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Abstract - The dynamics of flash drums is simulated using a formulation adequate for phase modeling with 
equations of state (EOS). The energy and mass balances are written as differential equations for the internal 
energy and the number of moles of each species. The algebraic equations of the model, solved at each time 
step, are those of a flash with specified internal energy, volume and mole numbers (UVN flash). A new aspect 
of our dynamic simulations is the use of direct iterations in phase volumes (instead of pressure) for solving the 
algebraic equations. It was also found that an iterative procedure previously suggested in the literature for 
UVN flashes becomes unreliable close to phase boundaries and a new alternative is proposed. Another 
unusual aspect of this work is that the model expressions, including the physical properties and their 
analytical derivatives, were quickly implemented using computer algebra.  
Keywords: Dynamic simulation; Flash; Equation of state; Phase equilibrium; Hydrocarbons; Differential-
algebraic equations. 

 
 
 

INTRODUCTION 
 

Vessels can be the most hazardous pieces of 
equipment in a chemical plant and, therefore, 
knowledge of their dynamic behavior is important 
for proper design and operation (Driedger, 2000). 
Nevertheless, typical approaches for their dynamic 
simulation imbed simplifications such as ideal liquid 
and/or vapor phases and temperature-independent 
heat capacities, inappropriate for describing 
applications at high pressures that may require the 
use of equations of state (EOS) for more rigorous 
calculations. Recent formulations are shown in Table 
1, in which some features of this work are included 
for comparison. In most cases, a flash with specified 
values of internal energy, volume and mole numbers 
(UVN flash) is at the core of the calculations 

executed at each time step. Müller and Marquardt 
(1997) and Gopal and Biegler (1997) modeled the 
liquid phases in their examples using excess Gibbs 
free energy ( EG ) models, which, from the 
computational point of view, are much simpler than 
EOS. Furthermore, Gopal and Biegler (1997) assume 
perfect pressure control and specify the temperature 
trajectory in the drum, what results in a much 
simpler version of the dynamic flash problem. The 
articles of Saha and Carroll (1997) and Michelsen 
(1999) are based on UVN flash formulations that use 
nested-loops since pressure is an iteration variable. 
This has the disadvantage of requiring the solution of 
the EOS to obtain the molar volume of each phase in 
every iteration. An important suggestion made by 
Michelsen (1999), but not pursued in his work, was 
to investigate UVN flashes with direct iterations in 



 
 
 
 

278              F. M. Gonçalves, M. Castier and O. Q. F. Araújo 
 

 
Brazilian Journal of Chemical Engineering 

 
 
 

     

temperature, phase volumes and moles numbers of 
each component in each phase. This is the approach 
used herein.  

In this work, we simulate the dynamic behavior 
of storage tanks and flash drums. A new aspect of 
these dynamic simulations is the use of direct 
iterations in phase volumes (instead of pressure) for 
solving the algebraic equations. It was also found 

that an iterative procedure previously suggested in 
the literature for UVN flashes (Michelsen, 1999) 
becomes unreliable close to saturation points (e.g., 
bubble or dew points) and a new alternative is proposed. 
Another unusual aspect of this work is that all the model 
expressions, including the thermodynamic properties 
and their analytical derivatives, were quickly 
implemented using computer algebra. 

 
Table 1: Recent papers with formulations adequate for the dynamic flash problem 

 
Reference Thermodynamic 

non-ideality Comments (*) 

Saha and Carroll (1997) EOS Nested loops: T1 , Pln , and iKln  are iterated. 

Müller and Marquardt (1997) EG -model Few implementation details. 

Michelsen (1999) EOS 
Steady-state UVN flash: nested loops: Tln , Pln , and 

ijn  

are iterated. 

Gopal and Biegler (1997) EG -model 
Simplified problem: specified pressure and rate of 
temperature change. 

This work EOS T , jV , and ijn  are iterated. 

