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Abstract - The UNIQUAC model for the excess Gibbs energy is modified using chemical theory to account 
for chain-like association occurring in self-associating compounds such as alcohols. The equation considers 
the alcohol to be a mixture of clusters in chemical equilibrium. The UNIQUAC equation is used to model the 
behavior of the mixture of clusters, with size and surface parameters related to the number of alcohol 
molecules involved in their formation. The values of association enthalpy and entropy were obtained through 
fitting vapor pressure data. The model is used to correlate phase behavior of alcohol-hydrocarbon mixtures at 
low pressures, presenting excellent results in bubble point calculations. A further extension was made to allow 
for cross-association, the formation of a hydrogen bond between the molecules of an alcohol and an active 
solute. This extension was used to model alcohol-aromatic mixtures with equally good results. 
Keywords: Model; Excess Gibbs energy; Vapor-liquid equilibria; Alcohol; Hydrocarbon. 

 
 
 

INTRODUCTION 
  

The fact that mixtures containing self-associating 
compounds show strong deviations from ideal 
behavior has long been recognized. The first 
important attempt to account for it in thermodynamic 
modeling was made by Kretschmer and Wiebe 
(1954), who regarded an alcohol as a mixture of 
linear clusters in chemical equilibrium. The 
deviation from ideal behavior in a mixture of these 
clusters and an inert compound was obtained using 
only the combinatorial part of the Flory-Huggins 
model. 
 The main assumption of Kretschmer and Wiebe is 

that the Gibbs energy of the general reaction: 
 

i 1A A+ i 1A +                          (1) 
 
is independent of i when occurring between isolated 
molecules. Furthermore, the volume of an oligomer 
is considered to be proportional to the number of 
monomer segments. This assumption, along with the 
Flory-Huggins equation for the Gibbs energy of 
mixing, leads to the expression: 
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in which ϕ is the volume fraction and K is the 
equilibrium constant. After some rearrangements, 
one can relate the ratio: 
 

i 1

i 1

AC
i 1

A A

c
K

c c
+

+ =               (3) 

 
to K through the expression: 
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wherein 

1AV  represents the volume of the monomer 

and c is the concentration in amount of substance per 
volume. The dependence of Ki+1 on i, due to the 
diferences in oligomer volumes accounted for when 
the standard state is changed to the pure liquid, 
results in C

i 1K +  not depending on i. 
 When aromatic hydrocarbons are present, a cross-
association or solvation reaction (between a 
hydrocarbon molecule and a molecule of any cluster) 
was considered to occur by Kretschmer and Wiebe 
(1954). The chemical equilibrium was then 
calculated using some mathematical simplification 
involving the arbitrary definition of the solvation 
equilibrium constant as a ratio of concentrations 
similar to KC. 
 Renon and Prausnitz (1967) obtained almost the 
same expressions as Kretschmer and Wiebe (1954) 
through a more rigorous derivation; they, however, 
did not address the problem of cross-association. 
Nagata and Kawamura (1977) presented a modified 
UNIQUAC equation, based on the same assumptions 
of Kretschmer and Wiebe. In their work, the ratio of 
volume fractions: 
 

i 1

i 1

A

A A

i
K

i 1
+ϕ ϕ

=
ϕ ϕ +

                     (5) 

 
was used to calculate the chemical equilibrium 
among clusters and was considered to be 
independent of concentration and cluster size. The 
authors also presented another model based on the 
Kempter and Mecke (1940) equilibrium constant. 
Nagata (1985) extended that model in order to tackle 
mixtures containing any number of alcohols and 
mixtures of an alcohol and an active compound (i. e, 
a compound that can undergo solvation). 
 Nath and Bender (1981a) proposed to use the 
normal boiling point temperature and the enthalpy of 

