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Abstract - This work contains a novel approach for the study of stability in fluidized systems. It includes the 

influence of solid particle kinetic energy variations, which are known as granular temperature. The stability 

is verified by the temporal evolution of bed fluid-dynamics properties (solid volumetric fraction, fluid

velocity, solid particles velocity) after small perturbations. The bed is stable when the amplitudes of

perturbations decrease with time. The work departs from the mass and momentum continuity equations for 

the solid and fluid phase, as proposed by Anderson and Jackson (1968). Those are complemented by an

equation describing the energy balance from the point of view of granular temperature. Then, a linear

approximation for the equations after the introduction of small magnitude perturbations is obtained. The

application of harmonic solutions allows arriving to the temporal description of the perturbations. Results

show the occurrence of instabilities on the direction transverse to gravity. This cannot be observed by

previous approaches (Anderson and Jackson, 1968, 1969; Homsy et al., 1980; Liu, 1982). The present work 

also suggests a new mechanism for the formation of bubbles in fluidized systems. The parametric influence 

of the model on the stability of fluidized systems is also verified.
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INTRODUCTION

The first works on mathematical modeling on
stability for fluidized systems appeared in the
sixties. Applying the continuum conservation
equations and linear stability analysis, Jackson
(1963) predicted instabilities in all situations, even 
when very small perturbations were imposed
to uniform fluidized beds. Afterward, Anderson
and Jackson (1968, 1969) refined the initial
modeling adding the solids stress tensor in the

momentum equations. Their results presented
qualitative agreement against experimental
verifications and allowed to estimate representative 
values for parameters such as solid pressure, solid 
viscosity and special interaction terms between
various phases. Using a more accurate data
acquisition system, Homsy et al (1980) developed
a similar work of the previously carried by
Anderson and Jackson (1969).

Subsequently, experiments by Didwania and

Homsy (1981) applied to larger beds, were able to
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clearly depict the instability dynamics. They verified

the formation of wavy structures after the growth and 

saturation of vertical instability amplitudes. In

addition, if larger fluid flow rates were imposed,

these geometric configurations were substituted by

the turbulent state followed by the formation of

bubbles.

Batchelor (1988) investigated the linear stability of

fluidized systems using a new formulation for the

conservation equations. Similarly to the results by

previous authors, the agreement with experiments

relied on estimation of parameters.

In order to clarify the complex dynamics of fluidized

systems, several works were developed using a non-

linear stability analysis of the conservation equations

for the phases (Liu, 1983; Needham and Merkin,

1986; Ganser and Drew, 1990; Goz, 1993; Anderson 

et al, 1995; Glasser et al, 1996). However, these

models failed to correctly predict the experimentally

observed changes in fluid dynamics.

This work presents a new approach to the study of 

the stability of fluidized systems. It includes the

kinetic energy variations of solid particles, known as

granular temperature.

CONSERVATION EQUATIONS

The classical approach for the theoretical

investigation of fluidization dynamics uses the two-

fluid model (Ishii, 1975). According to Anderson and 

Jackson (1967), that model leads to the following

forms for the mass and momentum conservation

equations:
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Equations (1) and (2) assume the incompressibility 

of the phases and no mass exchange between them.

The left sides of Equations (3) and (4) represent the

inertial forces on the fluid and solid phases,

respectively. The terms inside the first brackets at the 

right side of Eq. (4) represent the actions of the solid 

phase tensors. Excluding those and the last term,

which represents the gravitational action, the

remaining at the right side represent the interaction

with the fluid phase. Similar terms can be identified in 

the Equation 3 concerning the fluid phase.

THE GRANULAR TEMPERATURE

The concept of granular temperature was first

applied by a group of researches (Savage and Jeffrey,

1981; Haff, 1983, Jenkins and Richman, 1986) for

the modeling of flows where solid particles were

present. Its use for the study of the stability of

fluidized systems is relatively recent (Buyevich and

Kapbasov, 1994; Koch and Sangani, 1999,

Didwania, 1999; Didwania and Costa, 2000). The

idea of granular temperature follows an analogy

between the flow of particulate materials and the

molecules movement, as described by the gas kinetic

theory. It is defined by the kinetic energy associated

with the velocity fluctuations of the solid particles, or:
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In addition, using the previous analogy, it is

defined the following solid phase properties (Costa,

2002):
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Equation (8) represents the term of energy

dissipation according to the granular temperature

balance given by:
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Finally, applying and extension of the results

obtained by Koch (1990), the following expression is 

proposed for the source term:
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DIMENSIONLESS EQUATIONS AND 

LINEAR ANALYSIS

Using the particle diameter dp as characteristic

length and pgd  as characteristic velocity, it is

possible to write the above set of equations in

dimensionless form. 

Next, let be the dimensionless set perturbations

given by:
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Here, the functions 1 1 1 f1u , v ,  ,  pε  are supposed

to have low magnitude, if compared with the base

state functions. It should be noticed that all second

and higher order terms are neglected. Applying the

above perturbations into the dimensionless forms of

Equations (1) to (4), the following set of linear partial 

differential equations can be written:
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The stability is investigated defining harmonic
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perturbations given by 
*i k x t

1 1me
⋅ +σΨ = Ψ , where 

T
*

1m 1m f1m 1mII 1m 1mII 1m 1m,p ,u ,u , v ,v ,T⊥ ⊥⎡ ⎤Ψ = φ⎣ ⎦ (22)

The following matrix equation can be obtained by 

substituting Equation (22) into Equations (17) to (21):

( ) 1mL N 0− σ Ψ = (23)

The existence of non-trivial solutions can be

guaranteed if determinant of the term between

parentheses in Equation (23) is equal to zero. This leads 

to a fifth order polynomial in σ with roots given by:

0( , ,St,k, )σ = σ φ δ θ (24)

RESULTS

Figure 1 shows the behavior of the maximum

growth rate σrmax as function of Stokes number and

the wave propagation direction.

