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Abstract - Phase equilibrium calculations at high pressures have been a continuous challenge for scientists and 
engineers. Traditionally, this task has been performed by solving a system of nonlinear algebraic equations 
originating from isofugacity equations. The reliability and accuracy of the solutions are strongly dependent on 
the initial guess, especially due to the fact that the phase equilibrium problems frequently have multiple roots. 
This work is focused on the application of a subdivision algorithm for thermodynamic calculations at high 
pressures. The subdivision algorithm consists in the application of successive subdivisions at a given initial 
interval (rectangle) of variables and a systematic test to verify the existence of roots in each subinterval. If the 
interval checked passes in the test, then it is retained; otherwise it is discharged. The algorithm was applied for 
vapor-liquid, solid-fluid and solid-vapor-liquid equilibrium as well as for phase stability calculations for binary 
and multicomponent systems. The results show that the proposed algorithm was capable of finding all roots of 
all high-pressure thermodynamic problems investigated, independent of the initial guess used. 
Keywords: Subdivision algorithm; Phase equilibrium; Phase stability; Thermodynamic modeling. 

 
 

 
INTRODUCTION 

  
The accurate prediction (calculation) of phase 

equilibrium of the fluid mixtures is an important 
aspect of many industrial applications, such as in the 
modeling, simulation and optimization of separation 
processes. In recent years, high-pressure operations 
under sub- or supercritical conditions have been 
considered as an alternative to conventional reaction 
and separation processes (Beckman, 2004; Arai et 
al., 2002; Marr and Gamse, 2000; Perrut, 2000; 
Fotouh and Shukla, 1996). Supercritical extraction of  

essential oil from herbaceous matrices, micro- and 
nano- particle formation, polymerization reactions 
under supercritical conditions, enzymatic reactions in 
supercritical solvents and essential oil fractionation 
are examples of these processes (Beckman, 2004; 
Perrut, 2000). For the development of any process at 
high pressures, an understanding of the phase 
behavior of the system, especially in the vicinity of 
the critical point, is of primary importance (Brennecke 
and Eckert, 1989). Thus, robust algorithms (routines) 
for phase equilibrium prediction (or calculations) are 
equally of great relevance. 
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Fotouh and Shukla (1996) pointed out some 
difficulties in phase equilibrium calculation at high 
pressures: first, the number of phases in equilibrium 
must be known a priori and second, close to the 
critical locus of the mixture, the calculation strongly 
depends on the initial values of the unknown 
variables in the numerical method used, often 
resulting in trivial solutions (phases in equilibrium 
with identical compositions).  

The phase equilibrium can be modeled using two 
approaches: i) the minimization of the total Gibbs 
free energy and ii) the solution of a nonlinear 
algebraic system. The first approach is based on the 
fact that at fixed T and P, the condition that is 
necessary and sufficient for a multi-component and 
multi-phase system to reach equilibrium is the 
minimum of the total Gibbs free energy. Thus, the 
phase and chemical equilibrium problem can be 
formulated and solved as a global optimization 
problem (Sofyan et al., 2003; Nichita et al., 2002; 
Rangaiah, 2001). Likewise, the Helmoholtz free 
energy can be minimized at fixed T and V (total 
molar volume) (Souza et al., 2006). The second 
approach consists in solving a system of nonlinear 
equations obtained from the equations of mass 
balance and phase equilibrium (isofugacity equations 
for all components in the mixture for all phases in 
equilibrium) (Bausa and Marquardt, 2000; Sum and 
Seader, 1995). 

The development of approaches to solve the 
phase equilibrium problem has been the subject of 
continuous investigation in the scientific literature. 
Most of the work has considered the application of 
Newton's based methods, where the initial guesses 
for unknown variables have a direct influence on the 
success of finding a solution to the problem. A major 
difficulty of this method is seen when the system of 
equations has multiple solutions. Some recent work 
in the literature uses strategies that minimize the 
dependence on the initial guess or approaches that 
seek all roots of the algebraic system independent of 
the initial guess. Of these, the following can be cited: 
multigrid mesh initialization (Sofyan et al., 2003), 
the homotopy continuation method (Bausa and 
Marquardt, 2000; McDonald and Floudas, 1995; 
Seider et al., 1991; Kuno and Seader, 1988; 
Wayburn and Seader, 1987) and the interval analysis 
algorithms – applied to flash and phase stability 
analysis problems (Scurto et al., 2003; Kerfott et al., 
1994; Hua et al., 1998a,b; Kerfott and Novoa, 1990). 

The homotopy continuation method (Kuno and 
Seader, 1988; Wayburn and Seader, 1987) is an 

interesting algorithm for phase equilibrium 
calculations, since according to the authors, it is 
possible to find all roots (solutions) of the problem. 
However, implementation of this method is not a 
simple task and previous knowledge of the problem 
is necessary to determine the homotopy type that 
should be adopted - fixed point, Newton’s homotopy 
or affine homotopy. The performance and success of 
this method in finding all possible solutions (roots) 
are directly associated with the choice of homotopy 
type (Wayburn and Seader, 1987). 

