005, 2007).

Stratigraphy of Yacoraite Formation

Based on sequence stratigraphy data, the Balbuena
Supersequence contains the Lecho and Yacoraite Formations and
records sedimentation spanning from the end of the Cretaceous
to the beginning of the Paleogene (Hern4ndez et al. 1999).
The deposits belonging to the Balbuena Supersequence can
be subdivided into four sequences of third order, from bottom
to top: Balbuena I, Balbuena II, Balbuena III, and Balbuena
IV (Hernandez et al. 1999).

The Balbuena I Sequence is predominantly composed of
siliciclastic facies deposited in an eolian system (Herndndez
et al. 1999). The Balbuena II Sequence is divided into two sec-
tions: the basal one is made up of calcareous deposits interbed-
ded with tractive clastics and pelites, deposited in a lacustrine
environment; and the upper one is made up of predominate
clastic fluvial deposits (Hernandez et al. 1999). The Balbuena
III Sequence displays pelites interbedded with very fine sand-
stones in the central part of the basin and fluvial conglomer-
ates in the border zones (Hernandez et al. 1999). Lastly, the

Balbuena IV Sequence is composed of microbialites, marls,
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Figure 2. NW-SE outcrop view of the Yacoraite Formation (marked with a blue dotted line), yellow to whitish dominated levels, in the
locality of Maimar4, Jujuy (Tres Cruces sub-basin).

siltstones, argillites, arkosic, and carbonate quartzite sandstones
in the central part of the basin, whereas in the marginal regions,
quartz-feldspathic sandstones, arkosic, and conglomerate sand-
stones crop out (Hernéndez et al. 1999, Bunevich et al. 2017).
From a genetic and lithostratigraphic point of view, the
Yacoraite Formation, according to changes in the deposi-
tional environment, has been subdivided into four members
(Marquillas 1986, Marquillas and Salfity 1989, Marquillas
et al. 2003, 2005, 2007), from base to top:
Caliza Amblayo Member: It is the basal member of Yacoraite
Formation, with an average thickness of 100 m. It displays

a calcareous-dolomitic composition, formed by oolitic and
intraclastic grainstones, oointraclastic packstones, fine
calcareous sandstones, and stromatolitic beds. It suggests
a deposition dominated by significant energy changes.
Intertidal activity under stable weather conditions and
subordinate stormy weather are recorded in addition to
shoals or shoreface sands (Marquillas et al. 2005, 2007,
Moreno and Marquillas 2009);

Giiemes Member: It is about 20 m thick and shows biotur-
bation surfaces. It is composed of bioclastic wackestones,
mudstones, siltstones, and graywackes. Flows of different
energy and density are suggested to their deposition, indi-
cating water mixing, storm action, and perhaps some con-
tinental influence (Marquillas et al. 2005, 2007);
Alemania Member: It represents a large part of the upper

section of the formation, approximately 70 m thick. It is

4/18

composed of a thin heterolithic succession of green and
black shale, micritic, intraclastic and oolitic limestones,
sandy marls, and siltstones, with oolitic grainstones strata
and/or stromatolitic boundstones in the upper part.
Deposition may have been controlled by the alternation
of traction and sedimentation processes in an environ-
ment mainly regulated by fairweather waves, where the
observed stratigraphic cyclicity seems to respond to cli-
matic variations (Marquillas et al. 2005, Cénsole-Gonella
and Marquillas 2014);
* Juramento Member: This member is only a few meters
thick, recognized in the upper part of the succession. It is
mainly composed of domic stromatolites, black and gray
shales, marls, oolitic limestones, bioclastic limestones, and
sporadic traces of gypsum and anhydrite. It suggests mainly
ahigh intertidal environment and a locally extended tidal
flat, alternating with low-energy shallow subtidal sectors.
In addition, Juramento member shows an important con-
trol by fairweather waves (Marquillas et al. 2005, 2007,
Cénsole-Gonella and Marquillas 2014).

REGIONAL DISTRIBUTION
OF MICROBIALITIC DEPOSITS

The microbialites of Yacoraite Formation have a wide
regional distribution, linked to different sub-basins and sedi-

mentary settings in different stratigraphic positions along the
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unit. However, not all sub-basins exhibit the same degree of
knowledge on microbialitic records. Microbialites were largely
described from the Tres Cruces and Metdn sub-basins, while
reports are limited to other sub-basins, such as Sey or Lomas
de Olmedo (Gémez-Omil 1982) (Table 1, Fig. 1).

Along the northern area of the Yacoraite Basin, mainly at
the Tres Cruces sub-basin, there are several microbialitic depos-
its. As stated before, Steinmann et al. (1904) correlated the
Cretaceous strata in Tres Cruces area with the analogous Puca
Group in Bolivia, based on the domal stromatolite Pucalithus.
More than a century later, Cénsole-Gonella and Acenolaza
(2009) and Cénsole-Gonella et al. (2009) described domal
stromatolites in Maimard and Juella localities of the Jujuy
Province. Also, Cénsole-Gonella ¢t al. (2012) presented a
synthesis of the paleontological knowledge from the Yacoraite
Formation (Maastrichtian-Danian) in these localities.