The previous figure indicates that maximum

values occur for waves propagating in the horizontal

direction, i.e., θ = 0
o
 and those values increase with

the Stokes number. The results also suggest stability

for waves propagating close to the vertical direction

for Stokes numbers between 10 and 10
4
.

Figure 2 shows those maximum values of

frequency σimax occur close to the vertical direction. It 

can be verified that frequency vanishes at the

horizontal direction, which indicates a non-oscillating

temporal characteristic. Additionally, it has been

shown that it increases with the Stokes number.

Figure 1: Maximum growth factor (φ = 0.5 and δ = 0.0001).

Figure 2: Frequency corresponding to the maximum growth factor (φ = 0.5 and δ = 0.0001).
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At a given instant, Figure 3 illustrates the surface

contour of an instability, which amplitude growth

factor at horizontal direction is larger than at vertical 

direction.  That figure suggests the possibility of

formation of bubble-like structures when the growth

factor in the horizontal direction differs from zero.

This agrees with the experimental observations by

Homsy et al (1980). A comparison with their

observations suggests that during the bubble

formation, a transition from the isothermal mode to

the non-isothermal mode takes place. The first mode

does not consider the granular temperature effects,

while the second does.

For the non-isothermal case, it was also verified

(Costa, 2002) that:

1) The effects of fluid and solid density ratio agree

with experimental evidences, which show greater

stability of liquid-fluidized systems if compared with

gas-fluidized ones.

2) A decrease for the coefficient n leads to increases 

on instabilities.

3) Decreases in minimum fluidization void fraction

leads to greater stability.

4) Decreased on particle thermal conductivity leads

to larger instabilities.

5) In agreement with the isothermal results by

Anderson e Jackson (1968), it has been shown that

the following factors contribute to bed stability:

6) Higher solid phase viscosity.

7) Higher derivatives of solid pressure against solid

fraction (or fraction of bed volume occupied by the

solid phase).

8) On the other hand, if the granular temperature is

introduced in the mathematical treatment, the

following effects have been verified:

9) Increases in the solid pressure, as well its

derivative against the granular temperature, improve

bed stability.

10)Increases in the net source term derivative against the 

granular temperature also improve bed stability.

Increases in the net source term derivative against 

the solid fraction decrease bed stability.

Figure 4 shows a comparison between the

theoretical results for the maximum wave number and 

the experiments by Homsy et al. (1980) in a solid-

liquid fluidized bed. It suggests that better agreement 

can be obtained by parameter adjusting. It should be

stressed the parsimony of valuable experimental

results in the literature for comparison with the

theoretical predictions.

Figure 3: Contour corresponding to the two-dimensional wave surface with growth factor in the 

horizontal direction twenty times greater than in the vertical direction (φ= 0.5, δ = 0.0001)
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Figure 4: Comparison between theoretical and experimental maximum

wave numbers (Homsy et al., 1980)

CONCLUSIONS

The introduction of granular temperature showed

that fluidized beds might become unstable if

disturbances are imposed at direction transverse to

gravity. This suggests a new explanation for the

secondary instabilities experimentally observed in

fluidized beds.

The present treatment can be further improved as

long more experimental observations regarding

instability propagation is available.
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NOMENCLATURE

C virtual mass coefficient (=0.5)

dp particle diameter [m]

g local gravity acceleration [m s
-2

]

g vector of gravity acceleration [m s
-2

]

i, j, k unit Cartesian vectors

I identity matrix

k wave number vector 

L matrix defined by (23)

N matrix defined by (23)

n exponent from the Richardson and Zaki equation

p pressure [N m
-2

]

St Stokes number

2 3
s p

2
f

d g
( )

ρ
=

µ
t time [s]

T granular temperature [m
2
 s

-2
]

u local average velocity vector for the fluid

phase [m s
-1

]

u0 interstitial velocity, related with the terminal

velocity by Richardson and Zaki (1954) 

equation ( )( )1n

0t 1v
−φ−= [m s

-1
]

v local average velocity vector for the solid 

phase [m s
-1

]

vt terminal velocity in the Stokes range

[m s
-1

]

x vertical coordinate [m]

x position vector [m]

y horizontal coordinate [m]

w velocity vector (= u - umf)

Greeks Letters

Γs source term [m
2
 s

-3
]

Γd dissipative term [m
2
 s

-3
]

φ solids volumetric fraction

ρ density [kg m
-3

]

ν s f/µ µ  ratio

δ f s/ρ ρ  ratio

µ dynamic viscosity [kg m
-1

 s
-1

]

β coefficient for the phases interaction 

parameters [kg m
-3

 s
-1

]

λ
f

κ
µ

 ration
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κ thermal conductivity [kg m
-1

 s
-1

]

σ complex parameter whose imaginary and

real  parts, σr and σi , defines respectively the

growth factor for amplitude and temporal

frequency.

θ angle with respect to the horizontal direction.

σrmax maximum value for the σr part in the

wave number domain

σimax respective imaginary σi part corresponding to

σrmax

Superscript

* dimensionless value

Subscript

II direction parallel to gravity

⊥ direction perpendicular to gravity

0 undisturbed state

1 disturbed state

m maximum packing condition

f fluid phase

mf minimum fluidization condition

s solid phase

φ derivative with respect to the solids fraction in 

the undisturbed state

T derivative with respect to the granular

temperature in the undisturbed state.
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