Smiley and Chun (2001) recently presented a 
subdivision algorithm with exclusion to locate all 
roots of a nonlinear algebraic system, where the 
authors present a section proofing the convergence 
for the subdivision algorithm. In general, subdivision 
algorithms consist in establishing initial intervals for 
the system variables and then a systematically 
subdividing these intervals. At each division level, it 
is necessary to apply a test to verify the existence of 
roots. If this interval passes the test, it is retained and 
it continues as part of the procedure; otherwise it is 
discarded. After a finite number of subdivisions, a 
conventional and local method (like the Newton-
Raphson or Broydn method), in which the midpoint 
of the retained intervals can be used as initial guess 
is used to find the roots. Thus, depending on the 
number of subdivisions applied, the solution (or 
solutions) can be closed in the retained intervals, 
which can provide a fast, efficient and safe 
convergence of the conventional method. It should 
be mentioned that the subdivision algorithm can also 
be employed as a preprocessor algorithm to generate 
approximates initial guess in the conventional and 
local methods. 

Recently, Boynd (2006a,b) presented some 
applications of the subdivision algorithm for 
computing real roots of polynomial equations. 
However, to the best of our knowledge, no 
application of the subdivision algorithm to phase 
equilibria or chemical engineering problems is 
available in the literature. 

Considering the little readiness of algorithms that 
are characterized by easy implementation and 
manipulation, robustness and the capability of 
locating multiple solutions (roots), the aim of this 
present work is to investigate the application of an 
algorithm, denominated subdivision algorithm 
(SubDivNL), for phase equilibrium calculations at 
high pressures. The main idea of the proposed 
algorithm is based on the work presented by Smiley 
and Chun (2001). 
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SUBDIVISION ALGORITHM 
  

Considering a system of nonlinear algebraic 
equations, F(x), in accordance with Smiley and Chun 
(2001), the basic idea of the proposed subdivision 
algorithm is as follows: given an initial interval for 
unknown variables (“rectangle”) R∈ℜd, to find all 
values of x, such that { }d* : ( )= ∈ℜ =x x F x 0 , from 

successive subdivision of R, where d is the 
dimension of the problem. In the R subdivision 
procedure, a partition sequence is needed. This can 
be done by partitioning R into two equal parts for 
each coordinate (variable); thus, for a rectangle 
at dℜ , there will be d2  new subrectangles. R can 
stand for the “parent” rectangle and the congruent 
subrectangles (originating from division of R) the 
“child” rectangles. At each subdivision level “i”, 
there will be ijR  child subrectangles, where “j” are 
the subrectangles generated. 

For each subrectangle ijR  generated, a test to 
verify the existence of solutions is applied as 
expressed in Equation 1. If the subrectangle ijR  
passes the test, it is retained (saved) and will be a 
new “parent” rectangle, which in turn will divide at i 
= i + 1. In the present work, the following selection 
criterion was used to test the existence of solution in 
a rectangle: 
 
If    
 

i
ij ij( ) 2−≤ + τF x ;  

(1) 
then ijR  is retained; otherwise it is discarded.     
 
where   
 

( )
ij

d

ij k k
y R kk 1 2

1 max b a
2 y∈

=

 ∂
 τ = −
 ∂ 

∑ F x
 

 
and ak and bk are the lower and upper bounds of the 
Rij rectangle with dimension“k” and y is the vector of 
random sampled points in Rij with dimension “k”. In 
order to obtain the coordinates for each “child” 
rectangle, the following scheme is proposed in this 

work: 
 

{ dk k m,d k
k k k

a A v m 1,..., 2 ; k 1,..., db a v             
= + = == +

α        (2) 

 
where 
 

k k k
1v (B A )                   k 1,..., d
2

= − =                 (3) 

 
where m,dα  is a matrix of elements 0 (zero) and 1 
(one) combined in such a way that, in each iteration 
“i” it is moved in the coordinates of “child” 
rectangles. Ak and Bk are the lower and upper bounds 
of parent rectangles for each variable “k”, 
respectively; kν is the midpoint coordinate of the 
parent rectangles of variable “k” and ka  and kb  are 
the lower and upper coordinates of the new child 
rectangle for the variable “k”. 
 In this work, the sample number (iRan) was 
specified as iRan = 5xd (Smiley and Chun, 2001 
proposed use of iRan = 5). In Figure 1 a scheme of 
the subdivision algorithm proposed in this work is 
shown. 