(*) Symbols used: ( T : temperature), ( P : pressure), ( iK : distribution coefficient of component i ), ( jV : volume of independent phase j ), 

(
ijn : mole number of component i  in independent phase j) 

 
 

FORMULATION 
 

We consider a drum with fs  input streams and 

ws  output streams. The drum volume ( V ) is 
constant and known. The energy and mass balance 
equations are: 
 

wf ss
f w
j k

j 1 k 1

dU H H Q
dt

• • •

= =

= − +∑ ∑          (1) 

 
wf ss

i
ij ik

j 1 k 1

dN f w
dt

• •

= =

= −∑ ∑    ci 1,...,n=      (2) 

 
 In these equations, t denotes time, U is the 
internal energy, and iN  is the number of moles of 
component i  in the tank. The molar flowrate of 
component i  and the enthalpy flowrate of input 
stream j  are denoted by ijf •  and f

jH •  , respectively. 

The symbols ikw•  and w
kH •  denote analogous values 

for output stream k . The heat load in the drum is 
denoted by Q•  and cn  is the number of components. 
Integration of the ( )cn 1+  differential equations (1) 
and (2) gives the evolution of U  and N . Therefore, 

U , V , and N  are known at any time step. Even 
though the algebraic and differential equations can 
be uncoupled in some cases, for generality, they are 
numerically integrated in our procedure. 

We assume thermodynamic equilibrium in the 
drum at any time and that the intensive properties of 
the output streams are equal to those of the phase in 
the drum from which they are withdrawn. For 
specified UVN  values, equilibrium can be 
calculated by maximizing the entropy, but this is 
cumbersome since most EOS in practical use have 
the form ( )P P T,V, N= . We followed Michelsen 
(1999), using a function FQ  given by: 
 

F
A UQ

RT

∗−
=                      (3) 

 

where A  is the Helmholtz free energy, U∗ is the 
specified internal energy (the value of U at a given 
time), and R  is the universal gas constant. In the 
case of vapor-liquid flash problems, Michelsen 
suggested the differentiation of FQ  with respect to 
the number of moles of each component in one of the 
phases and to the logarithms of temperature and of 
one of the phase volumes (e.g., the vapor phase), 
Using these derivatives, we observed that 
convergence of the UVN flash was very difficult or 
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could not be achieved when the amount of one of the 
phases was small (i.e., close to saturation points, 
such as bubble or dew points). One of the new 
findings of this work is the elimination of this 
difficulty by using derivatives with respect to 
temperature and phase volumes. Therefore, for a 
system containing pn  phases, we used the following 
set of algebraic equations constituted by derivatives 
of FQ : 

pn

k
F k 1

2
V,n

U U
Q 0
T RT

∗

=

−
∂  = = ∂ 

∑
         (4) 

 

m k,K

F K k
T,Vk
n

Q P P 0
V RT≠

 ∂ −
= = ∂ 

    

(5) 
pk 1,...,n=  k K≠    

 

km,k i,m j,J

ij iJF

T,Vij
n

Q 0
N RT

≠ ≠

  µ −µ∂
= =  ∂ 

   

(6) 
ci 1,...,n=  pj 1,...,n=  j J≠   

 
where kU  and kP  are the internal energy and 
pressure in phase k ; ijµ  is the chemical potential of 
component i  in phase j , and J  denotes the phase in 
which the largest amount of component i  is located. 
The problem was formulated assuming that the 
volume of one of the phases (phase K) is a dependent 
variable, calculated from the volume conservation 
equation. For numerical convenience, the largest 
phase volume at each iteration was assumed to be a 
dependent variable. Similarly, the largest number of 
moles in a phase for each component was assumed to 
be a dependent variable.  

Equations 4-6 represent a set of 

( )( )p c pn n n 1+ −  nonlinear algebraic equations. In 

the case of a single-phase system, the set reduces 
to Eq. (4). One of the advantages of this 
formulation is that the Jacobian matrix of the set 
of equations is the Hessian matrix of FQ ; 
therefore, this matrix is symmetrical and only 

( )( ) ( )( )p c p p c pn n n 1 n 1 n n 1

2

+ − ∗ + + −
 of its terms 

need to be evaluated. The full Newton-Raphson step 

at each iteration is obtained by solving the set of 
linear equations: 
 

T T
TT TV TN T

VT VV VN V

NNT NV NN

r r r T r
r r r V r

N rr r r

   ∆       ⋅ ∆ = −       ∆        

            (7) 

 
where V∆  and N∆  are vectors containing the 
independent volumes and component mole numbers 
arranged in a convenient order. The full Newton-
Raphson step occasionally leads to non-physical 
values such as negative volumes or mole numbers. In 
this case, the step size was reduced but the search 
direction was preserved. The analytical derivatives 
needed to compute the Jacobian matrix are presented 
by Gonçalves (2001). 