Villafafie (2016) proposed the usefulness of microbial-
ites from the Yacoraite Formation in the Maimard section
as a tool for high-resolution paleoenvironmental studies.
Later, Cénsole-Gonella et al. (2017) presented a complete
paleoenvironmental reconstruction, showing the ichnofa-
cies implications describing the presence of five stromato-
litic facies, some of them showing a remarkable degree of
preservation. On the contrary, Villafae et al. (2021) studied
this series and determined the relationship between hydro-
dynamic energy and these organo-sedimentary structures,
defining seven stromatolitic beds in this locality. Finally, at
the same locality, Frias-Saba et al. (2021) described the
influence of bacterial communities, sediment input, and
CO, saturation of waters on the development of stromato-
lite microfabrics from Yacoraite Formation (for a detailed
stratigraphic column with the position of microbialites, see
Villafane et al. 2021).

Regarding the K-Pg boundary, Sial et al. (2001) identi-
fied it in Maimard locality, although unfortunately its position
was not clearly indicated in the stratigraphic section. On the
contrary, the overlying Tunal Formation was dated as Danian
based on palynomorphs (Quattrocchio et al. 2000). Thus, the
stromatolitic beds in the Yacoraite Formation are interpreted
as Maastrichtian in age and probably stratigraphically close
to the K-Pg boundary.

Similar to the latter sub-basin, the Metan sub-basin shows
important microbialitic deposits within its stratigraphic record.
Although this sub-basin is considered a single one with the
Alemania sub-basin (Metan-Alemania sub-basin) by some
authors (Pedrinha et al. 2015), most of the reports correspond
to the Cabra Corral dam area, Coronel Moldes District (Salta
Province, Argentina), which indeed belongs to the Met4n
sub-basin (Table 1, Fig. 1).

Gabaglia et al. (2011) presented a cyclo-stratigraphic and
paleoclimatic study of the Balbuena Supersequence in the Cabra
Corral dam area, highlighting the occurrence of several micro-
bialitic intervals varying from centimetric to metric in thick-
ness. Subsequently, one of the first studies focused solely on
these organo-sedimentary structures in this area is presented by
Cénsole-Gonella and Marquillas (2014), who reported several

microbialitic beds in the Amblayo, Alemania, and Juramento
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members, in the Bahia Vifuales section. However, the authors
focused on the stromatolites of the Juramento member and
their interaction with metazoans.

Surrounding Cabra Corral dam, Roemers-Oliveira et al.
(2015) studied several outcrops belonging to the Balbuena
III Sequence (Maastrichtian/Danian), displaying two or
more stromatolitic levels giving rise to a detailed paleoenvi-
ronmental reconstruction. Subsequently, in the same region,
Bunevich ef al. (2017) defined seven organo-sedimentary
facies based on their intrabioarchitecture from the Balbuena
IV sequence (Danian).

Gomes et al. (2020) carried out a paleoenvironmental
study of the lacustrine deposits belonging to the upper part of
the Yacoraite Formation in different sectors of the Metédn and
Alemania sub-basins, defining four microbialitic facies based
on mega-, macro-, meso-, and microstructural characteristics.
Quiroga (2021) described and interpreted the presence of
stromatolitic structures belonging to the Amblayo Limestone
member (Alemania sub-basin), cropping out near the Amblayo
town (San Carlos, Salta).

On the contrary, some authors have focused their work
on different sub-basins, looking for a correlation among them
(Table 1).In Sey, Metén, and Tres Cruces sub-basins, Marquillas
et al. (2007) mentioned the presence of stromatolites related
to carbonate facies, which they used for isotopic studies (C
and O isotopes) at a regional level. In addition, Marquillas
et al. (2005) described stromatolitic boundstones associated
with shales, mudstones, and grainstones in the upper part of
the Yacoraite Formation within Metan and Alemania sub-ba-
sins. Terra et al. (2015) studied the Yacoraite Formation in the
Lomas de Olmedo, Metan-Alemania, and Tres Cruces sub-ba-
sins as an analog for Phanerozoic lacustrine microbialitic reser-
voirs, as well as described the presence of microbialitic levels
positioned in the upper part of the Balbuena Supersequence.
Furthermore, in Lomas de Olmedo sub-basin, stromatolitic
levels with vertically stacked hemispheroids (SH) and laterally
linked hemispheroids (LLH) mesostructures (sensu Logan et al.
1964) were reported in association with shales and mudstones
by Gémez-Omil (1982). Ruiz et al. (2018) study biomarkers
to differentiate carbonate formation between marine, lacus-
trine, and terrestrial depositional environments. In this work,
the presence of microbialitic levels in the Tres Cruces, Metdn,
and Alemania sub-basins is mentioned. Finally, Deschamps
et al. (2020) studied the dynamics of lacustrine sedimentary
systems in the four sequences of the Yacoraite Formation, in the
sub-basins of Metan, Alemania, and El Rey. Throughout their
work, they highlighted the presence of diverse microbialitic
levels, mainly of the stromatolitic type, associated with diverse
depositional systems.