The SubDivNL subdivision algorithm was used 
to solve distinct thermodynamic problems at high 
pressures, consisting of nonlinear algebraic equation 
systems – phase equilibrium calculations and phase 
stability analysis. The problems tested were 
separated into two sections: phase stability test 
problems and phase equilibrium calculations. For 
each type of problem, a brief description of the 
approach employed is presented. The thermophysical 
properties used in this work are presented in Table 1.  
For the naphthalene, fusion temperature, Tf = 353.45 
K; fusion enthalpy, ∆Hf = 19318.3976 J/mol; 
subcooled liquid molar volume, VS = 131.2 
(cm3/mol); and solid molar volume, VS = 111.94 
(cm3/mol), were used in accordance with Corazza et 
al. (2004). The Peng-Robinson equation of state (PR-
EoS) (Peng and Robinson, 1976) with quadratic 
mixing rules at two parameters (vdW2) was used to 
model the fluid phases in equilibrium. The 
calculations were done on a personal microcomputer 
Intel Pentium IV with 2.66 GHz and 512 MB of 
RAM. No further code optimization, like code 
parallelization, was performed in the present work. 
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i) Given d, Ak and Bk (k=1,..,d), iRan, iMax, ( )F x , iCov 
ii) Set M = 1 (initialize with a “parent” rectangle) 
iii) For l=1,...,iCov do: 

a. For i=1,...,iMax do: 
i. Set m = 0 

ii. For j=1,...,M*2d do: 
1. Apply equations (5) and (6) to obtain the coordinate 

for each Rij “child” rectangle 
2. Get iRan random samples in Ri,j 
3. Evaluate ( )ijF x  for each random number in Rij 

4. Evaluate ijτ  (equation 4) 

5. If ( ) i
ij ij2−≤ + τF x ,   then 

a. Retain the Ri,j rectangle  
b. Set m =m + 1 

6. else discard it 
iii. Set M= m 

b. Evaluate the adjacent rectangles (coverage) 
c. Reset M (M = number of new rectangles) 

iv) Use the Newton method to find ( ){ }d : 0= ∈ =x* x F x , applying the 

midpoint of each Ri,j as initial guess 
v) Check the solutions (roots) found 
vi) Show all solutions (roots) 

 
 

Figure 1: The subdivision algorithm implemented (SubDivNL). iRan: random sample number  
for each rectangle Rij; iMax: maximum subdivision number (or level); iCov: maximum  

coverage number; and M: number of rectangles retained at each subdivision level. 
 

Table 1: Thermophysical properties of pure components (Reid et al., 1988). 
 

Component Tc [K] Pc [bar] ω 
carbon dioxide 304.21 73.83 0.2236 
propane 369.80 41.90 0.0152 
n-pentane 469.70 33.69 0.2514 
ethanol 513.92 61.48 0.6444 
trans-2-hexen-1-ol a 601.76 36.73 0.7240 
methane 190.60 46.00 0.0080 
hydrogen sulfide 373.20 89.40 0.1000 
water 674.30 220.50 0.3440 
dichloromethane 510.00 63.00 0.1990 
limonene 657.16 27.56 0.3396 
nitrogen 126.20 33.90 0.0400 
ethane 305.40 48.80 0.0980 
naphthalene b 748.40 40.50 0.3020 

 a Stradi et al. (2001),   b Corazza et al. (2004). 
 

 
APPLICATION OF SUBDIVNL TO PHASE 

STABILITY TEST 
 
Problem Formulation 
  

A sufficient condition for equilibrium at specified 
temperature (T), pressure (P) and global composition 
(z) is that the Gibbs surface tangent plane distance 

should be nonnegative for all possible phases in the 
system (Balogh et al., 2003; Rangaiah, 2001; Hua et al., 
1998b; Baker et al., 1982).  The Gibbs surface tangent 
plane distance function (TPD) can be given by 
 

( ) ( )( )
nc

k k k
k

TPD( ) y= µ − µ∑y y z                         (4) 
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nc

k k
k

s.t.  y 1   0 y 1= ≤ ≤∑  

 
where nc is the number of components in the mixture 
and kµ  represents the chemical potential of 
component k. The solution of equation (4) refers to 
stationary points of TPD as a function of y and the 
global solution corresponds to a global minimum of 
Gibbs free energy. Adopting the isofugacity 
approach to model the fluid phases in equilibrium, 
from equation (4) 
 

{ }
nc

*
k k k k k

k

ˆ ˆTPD( ) y ln( y ) ln( z )= φ − φ∑y                 (5) 

 
nc

k k
k

s.t.  y 1   0 y 1= ≤ ≤∑  

 
where kφ̂  and *

kφ̂ are the fugacity coefficients of 
component “k” for new tried and tested phases, 
respectively, and yk and zk are the compositions of 
new (tried) and tested phases, respectively. As the 
solutions of equation (5) are stationary points, the 
system can be solved by differentiating with respect 
to yk in order to obtain the following system of 
nonlinear algebraic equations: 
 

{ }
{ }

*
k k k k

*
nc nc nc nc

nc

k
k

ˆ ˆln(y ) ln(z )

ˆ ˆln(y ) ln(z ) 0 ;  k 1,..., nc 1

y 1

φ − φ −

φ − φ = = −

=∑

       (6) 

 

 In order to test the subdivision algorithm for 
phase stability analysis, binary, ternary and 
quaternary systems were selected from the literature. 
Systems were chosen for being well described and 
also due to their noneasy numerical solution. 
 
CO2(1) + Trans-2-Hexen-1-ol(2) Binary System  
  

After preliminary tests, the subdivision level i 
was fixed equal to 6, iCov = 0 (noncoverage was 
applied). The initial interval of composition (mole 
fraction) for all components, y, was set as [0.0, 1.0]. 
The phase stability analysis results obtained for the 
CO2(1) + trans-2-hexen-1-ol(2) system are presented 
in Table 2. The binary interaction parameters for the 
PR-EoS were k12 = 0.084 and l12 = 0.0 (Stradi et al., 
2001). 