Two different computational implementations 
were tested for solving the model equations and 
provided the same results. The solver ode15s 
available in MATLAB was initially used for solving 
the resulting non-linear DAE system. In our 
preliminary tests, however, this procedure failed and 
reported DAE index larger than one, a point we are 
investigating further. Our approach was then to use 
the solver ability to handle stiff systems while 
declining to use its DAE solving capability. In the 
second implementation, the differential equations of 
the model (Eqs. (1) and (2)) were integrated using 
the Bulirsch-Stoer algorithm as implemented by 
Press et al. (1992). The initial step size was set equal 
to 1/1000 of the total time span. The maximum rate 
of increase in time step between consecutive steps 
was set equal to 1/0.999. It should be remarked that 
the formulation is general and other integration 
methods can be used. 

For the calculation of the physical properties of 
the input streams, which may vary in time and 
contain one or more phases, a TPN flash procedure 
(Michelsen, 1982b) was used. The solution of a TVN 
flash (Espósito et al., 2000) provides the initial drum 
condition. The algebraic UVN flash equations 
usually converged in one to three iterations, except 
close to saturation points, where four to eight 
iterations were typically required. A given phase j  

was removed whenever VVj  or ∑∑
==

cc n

1i
i

n

1i
ij NN  

was smaller than 10-6. In this case, the amount of the 
removed phase was added to the other phase and the 
algebraic equations were changed accordingly. 
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For determining whether a new phase should be 
added to the system, the global stability (Michelsen, 
1982a) test was used. The mole fractions and molar 
volume of the incipient phase in the global minimum 
of the stability function were used as initial estimates 
for the composition of the new phase in the drum. 
The new phase was initialized with 310− % of the 
total number of moles present in the drum. 

The solution of the UVN flash corresponds to a 
saddle point of the FQ -function. Similarly to 
previous results reported in the literature (Michelsen, 
1987), we had difficulties to converge three-phase 
problems using a saddle-point formulation. We are 
currently investigating the numerical behavior of the 
UVN flash formulated as a minimization problem, 
by adding a penalty term to the FQ -function that 
depends on the squared deviation between the 
calculated and specified values of the internal 
energy. 

Physical properties were computed using the 
Peng-Robinson (1976) EOS with the one-fluid van 
der Waals mixing rules. Pure component properties 
were taken from Reid et al. (1987). Binary 
interaction parameters were set equal to 0 (zero). 
Several properties are necessary for solving the UVN 
flash: internal energy, pressure, chemical potential 
(or the logarithm of the fugacity) of each component, 
and their derivatives with respect to temperature, 
volume and mole numbers. It should be noted that 
derivatives at constant phase volumes are not usually 
available, in direct form, in standard physical 
property packages. All the necessary expressions 
were quickly obtained and implemented using the 
Thermath computer algebra package (Castier, 1999). 
Even though these physical properties and their 
derivatives all have real values, intermediate 
variables may have complex values, as consequence  

of the direct iterations on temperature, volumes 
(instead of pressure), and mole numbers, and 
because the intermediate variables are automatically 
defined by the computer algebra package. For this 
reason, complex arithmetic was used to calculate 
these intermediate variables.  
 
 

RESULTS 
 

The examples illustrate several types of 
specifications, such as pure components or mixtures, 
and closed or open systems (only with input or 
output streams, or with both). In some of the 
examples, the number of phases (one or two) 
remains constant throughout the simulation. In 
others, there is appearance or disappearance of a 
phase, or both.  
 
Example 1 
 

In this example, a new phase appears during the 
simulation. We consider a tank with a volume of 30 
m3 being filled with pure methane. We solve two 
problems, 1a and 1b, whose specifications are in 
Table 2. In both cases, the specified heat load 
corresponds to a heat removal whose rate is time-
dependent. Figures 1 and 2 show the evolution of 
temperature and fluid pressure in the tank in problem 
1a. With this set of specifications, there is no 
condensation of methane in the tank. Figures 3 and 4 
present the evolution of the same two variables in 
problem 1b, showing that both variables pass 
through a maximum and then decrease after the 
beginning of heat removal from the tank. At 
approximately 829 min, there is the onset of a second 
phase in the tank, what appears in Figs. 3 and 4 as 
sudden changes in slope. 