TYPES OF MICROBIALITES AND
DEPOSITIONAL ENVIRONMENTS

Microbialites are the sedimentary products of the dynamic
interaction between intrinsic (producing microorganisms) and
extrinsic factors (environmental parameters) of the environ-
ment throughout their growth (Grotzinger and Knoll 1999,
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Table 1. Microbialitic deposits of the Yacoraite Formation grouped with respect to the sub-basin, locality/region, and stratigraphic position*.

Main microbialite papers in the Yacoraite Formation

Sub-basin Reglo.n/ Stra.tl.graphlc Paleoenvironment Authors
locality position/age
Cénsole-Gonella and Acefiolaza (2009)
Maastrichtian, Coénsole-Gonella (2011)
ina Paleoenvironment that varied from lower Coénsole-Gonella et al. (2012)
. . stratigraphic intertidal to shallow subtidal, close to the . _
Maimard (I) position close  coastline, partially restricted and affected Villafasie (2016)
to the K-Pg by hydrodynamic action. Cénsole-Gonella et al. (2017)
boundary. Villafasie et al. (2021)
Frias-Saba et al. (2021)
Shallow and brackish marine Cénsole-Gonella et al. (2009)
lla (I1) Upper i t, near the coast
Tres Cruces Juella Maastrichtian environment, near the coast or Console-Gonella e al, (2012)
) sporadically emerged areas. onsole-tzonella et ak.
Alfarcito Stromatolitic facies correspond to an
(1) Not specified. intertidal environment, formed in the Cénsole-Gonella (2011)
photic zone, less than 10 m deep.
Not specified ~ Not specified. Marme environment with hlgher clastic Marquillas et al. (2007)
input, especially at the marginal areas.
Upper part
Not specified  of Balbuena Not specified Terra et al. (2015)
Supersequence.
Not specified ~ Not specified. Shallow marine environment. Ruiz et al. (2018)
Balbuena Lacustrine environment, whose base
level is influenced by relative changes in Gabaglia et al. (2011)
Supersequence.
sea level.
Balbuena IT1 Closed lacustrine environment. Roemers-Oliveira et al. (2015)
sequence.
Cabra Corral ~ Balbuena IV Lacust.r{ne with f}uctuat}ng cl%rr%atlc Bunevich et al. (2017)
dam (IV) sequence. conditions and increasing aridity.
Metdn Upper Yagoralte Lacustrine, in shore line positions. Gomes et al. (2020)
Formation.
Juramento Shallow, stressed marine environment
N with high salinity, represented by Cénsole-Gonella and Marquillas (2014)
Member. . : . .
intertidal and tidal flat deposits.
Not specified ~ Not specified. Marine condlt'lons with periods of Marquillas et al. (2007)
subaerial exposure.
Not specified ~ Not specified. Shallow marine environment. Ruiz et al. (2018)
Upper part - - 11
Not specified of Balbuena La c.ustrl.ne env1r0.nment Wlth blgh Terra et al. (2015)
siliciclastic supply in humid periods.
Supersequence.
Metan- Balbuena High-energy littoral to supralittoral
Alemanfa Not specified & sy P Deschamps et al. (2020)
Supersequence environments.
Not specified Upper YacF) "t Shallow carbonated marine environment. Marquillas et al. (2005)
Formation
Dlﬁ'e.re:nt Upper Yac.o raite Lacustrine, in shore line positions. Gomes et al. (2020)
localities Formation
, . Shallow intertidal paleoenvironment with
Alemania Amblayo (V) Cahl\z/;ieﬁln;l)rlayo alkaline pH, temperatures between 20° C Quiroga (2021)
and 40°C, good light and high salinity.
Not specified ~ Not specified Shallow marine environment. Ruiz et al. (2018)
Sey Not specified ~ Not specified Marme environment with hlgher clastic Marquillas et al. (2007)
input, especially at the marginal areas.
Upper part . . . .
Not specified of Balbuena Lacustrine enylronment with marine Terra et al. (2015)
influence.
Lomas de Supersequence
Olmedo Lacustrine environment with low
Not specified ~ Notspecified  contribution of siliciclastic sediment and Goémez-Omil (1982)
important carbonate participation.
ElRey Not specified Balbuena Not specified Deschamps et al. (2020)
Supersequence

*The numbers (I-V) correspond to the different localities in Fig. 1 where the authors mentioned above found microbialitic deposits.
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Riding 2008, Dupraz et al. 2011). If during their development
the intrinsic or extrinsic factors vary, changes in their internal
structure occur, providing an excellent tool for environmen-
talinterpretations (Dupraz et al. 2006, Mercedes-Martin ef al.
2014, Suosaari et al. 2016).