The roots found, the Euclidian norm of the 
system and the values of the TPD function for each 
specified condition (input) are presented in Table 2. 
It should be observed in this table that the results 
found with the SubDivNL algorithm are in 
agreement with the ones presented in the literature 
(Hua et al., 1999), where interval analysis was used 
(IN/GB algorithm). In this table the CPU time for all 
solutions of each calculation condition is also 
presented and it can be observed that, besides the 
algorithm’s ability to find all roots, a very short CPU 
time is required for the calculations. An observation 
of Table 2 reveals that for the third condition, the 
fifth root presented in the literature (0.9968) was not 
found in this work. This is due to the kind of 
formulation of the phase equilibrium problem. In our 
algorithm, we selected one root of the equation of 
state, depending on the type of phase tested. In 
interval analysis the equation of state is part of the 
nonlinear algebraic system and volume is one of the 
unknowns in the problem. 

 
Table 2: Phase stability analysis for the CO2 (1) + trans-2-hexen-1-ol (2) binary  

system using the SubDivNL algorithm and results from the literature. 
 

SubDivNL IN/GB (Hua et al., 1999) Input 
(P [bar];  
T[K]; z1) 

Roots Found 
(x1) 

( )F x  TPD – SubDivNL CPU [s] Roots Found 
(x1) 

TPD - INGB 

1. (0.7651) 0.26 x 10-7 -4.0081 x 10-4 
2. (0.8500) 0.47 x 10-8 -8.3086 x 10-15 

(120.00,  
303.15,  
0.8500) 3. (0.9198) 0.11 x 10-7 -4.6057 x 10-4 

4.69 x 10-2 
1. (0.7645) 
2. (0.8500) 
3. (0.9200) 

-4.1 x 10-4 

0.0 

-4.7 x 10-4 
1. (0.7082) 0.72 x 10-8 -2.5379 x 10-3 
2. (0.8500) 0.51 x 10-7 -5.5816 x 10-14 

(80.00,  
303.15,  
0.8500) 3. (0.9600) 0.71 x 10-7 -3.9596 x 10-3 

6.20 x 10-2 
1. (0.7078) 
2. (0.8500) 
3. (0.9600) 

-0.003 
0.0 

-0.004 
1. (0.6979) 0.67 x 10-7 -6.4569 x 10-4 
2. (0.8468) 0.87 x 10-8 2.4546 x 10-3 
3. (0.9723) 0.82 x 10-7 -4.3204 x 10-3 

(69.7016,  
303.15,  
0.9991) 

4. (0.9991) 0.60 x 10-8 1.7740 x 10-12 

6.25 x 10-2 

1. (0.7018) 
2. (0.8428) 
3. (0.9728) 
4. (0.9991) 
5. (0.9968) 

3.6 x 10-4 

0.0030 
-0.004 

0.0 
0.0020 
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N2(1)+CH4(2)+Ethane(3) and CH4 (1)+CO2(2)+H2S(3) 
Ternary Systems 
  

As mentioned above for the binary system 
investigated, the subdivision level i was fixed equal 
to 6 and iCov = 0 (noncoverage was applied). The 
initial interval of composition (mole fraction) for all 
components, y, was specified as [0.0, 1.0]. For the 
N2(1)+CH4(2)+ethane(3) ternary system, the binary 
interaction parameters for PR-EoS were k12=0.038, 
l12=0.0, k13= 0.080, l13=0.0, k23=0.021 and l23=0.0 
(Sofyan et al., 2003; Hua et al., 1998a). For the 
CH4(1)+CO2(2)+H2S(3) ternary system, the binary 

interaction parameters for PR-EoS were k12 = 
0.1005, l12 = 0.0, k13 = 0.0755, l13 = 0.0, k23 = 0.0999 
and l23 = 0.0 (Sofyan et al., 2003). 

Tables 3 and 4 contain the results of the phase 
stability analysis for the N2(1)+CH4(2)+ethane(3) 
and CH4(1)+CO2(2)+H2S(3) ternary systems, 
respectively. In these tables the Euclidian norm of 
the algebraic systems, along with the TPD values for 
each root found at the stationary point in the TPD 
function, are also presented. In all cases it should be 
noted that the results of the SubDivNL algorithm are 
in agreement with those presented in the literature 
where interval analysis was used to find the roots. 

 
 

Table 3: Phase stability analysis for the N2(1)+CH4(2)+ethane (3) ternary system  
using the SubDivNL algorithm and results from the literature. 