 
Table 2: Specifications for example 1. 

 
Problem 1a 1b 

Simulation time interval (min) [0, 1000] [0, 1000] 
Initial tank temperature (K) 298.15 298.15 
Initial mass in the tank (kgmol) 0.9227 0.9227 
Initial density (kg/m3) 0.5 0.5 
Input stream flowrate (kgmol/min) 0.001 0.01 
Input stream temperature (K) 298.15 298.15 
Input stream pressure (MPa) 2.0 2.0 
Input stream time interval (min) [0, 1000] [0, 1000] 
Heat load (kJ/min) ( )0.01 t 500− −  ( )t 500− −  

Heat load time interval (min) [500, 1000] [500, 1000] 
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Figure 1: Temperature evolution in the filling of a  

tank with methane. Example 1a:  
specifications in Table 2). 

Figure 2: Pressure evolution in the filling of a tank  
with methane. (Example 1a:  
specifications in Table 2). 
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Figure 3: Temperature evolution in the filling of a  

tank with methane. (Example 1b:  
specifications in Table 2). 

Figure 4: Pressure evolution in the filling of a  
tank with methane. (Example 1b:  

specifications in Table 2). 
 
 
 

Example 2 
  

In this example, a phase disappears during the 
simulation. We consider a mixture of ethane(1) + 
propene(2) + propane(3) + isobutane(4) + n-
butane(5) + n-pentane(6) whose composition is in 
the range of liquefied petroleum gases (LPG). At 
the initial condition, presented in Table 3, there 
are a liquid and a vapor phase in the drum. A 
vapor stream is continuously withdrawn from the 
drum and a constant heat load is provided to 

prevent a large temperature decrease. The problem 
specification is in Table 4. Figures 5 and 6 show 
the evolution of temperature and pressure in the 
drum. Figure 6 is especially interesting because it 
shows that the pressure goes through a maximum 
in the two-phase region at approximately 220 min. 
The moment when the liquid phase disappears 
from the drum, at approximately 439 min, is a 
local minimum in pressure with a small cusp, and 
there is a second maximum in pressure, at 
approximately 500 min. 
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Table 3: Initial conditions for examples 2, 3, and 4. 
ethane(1)+propene(2)+propane(3)+iso-butane(4)+n-butane(5)+n-pentane(6) 

 
Tank volume (m3) 4.4232 
Initial tank temperature (K) 298.15 
Initial mass in the tank (kgmol) 1.0 
Initial mole fractions 0.0108; 0.3608; 0.1465; 0.233; 0.233, 0.0159 

 
 

Table 4: Specifications for example 2. 
 

Simulation time interval (min) [0, 1000] 
Output stream flowrate (kgmol/min) 0.0002 
Output stream time interval (min) [0, 1000] 
Output stream phase vapor 
Heat load (kJ/min) 4.0 
Heat load time interval (min) [0, 1000] 
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Figure 5: Temperature evolution in the LPG tank  

(Example 2: specifications in Tables 3 and 4). 
Figure 6: Pressure evolution in the LPG tank (Example 2: 

specifications in Tables 3 and 4). The pressure scale is 
broken for better visualization of the high-pressure region.

 
 
Example 3 
  

We use the same mixture and initial conditions of 
Example 2, shown in Table 3. In this case, however, 
there is one input stream and two output streams, 
corresponding to the withdrawal of the liquid and the 
vapor phases. The problem specification is presented 
in Table 5. Given that the flowrate of the output 
streams is smaller than that of the input stream, 
material accumulates in the drum. Examining the 
output specifications, the flowrate of the liquid

output is smaller than that of the vapor output. For 
this reason, the heavier components accumulate at a 
faster rate, as can be observed in Figure 7. The 
temperature (Fig. 8) passes through a maximum 
very close to the beginning of the simulation time 
and then through a minimum at approximately 70 
min. The pressure (Fig. 9) passes through a 
minimum at approximately 24 min. In this problem, 
there is no need for phase addition or removal 
because there are two phases in drum throughout 
the simulation time. 
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Table 5: Specifications for example 3. 
ethane(1)+propene(2)+propane(3)+iso-butane(4)+n-butane(5)+n-pentane(6) 