As mentioned before, sediments belonging to the Yacoraite
Formation were deposited in an epicontinental sea after the
Early Cretaceous rifting and represent the last marine input
during that period (Marquillas et al. 2005 ). However, given the
size of the basin, the distance between the studied localities,
and the diverse stratigraphic positions in which the microbial-
ites occur, it is likely that the environmental conditions would
not have been homogeneous, resulting in a great variety of
organo-sedimentary structures.

In general terms, Hamon et al. (2012) suggested that micro-
bialites of Yacoraite Formation can be classified according to
their internal structure (mesostructure), coupled with the par-
ticular environmental conditions, into six types:

* oncoidal rudstone, observed on the most proximal part of
the sedimentary system and interpreted as tidal flat deposits;

* planar-laminated stromatolites, related to proximal tidal
flats and in restricted lagoon;

*  “mustach-like” stromatolites formed by wavy internal lam-
inations, in tidal flat environments;

* isolated nodular stromatolitic domes, interpreted as lagoon
to tidal flat deposits;

* coalescent nodular to bulbous stromatolites, interpreted
as lagoon to restricted flat deposits;

* branching or tubular stromatolites, interpreted as high-en-
ergy environment deposits (shoal related).

Hamon et al. (2012) provided an important background
on the relationship between microbialites of the Yacoraite
Formation and their growth environment. However, in the
past 10 years, new deposits have been reported and used as a
high-resolution proxy for paleoenvironmental reconstructions.
These authors seek to characterize in detail the dynamic inter-
action between microbialites and environmental parameters
in specificlocalities, mainly from the Tres Cruces and Metdn-

Alemania sub-basin, as detailed below.

Microbialites in Tres Cruces sub-basin

Throughout the sedimentary succession of the Tres Cruces
sub-basin (Maastrichtian), several microbialitic levels have
been reported. All of them are Maastrichtian in age.

As mentioned before, Cénsole-Gonella et al. (2012)
reported Pucalithus-type domic stromatolites, both in Maimara
and Juella localities, characterized by reddish color and
“mamelonar” external structure (Fig. 3A). Although the
authors have not studied their internal structure, they sug-
gested that these domes developed in a epicontinental envi-
ronment, under hydrodynamic stress and with important
salinity fluctuations.

Based on a more focused study on these organo-sedimen-
tary structures in the Maimara locality, Cénsole-Gonella et al.
(2017) described a sedimentary section with five microbialitic

levels (from bottom to top):
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*  Stromatolites with a mat-like structure extending over large
areas, and less frequently hemispheroidal domes with an
average height of 17 cm, variably spaced (types LLH-S
and LLH-C, sensu Logan et al. 1964);

*  Stromatolitic domes with an LLH-S structure (sensu Logan
et al. 1964 ), better developed than in the first level, with
an average height of 40 cm;

*  Mat-like stromatolites with a laminated and homogeneous
internal structure and height from S to 35 cm;

¢ Oblate to semicircular stromatolites, with an SS-I struc-
ture (sensu Logan et al. 1964) and a maximum thickness
of 43 cm. In a transverse section view, some stromatolites
showlamination in two directions around a micritic nucleus;

* Semicircular to semi-oval stromatolites with an LLH-C

structure (sensu Logan et al. 1964).

The set forms a “stromatolite reef” very similar to the one
observed by Logan (1961). Cénsole-Gonella et al. (2017)
suggested that these levels were in association with a car-
bonate lagoon shoreline deposit, in a subtidal-lower inter-
tidal zone of moderate/high energy under wave and tide
action. Each level represents an environmental stage where
the hydrodynamic conditions and the accommodation space
(depth) have conditioned the growth of these organo-sed-
imentary structures.

In the same section, Villafarie et al. (2021) made a high-res-
olution paleonvironmental study, focusing on one three-dimen-
sionally exposed stromatolitic level (Fig. 3B). These authors
described domic structures organized in clusters (Fig. 4A) with
a laminated columnar internal structure proposing a classifi-
cation for the various erosional structures scouring observed
at the outcrop. Clusters are limited by the first-order chan-
nels, usually developed perpendicular to the coastline with
a clear hydraulic tendency, suggesting the transport of tidal
water and/or stream water through them (Figs. 4B and 4C).
On the contrary, water dissipation after runoft occurs in the
second-order channels, located inside the clusters (Fig. 4C).
Finally, the hydrodynamic energy also influenced the internal
structure of the stromatolites, where the third-order channels,
separating the columns from each other, are the result of dif-
terential erosive effects during runoft of water truncating the
microbial mats in vivo (Fig. 4C). Based on the characteriza-
tion of hydrodynamic and bathymetric parameters, they sug-
gested that these stromatolites developed in a lower intertidal
(ca. 40 cm depth) to shallow subtidal (> 70 cm depth) paleo-
environment, close to the coastline, partially restricted and
affected by hydrodynamic action.