 
SubDivNL IN/GB (Hua et al., 1998a) Input 

(P [bar]; T[K]; 
z1; z2) 

Roots Found 
(x1, x2) 

( )F x  TPD - SubDivNL CPU [s] Roots Found 
(x1, x2) 

TPD – IN/GB 

1. (0.1330, 0.0678) 0.14 x 10-6 -1.4830 x 10-2 
2. (0.3000, 0.1000) 0.99 x 10-7 1.4006 x 10-15 (76.00, 270.00, 

0.3000, 0.1000) 3. (0.3117, 0.1016) 0.98 x 10-7 -5.8889 x 10-6 
0.41 

1. (0.1330; 0.0680) 
2. (0.3000; 0.1000) 
3. (0.3120; 0.1020) 

-0.0148 
0.0 

-5.8 x 10-6 

1. (0.0968, 0.2451) 0.47 x 10-7 -1.1746 x 10-3 
2. (0.1470, 0.2974) 0.35 x 10-7 3.3979 x 10-7 (76.00, 270.00, 

0.1500, 0.3000) 3. (0.1500, 0.3000) 0.34 x 10-7 2.1507 x 10-16 
0.80 

 (0.1470; 0.2970) 
(0.0970; 0.2450) 
(0.1500; 0.3000) 

3.55 x 10-7 
-0.0012 

0.0 
(76.00, 270.00, 
0.080, 0.3800) 1. (0.0800, 0.3800) 0.38 x 10-7 -1.3900 x 10-15 0.50 (0.080; 0.380) 0.0 

 
 

Table 4: Phase stability analysis for the methane(1)+CO2(2)+hydrogen sulfide(3) 
ternary system using the SubDivNL algorithm and results from the literature. 

 
SubDivNL IN/GB ( Hua, 1997) Input 

(P [bar]; T[K];  
z1; z2) 

Roots Found 
(x1, x2) 

( )F x  TPD - SubDivNL CPU [s] Roots Found 
(x1, x2) 

TPD – IN/GB 

1. (0.2779, 0.0953) 0.95 x 10-7 -3.7072 x 10-3 1. (0.2450, 0.0910) -6.8 x 10-3 
2. (0.4989, 0.0988) 0.10 x 10-6 -3.8421 x 10-15 2. (0.4990, 0.099) 0.0 
3. (0.7813, 0.0664) 0.20 x 10-6 -5.9477 x 10-3 3. (0.8170, 0.0600) -9.7 x 10-3 
4. (0.8631, 0.0488) 0.29 x 10-6 -4.5856 x 10-3 4. (0.8590, 0.0510) -9.4 x 10-3 

(55.10,  
208.5,  
0.4989,  
0.0988) 

5. (0.9159, 0.0347) 0.51 x 10-6 -9.1584 x 10-3 

32.0 

5. (0.9190, 0.034) -0.015 
1. (0.3004, 0.0969) 0.96 x 10-7 -3.5258 x 10-3 1. (0.2780, 0.094) 3.55 x 10-7 

2. (0.4989, 0.0988) 0.11 x 10-6 -3.3877 x 10-15 2. (0.4990, 0.0990) 0.0 

(48.60,  
227.55,  
0.4989,  
0.0988) 3. (0.8969, 0.0412) 0.42 x 10-6 -0.1811 

40.4 

3. (0.9000, 0.0410) -0.1850 

 
 
 
CH4(1)+CO2(2)+H2S(3)+Water(4) Quaternary System 
  

For this system, the binary interaction parameters 
for the PR-EoS were k12=0.1005, l12=0.0, 
k13=0.0755, l13=0.0, k14=0.4928, l14=0.0, k23=0.0999, 
l23=0.0, k24=0.0, l24=0.0, k34=0.0400 and l34=0.0 
(Sofyan et al., 2003). Table 5 contains the results 
obtained in the phase stability analysis, where it can 

be observed that the results of the SubDivNL 
algorithm are in agreement with those presented in 
the literature. It should also be observed that the 
CPU time for the quaternary system was slightly 
longer than that obtained for the ternary systems, but 
is of the same order as the CPU time obtained by 
Sofyan et al. (2003), who employed a tunneling 
algorithm for the calculations. 
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Table 5: Phase stability analysis for the methane(1)+CO2(2)+hydrogen sulfide(3)+water(4)  

quaternary system using the SubDivNL algorithm and results from the literature. 
 

 SubDivNL IN/GB ( Hua, 1997) 
Input 
(P [bar]; T[K]; 
z1; z2, z3) 

Roots Found 
(x1, x2, x3) 

( )F x  TPD - SubDivNL CPU [s] Roots Found 
(x1, x2, x3) 

TPD – IN/GB

1. (0.0496,0.0494, 
0.4000) 0.89 x 10-7 -1.0747 x 10-15 1. (0.0500, 0.0500,  

0.4000) 0.0

2. (3.586 x 10-4, 
3.785 x 10-3, 0.0448) 0.29 x 10-6 -0.1736 2. (3.5 x 10-4, 0.0040,  

0.0450) -0.1759

(181.70,  
449.85,  
0.0496,  
0.0494,  
0.4000) 3. (0.4007, 0.0968, 

0.4158) 0.16 x 10-6 -0.2989 

147.05 

3. (0.3990, 0.0970,  
0.4170) -0.2948

1. (0.9644, 0.0330, 
0.002395) 0.78 x 10-4 -0.0272 1. (0.9650, 0.0330,  

0.0020) -0.0271

2. (0.1488, 0.2991, 
0.0494) 0.37 x 10-7 -9.0285 x 10-15 2. (0.1490, 0.2990,  

0.0490) 0.0

(76.00,  
310.95, 
0.1488,  
0.2991,  
0.0494) 