 
Simulation time interval (min) [0, 250] 
Input stream flowrate (kgmol/min) 0.120 
Input stream temperature (K) 300 
Input stream pressure (MPa) 0.6 
Input stream mole fractions 0.1667; 0.1667; 0.1667; 0.1667; 0.1667; 0.1667; 
Vapor output stream flowrate (kgmol/min) 0.060 
Liquid output stream flowrate (kgmol/min) 0.040 
Heat load (kJ/min) 0.0 
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Figure 7:  Evolution of the number of mols in the drum 
of example 3: specifications in Tables 3 and 5. 

Figure 8: Temperature evolution in the drum of 
example 3: specifications in Tables 3 and 5. 
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Figure 9: Pressure evolution in the drum of example 3:  

specifications in Tables 3 and 5. 
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Example 4 
 

In this example, we again use the mixture and 
initial conditions of Example 2, presented in Table 3. 
In this example, the tank is closed, but there is a heat 
load that varies with time according to: 
 

( )Q sin 0.01t• =    
(8) 

(t in min and Q in kJ/min)    
 

The system was simulated between 0 min and 
400π=1256.64 min, corresponding to two complete 
disturbance cycles. At the initial condition, there are 
a liquid and a vapor phase in the drum. Figure 10 
shows the evolution of the vapor phase volume. 
Where a horizontal line represents this volume, there 
is only the vapor phase in drum. In Figure 11, we 
show the behavior of the mole fraction of two of the 

components, propane and n-pentane, in the liquid 
phase. Their mole fraction evolutions have opposite 
patterns because propane is one the lighter components 
while n-pentane is the heaviest component in the 
mixture. The interruptions in the lines correspond to the 
time intervals when there is no liquid phase in the 
drum. In Figure 12, we show the temperature evolution, 
in which the discontinuities in the derivative of the 
temperature with respect to time occur at the points of 
phase appearance or disappearance. The pressure in the 
system oscillates between 0.4633 and 0.5155 MPa. 
This example shows a situation in which there are both 
phase appearance and disappearance in a single 
simulation. Given the specified disturbance, which is 
periodic, it should be expected that the system returned 
to the initial condition after each complete cycle, which 
lasts 200π min. This was indeed observed for all 
variables, showing the consistency of the calculated 
results. 
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Figure 10:  Evolution of the vapor phase volume in the tank of example 4. 
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Figure 11:  Evolution of the liquid phase mole fraction in the tank of example 4. 
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Figure 12:  Temperature evolution in the tank of example 4. 

 
 

CONCLUSIONS 
 

The dynamic behavior of flash drums was 
simulated using a formulation adequate for phase 
modeling with equations of state (EOS). A new 
aspect of our dynamic simulations is the use of direct 
iterations in phase volumes (instead of pressure) for 
solving the algebraic equations, what has the 
advantage of avoiding the need for nested loops. It 
was also observed that an iterative procedure for the 
UVN flash problem, suggested in the literature, 
based on the use of logarithms of temperature and 
phase volumes becomes unreliable close to phase 
boundaries. We advocate the use of temperature and 
phase volumes as iterated variables because of the 
better convergence behavior. 
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NOMENCLATURE 

 
Latin Letters 
 
A  Helmholtz free energy (-)

ijf  molar flowrate of j

component i in input stream 
•f

jH  enthalpy flowrate of input 
stream  

j

•w
kH  enthalpy flowrate of output 

stream  
k

iK  distribution coefficient of 
component  

i

cn  number of components (-)

ijN  number of moles of 
component i  in phase  

j

iN  number of moles of 
component i  in the drum 

(-)

pn  number of phases (-)

P  pressure (-)
•Q  heat load (-)

FQ  flash function (-)
R  universal gas constant (-)

fs  number of input streams (-)

ws  number of output streams (-)
t  time (-)
T  temperature (-)
U  internal energy (-)
V  drum volume (-)

ikw  molar flowrate of component 
i  in output stream  

k

 
Greek Letter 
 

ijµ  chemical potential of 
component i  in phase  

j
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