In the lower part of the same section, Frias-Saba et al. (2021)
described a new microbialitic level composed of domical shapes
up to 25 cm. The internal morphology of these domes shows
a basal sector with columnar structures alternating with lami-
nated structures and an upper sector with well-developed col-
umns separated by the third-order channels, similar to those
described by Villafafie et al. (2021). The authors suggested
that these microbialites developed in a subtidal/intertidal
environment with moderate to high hydrodynamic energy

were controlled by a shallowing upward process.
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Figure 3. Microbialites of different morphologies observed throughout the geological record of the Yacoraite Formation. (A) Pucalithus
domic stromatolites reported by Cénsole-Gonella et al. (2012) in Maimard, Jujuy (Tres Cruces sub-basin). (B) Cerebroid stromatolitic levels,
preserved in three dimensions, reported by Villafarie et al. (2021) in Maimara, Jujuy (Tres Cruces sub-basin). (C) Stromatolites with columnar
internal structure (SH) reported by Roemers-Oliveira et al. (2015) at Vapumas outcrop (Balbuena III Sequence), Salta (Metén sub-basin).
(D) Domic stromatolites reported by Bunevich et al. (2017) in Cabra Corral dam (Sequéncia Balbuena IV), Salta (Met4n sub-basin). (E)
Cerebroid stromatolitic levels (plan view) reported by Roemers-Oliveira et al. (2015) at Vapumas outcrop (Balbuena III Sequence), Salta
(Metan sub-basin). (F) Coarse-grained agglutinating microlumpy type stromatolites, Bunevich et al. (2017) in Cabra Corral dam (Sequéncia
Balbuena IV), Salta (Metédn sub-basin).

Microbialites in Microbialites have different stratigraphic positions, spanning
Metan-Alemania sub-basin in Maastrichtian-Danian time.

In the Metan sub-basin, most of the works focused on Initially, Gabaglia et al. (2011) conducted a comprehen-
the description and interpretation of microbialites were car- sive cyclostratigraphic and climatic study of the Balbuena
ried out in the Cabra Corral dam area and its surroundings. Supersequence, in which they report microbialitic intervals
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Source: modified from Villafade et al. (2021).

Figure 4. Stromatolitic level MNES described in the locality of Maimar4 (Tres Cruces sub-basin). (A) Orthomosaic of the best-preserved
group of clusters in the stromatolitic level MNES. (B) Wind rose plot of the first-order channels. This figure shows a clear hydraulic tendency
of the first-order channels in the E/SE-W/NW direction. Wind rose normalized to the horizontal. (C) Channel classification by order and
relative dimensions at section view of clusters based on the macro-, meso-, and microstructural description of the stromatolitic level MNES.

centimetric to metric in thickness. Although they do not
perform detailed work on these microbialitic intervals, they
suggested that these organo-sedimentary levels developed
in a lacustrine environment, but possibly under a subordi-
nate influence of relative open sea-level changes affecting the
lacustrine base level.

Roemers-Oliveira et al. (2015) identified at least two
intervals of stromatolitic levels, ranging from 20 to 50 cm in
thickness, in several outcrops of the Balbuena III Sequence
(Maastrichtian/Danian) in the Met4n sub-basin. The lower

stratum is characterized by tabular stromatolites of the LLH
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type (sensu Logan et al. 1964), while in the upper stratum
the stromatolites are domic of the SH type (sensu Logan et al.
1964) (Fig. 3C). Both levels have a columnar internal struc-
ture and a cerebroid aspect. The authors suggested a closed
lacustrine environment, with negative water balance (evap-
oration > precipitation) and limited sediment input, where
these organo-sedimentary structures would have developed
in coastal areas in the lacustrine environment under shallow
waters (photic zone).

On the contrary, Bunevich et al. (2017) worked in the

same region but in the Balbuena IV Sequence (Danian) and
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described three main types of microbiological morphologies,
namely, domical (Fig. 3D), tabular, and planar. Based on their
intrabioarchitecture, they defined seven types of organo-sed-
imentary structures:

* coarse-grained agglutinant microbialite;

* banded fasciculate/fine-grained agglutinant microbialite;
* pseudo-microcolumnar micrite-binding microbialite;

* “arbustiforme” fine-grained agglutinant microbialite;

* fine-grained agglutinating dendriform microbialite;

* fine-grained banded microbialite with spherulites;

*  coarse-grained agglutinating stromatolite.

These structures are associated with a lacustrine environ-
ment with fluctuating climatic conditions and increasing arid-
ity. The climatic variations affected the base level of the lake,
as well as the input of siliciclastic sediments, biotic, and geo-
chemical processes, influencing the final morphology of these
microbialitic systems.

In the upper part of Yacoraite Formation ( Juramento mem-
ber), Metan Sub-basin, Cénsole-Gonella and Marquillas (2014)
described hemispherical dome stromatolites with internal lam-
ination and heights ranging from 90 to 100 cm. The authors
suggested that these structures developed in an intertidal or
high intertidal environment, with high hydrodynamic energy,
episodes of sub-aerial exposure and high salinity.