3. (0.2669 x 10-5, 
0.7169 x 10-3, 
0.2353 x 10-3) 

0.48 x 10-6 -0.0118 

57.89 
3. (2.7 x 10-6,  

7.2 x 10-4,  
2.4 x 10-4) 

-0.0117

 
 
 
APPLICATION OF SUBDIVNL FOR PHASE 
EQUILIBRIUM PROBLEMS AT HIGH 
PRESSURES 
 
Thermodynamic Modeling Formulation Using the 
Symmetric Approach  
 

The use of the isofugacity formulation 
(symmetric approach) to model the phase 
equilibrium problem results in a system of nonlinear 
equations,  
 

L V
k k

ˆ ˆf f 0     k 1,.., nc− = =                                       (7) 
 

If a solid phase is present in the mixture,  
 

S
0,nc k

ˆ ˆf f 0     k 1,.., ncζ− = =                          (8) 
 

In equations (7) and (8), the fugacity of vapor and 
liquid phases are V V

k k k
ˆ ˆf y P= φ   (k = 1,...,nc) and 

L L
k k k

ˆ ˆf x P= φ  ( k = 1,...,nc), respectively. The superscript 
ζ  in (8) can refer to a vapor or a liquid phase. When a 
solid phase was present, it was considered a pure phase 
and the fugacity of subcooled liquid ( LSC

nc,0f ) was 
calculated in accordance with Corazza et al. (2004), 
Diefenbacher and Turk (2002) and Kikic et al. (1997). 

Additionally, the mass balance constraints to 
components in the phases in equilibrium must be 
observed  

 (
nc

k
k 1

y 1
=

=∑ and
nc

k
k 1

x 1
=

=∑ ). 

 
The Peng-Robinson cubic equation of state (PR-

EoS - Peng and Robinson, 1976) with van der Waals 
quadratic mixing rules at two parameters (kij and lij) 
was employed to model the fluid phases (vapor and 
liquid). Typical phase equilibrium problems (bubble 
and dew points and flash calculations) were selected 
to test the ability of the proposed subdivision 
SubDivNL algorithm. 
 
Bubble-T and Dew-T Calculations for the 
CO2(1)+Propane(2) Binary System 
  

The binary parameters used for this system were 
k12=0.1676 and l12=0.0752 (Corazza et al., 2003). At 
specified T (temperature) and x (known phase 
composition), the initial interval for this system was 
chosen as [1.0, 100.0] bar for pressure (P) and [0.0, 
1.0] for the unknown phase composition (y). The 
maximum subdivision parameter was specified as 
iMax = 8. After the subdivision procedure, the 
Newton method was used for each rectangle 
retained. The results are presented in Table 6, which 
also shows the performance of the direct application 
of the Newton method (using the mnewt routine as 
presented by Press et al., 1992) for distinct initial 
guesses. It should be noted from this table that the 
Newton method converges to distinct roots 
depending on the initial guess, while the SubDivNL 
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algorithm was initialized in wide pressure and molar 
composition ranges: from 1.0 to 100.0 bar and from 
0.0 to 1.0, respectively. 

The results presented in Table 6 provide evidence 
of the importance of robust methods to find all phase 
equilibrium solutions independent of the initial 
guess. This aspect is even more important in the 
parameter estimation of the thermodynamic models, 

where phase equilibrium calculations (bubble points, 
dew points or flash calculations) are conducted 
several times for each experimental point. Indeed, as 
the thermodynamic models are usually sensitive to 
variations in interaction parameters, a small change 
can produce infeasible convergence and 
consequently hinder and jeopardize the truthfulness 
of the results. 

 
 

Table 6: Bubble-P calculations with the Subdivision Algorithm (SubDivNL) and  
the mnewt routine (Press et al., 1992) for the CO2(1)+propane(2) binary system. 

 
SubDivNL algorithm mnewt algorithm 

Input 
(T [K], x1) 

Roots Found 
(P [bar], y1) 

Initial Guess 
(P [bar], y1) 

Roots Found 
(P [bar], y1) 

(311, 0.05) 1. (112.81, 0.0500)* 
2. (18.28, 0.1793) 

1. (50.0, 0.90) 
2. (50.0, 0.10) 
3. (50.0, 0.30) 
4. (20.0, 0.30) 

1. (18.28, 0.1793) 
2. (59.65, 0.050)* 

3. (104.75, 0.050)* 
4. (18.28, 0.1793) 

(311, 0.50) 
1. (115.67, 0.5000)* 

2. (30.94, 0.2228) 
3. (50.64, 0.6952) 

1. (150.0, 0.90) 
2. (30.0, 0.90) 
3. (40.0, 0.10) 

1. (121.90, 0.50)* 
2. (50.64, 0.6952) 
3. (30.94, 0.2228) 

(311, 0.75) 
1. (100.89, 0.7500)* 

2. (60.06, 0.6458) 
3. (66.29, 0.7778) 

1. (50.0, 0.30) 
2. (40.0, 0.95) 
3. (80.0, 0.95) 

4. (1.0, 0.10) 

1. (60.06, 0.6458) 
2. (32.98, 0.7500)* 
3. (66.29, 0.7775) 
4. (1.56, 0.7500)* 

* Trivial Solutions. 