From this sub-basin, even from an upper position of the Early
Paleocene Yacoraite Formation, Gomes et al. (2020) reported
the presence of two types of organo-sedimentary structures:
¢ laminated domes (micrite and agglutinated material) with

thicknesses ranging from 20 to 110 cm;

* microbialites with tabular geometry and millime-
ter-thick microbialitic layers interbedded with fango-

lites and grainstones.

Both levels respond to alacustrine environment in shore-
line positions, subjected to transgressive and regressive varia-
tions. Laminated domes are related to periods of relatively high
lacustrine level, while microbialites with tabular geometry and
millimeter-thick microbialitic layers are related to a reducing
environment with high organic matter content.

Finally, near the town of Amblayo (Alemania sub-basin),
Quiroga (2021) described stromatolitic domes of up to 17 cm
diameter and 12 cm high. Internally, these domes present two
zones of laminated columns developed around a core, giving
rise to an internal structure of the SS-1 type (sensu Logan et al.
1964). The author suggests that these organo-sedimentary
structures are formed in a shallow intertidal environment under
the important hydrodynamic influence, with a marked storm
episode that caused the rotation of the structure.

METAZOA-MICROBIALITES
INTERACTION

Currently, the role that grazing and burrowing metazoans
had in disrupting the Phanerozoic microbial mats that formed
microbialites is a major topic of discussion (Rishworth et al.

2019). One of the most important structures to understand

the interaction between organisms and biogenic substrates is
bioclaustrations (see Tapanila 2005).

Bioclaustrations have been reported in Cenozoic microbialitic
deposits from Wyoming, USA (Eocene) (Lamond and Tapanila
2003); Lodward, Kenya (Pleistocene-Holocene) (Lamond and
Tapanila 2003 ); and Eastern Cape coast, South Africa (Holocene)
(Rishworth et al. 2019). The study of these structures provides
further evidence for the refugia hypothesis, where metazoans are
not necessarily restrictive of microbialite integrity under certain
conditions (Rishworth et al. 2019). However, much remains to
be discussed regarding the metazoa—microbialites interaction,
and few Phanerozoic records have been studied.

Initially, through a study of gastropods associated with
trace fossils in the Yacoraite Formation, Console-Gonella et al.
(2009) described clavate borings in stromatolites from the
Juellalocality (Tres Cruces sub-basin). The construction in the
opening section of borings immediately distinguishes it from
Trypanites, and typical Gatrochaenolites varies in size in diame-
ter from 2 to 45 mm and length from 3 to 100 mm. This study
allowed defining a shallow depositional environment, char-
acteristic of a marine context under high-energy conditions.

In Metan sub-basin, domal stromatolitic boundstones in the
shallow carbonate facies at the top of the Yacoraite Formation
(Upper Cretaceous-Lower Paleocene) present peculiar cavities
interpreted as bioclaustrations (Cénsole-Gonella and Marquillas
2014). This is the oldest reported record of bioclaustrations
in stromatolites and the first in shallow marine environments.
Bioclaustrations in stromatolites from the Yacoraite Formation
have circular cavities that reach 12 mm in diameter (Figs. SA
and SB). In transversal section, conical morphologies with-
out lateral connection developed parallel to the growth axis
of the domes were observed (Fig. SC). These morphologies
provide clear evidence of “incrustante”microbialite symbiosis
(Tapanila and Ekdale 2007, Tapanila 2008).

The interpretation of the stromatolitic facies and their strati-
graphical/sedimentological context suggests an environmen-
tally stressed shallow high salinity marine setting, represented
by an intertidal setting within an extensive tidal flat. From the
standpoint of chronostratigraphy, the time at which endobi-
onts colonized the stromatolitic mat coincides with the end of
the deposition of the Yacoraite Formation (Cénsole-Gonella
and Marquillas 2014).

Cénsole-Gonella and Marquillas (2014) demonstrated
how the study of bioclaustrations in microbialites can provide
important tools for fine-tuning paleoenvironmental and pale-
obiological reconstructions. They also suggested that deeper
neoichnological studies regarding relationship between bio-
films and metazoans would probably allow further specifi-
cation of the possible range of bioclaustration producers on
microbialitic substrates.

Paleobiological interaction among avian track-makers,
worm-like burrowers, and biofilms have been discussed from
Maimaré and Quebrada del Tapén ichnosites (de Valais and
Cénsole-Gonella 2019) (Fig. 6). The ichnological evidence
and the presence of MISS (microbially induced sedimentary
structures) seem to support a putative trophic network, com-

posing of at least three levels:
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Source: modified from Cénsole-Gonella and Marquillas (2014).

Figure S. Yacoraite Formation stromatolites and bioclaustrations. (A) Bedding-plane view of stromatolite domes riddled with bioclaustrations
cavities. (B) Surface view of stromatolite with bioclaustrations. The cavities are filled with clayey shale and ooids. (C) View of two
bioclaustrations structures in cross section.

mmch: microbial mat chips; ws: wrinkle structures; ft: feeding traces; III: digit IIT impression.
Figure 6. Evidence of paleobiological interaction. Several avian tracks (Gruipeda avis = “Yacoraitichnus avis”) from Valle del Tonco, Salta
Province, Yacoraite Formation.
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e the mats and biofilms as the producers of the paleocom-
munity, represented by the cyanobacteria, algae, archaea,
and unicellular eukaryotes, such as diatoms;

* the herbivores or first-order consumer, represented by
invertebrates, and probably some birds, feeding on the
microbial mats;

e the second-order consumers or carnivores, performed
by others birds eating the invertebrates (de Valais and
Cénsole-Gonella 2019).

These feeding strategies resemble those of modern wading
birds (Kushlan 1978, Lockley et al. 1994). Neoichnological stud-
ies have reinforced this concept, showing that low energy stages
in such environments allow, first, the establishment of micro-
bial mats, and second, its colonization by the invertebrates,
probably food of the wading birds (e.g.,, Swennen and Van
der Baan 1959, Cadée 1990). This type of association seems
to be recurrent since the Mesozoic, as suggested by Lockley
et al. (1994) and Doyle et al. (2000).

ECONOMIC INTEREST OF
MICROBIALITE LEVELS IN
THE YACORAITE FORMATION

Actually, more than 60% of the petroleum in the world and
40% of the gas had been found in carbonate-type reservoirs
(Schlumberger 2007). In this type of reservoirs, microbialites
play an important role. Some well-known examples are, for
instance, the Cretaceous Brazilian pre-salt, the Smackover micro-
bial reservoir (Jurassic) in the Little Cedar Creek of Alabama
(United States), the microbial carbonates of the Xiaoerbulak
Formation (Lower Cambrian) in the Tarim basin (China),
or microbialite boundstone in the Cameia Field of Kwanza
Basin (Angola) (e.g.,, Al Haddad and Mancini 2013, Cazier
et al. 2014, Jinmin et al. 2014, Abelha and Petersohn 2018).

The Yacoraite Formation (Maastrichtian-Danian), in north-
western Argentina, is a deposit of similar features and potential
economic interest (e.g., Masaferro et al. 2004, Starck 2011).
This unit has the particularity of including, among its facies,
interbedded with parent (shales) and reservoir rocks (carbon-
ate rocks) (Grosso et al. 2013). Yacoraite Formation has been
studied for exploratory purposes (e.g., Boll and Hernandez
1985, Gémez-Omil et al. 1989, Boll 1991, Gdmez-Omil and
Boll 2005, Hernandez et al. 2008), supported by state agen-
cies through exploration projects for conventional and non-
conventional systems of Argentine oil basins made by YPF,
S.A. Likewise, it has been included in the Strategic Production
Plan (2011-2020) of the Jujuy Province, which highlights a
historical productivity of 9,887,000 m? for the Caimancito
well (Calilegua, Jujuy) and also emphasizes the need to invest
in its exploration (Benetti et al. 2011).

Another point that arouses interest in the microbialitic facies
of the Yacoraite Formation is their potential as an analog for the
Brazilian pre-salt. In the past decade, no other country has dis-
covered hydrocarbon volumes similar to those of the Brazilian
pre-salt, positioning this country as one of the most important

when it comes to satisfying world energy demand (Abelha and

Petersohn 2018). This oil province is characterized by large pros-
pects for excellent quality light oil, accumulated in mostly or only
partially (depending on dominant interpretation theories on
their genesis) microbialitic and bioclastic carbonate facies, and
deposited between the Barremian and Aptian (e.g. Rangel and
Carminatti 2000, Muniz and Bosence 2015, Thompson et al. 2015).

In general terms, the facies assigned to microbialites in the
Brazilian pre-salt were developed in lacustrine shallow marine
depositional environment during the Sag phase, which suggests
that microbial organisms played important roles in sediment
production and accumulation (e.g. Borsato et al. 2012, Dorobek
et al. 2012, Lima and De Ros 2019). In Yacoraite Formation,
a carbonate-dominated succession has been also deposited
during a sag phase in the Salta rift system (Roemers-Oliveira
et al. 2015). Because of this, numerous works have suggested
the microbialites of the Yacoraite Formation as an excellent
analog for Brazilian pre-salt microbialites (e.g. Hamon et al.
2012, Bunevich et al. 2017, Adelinet et al. 2018, Deschamps
et al. 2020, Gomes et al. 2020). Using these analogous deposits
to increase the knowledge of lacustrine microbialites may be of
great importance to make predictions regarding the construc-
tion of facies models that may suggest the location of large,
stratigraphically significant, lacustrine microbialite reservoirs in
the subsurface (Awramik and Buchheim 2012). However, the
great variety in the organo-sedimentary facies of this forma-
tion limits extrapolations at different scales of work (Rangel
and Carminatti 2000, Durieux and Brown 2007, Romero-
Sarmiento ef al. 2019, Gomes et al. 2020, Ruiz-Monroy 2021).