 
 
Bubble-P and Flash Calculations for the               
n-Pentane(1)+Ethanol(2) Binary System 
  

Figure 2 depicts a phase diagram for this system 
at 422.6 K. All bubble point calculations were 
performed with the SubDivNL algorithm with iMax 
= 8 and initial intervals of [1.0, 100.0] bar for 
pressure and [0.0, 1.0] for n-pentane mole fraction. 
The binary interaction parameters used for the PR-
EoS were k12 = 0.1210 and l12= 0.0 (Orbey and 
Sandler, 1998). It can be observed in this figure that 
the SubDivNL algorithm was shown to be efficient, 
even with the occurrence of an azeotropic point 
(mathematical singularity (x = y)), where most of the 
conventional methods have difficulty converging to 
this point. 

The use of flash calculations in phase equilibrium 
problems with closed phase compositions presents 
some difficulty of convergence. The SubDivNL 
algorithm was applied to the flash calculation for the 
n-pentane(1)+ethanol(2) system at 422.6 K, 17.70 
bar and 0.8300 of n-pentane mole fraction (see 
Figure 2). The interval used for mole fraction of the 
liquid and vapor phases was [0.0, 1.0] for both 
components. The results of this calculation are 
presented in Table 7. The CPU time was 0.10 s. In 
Table 7 it can be verified that the algorithm was able 
to simultaneously find both roots for this problem, 
the unfeasible solution (solution 1 in Table 7) and 
the true solution (solution 2 in Table 7). The true 
solution (stable from stability test) can be 
qualitatively verified in Figure 2. 

 
 

Table 7: Flash calculation for the n-pentane(1)+ethanol(2) system with the SubDivNL algorithm. 
 

Input Roots Found 
(T [K], P[bar], z1) (x1, y1) 

( )F x  Vapor Phase Fraction  

1a. (0.2667, 0.4689) 0.1854x10-6 -1.7867 (422.6, 17.70, 0.8300) 2. (0.8578, 0.8099) 0.8321x10-7 0.4192 
aUnfeasible Solution 
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Figure 2: Diagram of pressure composition for the  
n-pentane(1)+ethanol(2) binary system at 422.6 K. 

 
Bubble-P Calculations for the CO2(1)+ 
Dichloromethane(2)+Limonene(3) Ternary System 

 
The binary interaction parameters used for this 

system were k12 = 0.0940, l12 = -0.0281, k13 = 0.0296, 
l13 = -0.00661, k23 = 0.0 and l23 = 0.0 (Corazza et al., 
2003a). The maximum subdivision level for the 
SubDivNL algorithm was iMax = 8. The specified 
variables (inputs) along with the results obtained are 

presented in Table 8. The initial interval for the 
dependent variables was [1.0, 300.0] bar for pressure 
and [0.0, 1.0] for mole fraction of components (1) and 
(2). It should be noted that the PR-EoS was capable of 
predicting the phase behavior of the ternary system 
from binary system information (Corazza et al., 2003b). 
Also, the SubDivNL algorithm proposed converged for 
all system roots, including the trivial solutions for all 
calculations.

  
Table 8: Bubble-P calculations for the CO2(1)+dichloromethane(2)+ limonene(3)  

ternary system using the SubDivNL algorithm. 
 

Specified Variables Roots Found 
(T [K], z1, z2) (P [bar], y1, y2) 

( )F x  

(313, 0.8731, 0.0884) C1 1. (74.74, 0.9912, 0.2321x10-2) 
2. (130.20, 0.8731, 0.0884)* 

0.16x10-6 

0.54x10-8 

 (313, 0.7537, 0.0457) C2 1. (71.63, 0.9928, 0.0019) 
2. (88.0, 0.7537, 0.0457)* 

0.30x10-7 

0.23x10-7 

(313, 0.6269, 0.2072) C3 1. (58.49, 0.9858, 0.0008) 
2. (91.52, 0.6269, 0.2072)* 

0.70x10-7 
0.55x10-8 

(333, 0.7537, 0.0457) C4 1. (100.15, 0.9798, 0.0093) 
2. (130.20, .0.7537, 0.0457)* 

0.11x10-7 

0.31x10-10 

(333, 0.6269, 0.2072) C5 1. (79.25, 0.9738, 0.0026) 
2. (89.00, 0.6269, 0.2072)* 

0.41x10-7 

0.55x10-8 
*Trivial Solution;   Pressure values of experimental points (Corazza et al. 2003b):   
C1 = 75.92 bar; C2 =72.19 bar; C3 = 58.49 bar ; C4 = 100.92 bar; C5 = 86.75 bar. 