From a technical point of view, one of the most important
aspectsrelated to microbialitic reservoir extraction is its inherent
complexity. This complexity is linked to the variety of processes
that influence the pore genesis, which in turn generates varia-
tions in the quality and efficiency of these deposits and that can
lead to technical risks (e.g. Humbolt 2008, Tonietto et al. 2012,
Machado et al. 2015, Rezende and Pope 2015). Understanding
pore genesis and how it relates to microfabric is crucial in the
sub-surface mapping, for evaluation of the petrophysical flow
units within organo-sedimentary deposits (Ahr ef al. 2005).

Along Tres Cruces sub-basin, the microstructure of micro-
bialitic levels in Yacoraite Formation is mainly controlled by
in situ biologically induced carbonatic precipitation and to a
lesser extent by “trapping and binding” (Cénsole-Gonella et al.
2017, Frias-Saba et al. 2021, Villafaie et al. 2021). In addition,
the microstructure is directly influenced by the hydrodynamic
conditions of the environment (Frias-Saba et al. 2021, Villafasie
et al. 2021). Some authors suggest that after the microbial
growth, diagenetic processes such as fluid circulation and
recrystallization may affect the petrophysical features of these
structures, giving rise to a variety of pores (see Frias-Saba et al.
2021, Villafafie et al. 2021).

Villafane and Cénsole-Gonella (2019) and Villafafie et al.
(2021) defined different types of pores in one microbialitic
level of Maimard section (MNES): intraparticle, vug, cavern,
fenestral, intercrystalline, interparticle (Fig. 7). These have
a good interconnectivity and reached a porosity of 29.7%.
Different types of fenestral porosity (irregular voids and bub-
ble-like vugs) described in this level support the importance
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Figure 7. Different types of porosities observed in the stromatolites of the MNES level, Maimar4, Jujuy (Tres Cruces sub-basin). (A)
Intercrystalline porosity (Ic). (B) Fenestral porosity (F), parallel to the lamination. (C and D) Nonselective factory porosity of cavern (c) and
vug type (v). (E and F) Cavities filled by clastic material where interparticle (Ig) and intraparticle (Ip) porosity are observed. Modified from

Villafaiie and Cénsole-Gonella (2019).

of understanding the role of biological activity for better eval-
uating the petrophysical characteristics of these systems (see
Villafafie et al. 2021). In addition, the same succession shows
diagenetic processes, such as dolomitization, that can also
affect the pore genesis and the porosity percentages (Villafafie
and Cénsole-Gonella 2019, Frias-Saba et al. 2021) (Fig. 8).
The growth of the microbialitic levels described in Metén-
Alemania sub-basin is controlled both by in situ biologically
induced carbonatic precipitation and “trapping and binding”
This allows different primary porosities among which we can

mention intraparticle, intercrystalline, and fenestral porosities

(Roemers-Oliveira et al. 2015, Bunevich et al. 2017, Gomes
etal.2020). Asin the Tres Cruces sub-basin, post-depositional
processes increase the pore rates. Some of them are related to
dissolution and dolomitization (Bunevich et al. 2017, Gomes
et al. 2020), while others are biologically induced, such as bio-
erosion (Cénsole-Gonella and Marquillas 2014).

CONCLUDING REMARKS

Based on the number of deposits mentioned in this

work, the Yacoraite Formation represents one of the most
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Figure 8. Different porosity types of the Yacoraite Formation described by Villafafie and Cénsole-Gonella (2019) plotted in the triangle
classification of Ahr et al. (2005) modified by Humbolt (2008). Villafafie and Cénsole-Gonella (2019) described the whole interconnection
of the pores as high, except for the vug type. Even when this type of porosity is post-depositional, the interconnection increases directly with

the diagenesis (e.g., making cavern types).

important microbialitic records in Argentina and South America.
Although the presence of these organo-sedimentary structures
was initially limited to brief mentions or descriptions, in the
past 20 years, these microbialites of Yacoraite Formation have
been deeply discussed in studies that focused on the under-
standing of the dynamics of the systems, considerably increas-
ing their importance for economic geology.

The microbialitic deposits occur in different sub-basins
occupying different stratigraphic positions within the Yacoraite
Formation. The Tres Cruces and Metdn sub-basins show the
highest abundance of microbialites. In the Tres Cruces sub-basin,
microbialites are restricted to the Maastrichtian, while in Metin
sub-basin, they range from the Maastrichtian to the Danian.

These microbialitic beds are associated with diverse paleo-
environmental conditions, resulting in a great variety of struc-
tures and morphologies, which respond mainly to hydrodynamic
energy, bathymetry and the mineral saturation/sedimentary input
ratio. As several authors have shown, these records represent
reliable and high-resolution proxies for understanding regional
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environmental changes through time. In addition, some depos-
its provide the possibility to discuss important ecological para-
digms, such as the relationship between biofilms and metazoans.

In general, microbialites of Yacoraite Formation show
promising petrophysical conditions to be evaluated as reservoir
rocks. However, it is important to highlight that these porosity
values are directly affected by the microbial (and diagenetic)
activity, being necessary to carry out new studies in order to

model the porosity-microstructure relationship.
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