 
 
Solid-Fluid Equilibrium Calculations for the 
CO2(1)+Naphthalene(2) Binary System 

 
The binary interaction parameters for PR-EoS 

were k12=0.0793 and l12=-0.0357, and the solid 
naphthalene properties were used in accordance with 
Corazza et al. (2004). The S-F calculations were 

performed for T=338.05 K and P=120 bar, for which 
the initial coordinates for the unknown variable (y2) 
were [0.0, 1.0].  The results presented in Table 9 
indicate that for this problem also the subdivision 
SubDivNL algorithm was efficient in locating all 
roots of the problem independently of the initial 
estimative. 
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Table 9: S-F equilibrium calculations for the CO2(1)+naphthalene(2) binary system. 

 
Input  Variable  Output variable  
(T [K], P [bar]) (y2, y1) 

( )F x  

(338.05, 120.0) 
1. (0.0047, 0.9953) 
2. (0.1122, 0.8878) 

3. (0.5466, 0.4534)* 

7.0x10-7 
1.1x10-7 
3.5x10-8 

(338.05, 150.0) 
1. (0.0203, 0.9797) 
2. (0.0921, 0.9079) 

3. (0.5092, 0.4908)* 

5.2x10-7 
6.4x10-7 
2.9x10-8 

* Stable Solution 
 
S-V-L Equilibrium Calculation for the 
CO2(1)+Naphthalene(2) Binary System 

 
For this three-phase binary system, at a given 

temperature, the problem consists in finding the 
composition of the vapor and liquid phases (x and y, 
respectively) and the pressure (P) of the system. For 
this problem, the coordinates of the initial rectangle 
for the unknown variables were [0.0, 1.0] for CO2 

mole fraction in vapor and liquid phases and [1.0, 
200.0] for pressure. The results obtained are 
presented in Table 10, where it can be verified that 
the algorithm was efficient in locating solutions for 
these calculations. It should be noted that this 
problem has a high degree of numerical difficulty, 
mainly related to initialization of the calculations, 
which once again confirms the robustness of the 
SubDivNL algorithm. 

 
 

Table 10: S-V-L equilibrium calculations for the CO2(1)+naphthalene(2) binary system. 
 

Input Roots Found 
T [bar] (P [bar], y1,  y2, x1, x2) 

( )F x  

338.05 (96.45, 0.9982, 0.0012, 0.4169, 0.5831) 2.5x10-6 
345.00 (52.88, 0.9993, 0.0004, 0.2127, 0.7873) 5.3x10-6 

 
 

CONCLUSIONS 
 

In this work the application of a subdivision 
algorithm (SubDivNL) for thermodynamic 
calculations at high pressures was proposed. The 
subdivision algorithm consists in applying 
successive subdivisions at a given initial interval 
(rectangle) of variables and systematically testing to 
verify the existence of roots in each one. If the 
interval checked passes the test, then it is retained; 
otherwise it is discharged. Two main categories of 
problems were considered for binary and 
multicomponent systems: the phase stability problem 
and the phase equilibrium calculation, involving 
bubble and dew points and flash calculations. The 
results show that it was possible to obtain the 
solution (root) or multiple solutions (roots) of the 
system independent of the initial guess, which is an 
important advantage over conventional methods, like 
Newton-based methods (it should be remembered 
that for composition the initial interval used was 0.0 
to 1.0 in all cases investigated). The success in 
resolving different types of problems on phase 
equilibrium indicates the potentiality and robustness 

of the proposed algorithm in thermodynamic 
calculations at high pressures. 
 
 

NOMENCLATURE 
 

d  problem dimension 
f(x) nonlinear equation  
F(x) system of nonlinear equations  

F
kf̂  fugacity of component “k” in phase “F” in 

the mixture 
R  multidimensional rectangle 

ka  lower coordinate of the “child” rectangles 
in dimension “k” 

kb  upper coordinate of the “child” rectangles 
in dimension “k” 

Ak lower coordinate of the “parent” rectangles 
in dimension“k” 

Bk  upper coordinate of the “parent” rectangles 
in dimension “k” 

i subdivision level 
y vector of random point in Rij and vapor 

phase mole fraction 
xij  middle point of rectangle “j” at subdivision 



 
 
 
 

A Subdivision Algorithm for Phase Equilibrium Calculations at High Pressures                                                   621 
 

 
Brazilian Journal of Chemical Engineering Vol. 24,  No. 04,  pp. 611 - 622,  October - December,  2007 

 
 
 
 

level “i”’ 
x  liquid phase mole fraction 
z global mole composition 
P  total pressure 
Pc  critical pressure 
T temperature  
Tc  critical temperature 
iRan  sample number in Rij  
iMax  maximum subdivision number 
iCov  maximum coverage number 
 
Greek Letters 

kν  coordinate of the midpoint of the “parent”
rectangle at “k” dimension 

F
kφ̂  fugacity coefficient of component “k” in

phase “F” in the mixture 
ijτ  subdivision parameter of rectangle “j” at 

the subdivision level “i” 
αm,n matrix of zero and one elements 
ω  acentric factor 
 
Subscripts 
 
0 pure component 
nc  number of components in the mixture and

nth components of the system 
 
Superscripts  
 
LSC subcooled liquid 
V vapor phase 
L liquid phase 
S solid phase 
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