vaporization to obtain the value of the equilibrium 
constants. They recognized that the determination of 
equilibrium constants through experimental phase 
equilibrium and excess enthalpy data, as done 
hitherto, was inconvenient due to the necessary 
introduction of mixture data in the calculation of a 
property of a pure substance. The authors 
subsequently extended the proposed model to 
mixtures of one alcohol and inert compounds (Nath 
and Bender, 1981b) and to mixtures of any number 
of alcohols and inert compounds (Nath and Bender, 
1983). It is worth noting that the authors used 
equation (5) for the equilibrium constant. 
 Brandani (1983) and Brandani and Evangelista 
(1984) published important papers on this subject. 
The authors did not define an equilibrium constant, 
as done in most previous studies, but instead used the 
UNIQUAC equation to obtain this equilibrium 
constant. In other words, they began with Flory’s 
(1942) reference state (pure substance whose 
molecules are oriented in a crystalline arrangement) 
and then, through a series of steps, obtained an 
expression for the equilibrium constant, whose 
parameters (enthalpy and entropy of association) 
were found by fitting vapor pressure data; the gas 
phase was modeled using a truncated virial equation 
of state. Brandani and Evangelista (1984) replaced 
the crystalline state by the pure liquid as the 
reference state, in order to maintain consistency with 
the UNIQUAC model. 
 Recently, the Statistical Associated-Fluid Theory 
(SAFT) has found extensive application in the 
development of models for mixtures containing 
associating compounds (either for excess Gibbs 
energy or for volumetric equations of state): for 
instance, one can mention Fu et al. (1995), 
Mengarelli et al. (1999) and Chen et al. (2004), 
among others. Nevertheless, chemical theory is still 
an appealing theory, presenting ramifications such as 
the widely used ERAS model, conceived by Heintz 
et al. (1986), and the continuous thermodynamic 
equation of state develped by Browarzik (2004). 
 A theoretical aspect, viz. the fact that often the 
chemical equilibrium is calculated independently of 
the excess Gibbs energy model, justifies further work 
in this field. Strictly, the chemical equilibrium 
constant is related to the ratio of activities, which are 
calculated using an excess Gibbs energy equation. 
Other similar ratios, as the ratio of concentrations or 
volume fractions, are true equilibrium constants only 
in some special cases, i. e, when certain excess Gibbs 
energy models are applied. As Hofman (1990) 
pointed out, the thermodynamics of association 
depends on the thermodynamics of the 
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multicomponent system, and the expression for the 
equilibrium constant is defined beforehand by the 
excess Gibbs energy model. This kind of discrepancy 
occurs mostly when cross-association reactions are 
considered – cf. Kretschmer and Wiebe (1954), Nath 
and Bender (1983) and Brandani and Evangelista 
(1984) – in which the solvation equilibrium is 
calculated by a ratio similar to that obtained for the 
self-association equilibrium constant. 
 The purpose of this work is to present a 
modification of the model by Brandani and 
Evangelista (1984). It consists of two parts: the 
model is altered by adopting ideas of Kretschmer and 
Wiebe (1954), and some assumptions from a 
previous development of an equation of state for 
self-association compounds (Pessoa Filho and 
Mohamed, 1999) are incorporated. No expression for 
the equilibrium constant is postulated ad hoc, in 
opposition to the way it is usually done in literature: 
the model herein developed uses the same 
UNIQUAC equation to calculate both the chemical 
equilibrium among the clusters and phase 
equilibrium. The extension of the model thus 
developed to cross-associating mixtures follows the 
ideas presented by Asprion et al. (2003). The model 
developed results in alternative expressions that 
provide good correlation of phase equilibrium in 
solutions involving self-association and solvation. 
 
 

THEORETICAL DEVELOPMENT 
  

When describing a mixture of an associating 
compound and some inert compounds, two different 
procedures are distinguished. One procedure neglects 
any association / solvation. The mixture consists of 
N components (e.g. A, D, ...). Its properties are 
designated by superscript (x), and the composition is 
characterized by stoichiometric amount fractions xi, 
e.g. xA, xD, etc., whose sum equals one. The other 
procedure takes association / solvation into account. 
The mixture then consists of Nz > N species (e.g. A1, 
A2, A3, ..., Ai+1, ..., D, ...), where A1, A2, A3 represent 
monomers, dimers and trimers of component A and 
D is an inert, i.e. non-associating component). The 
properties are designated by superscript (z), but the 
composition is characterized by microscopic amount 
fractions zi, e.g. 

1 2 3A A A Dz ,z , z , ..., z ,...etc., whose 
sum also equals one. 
 
Self-Association Model 
  

The development is based on a series of 
hypotheses concerning the occurrence of self-

association and its relationship with the 
thermodynamic model. At first a mixture of a self-
associating compound (A) and an inert one (D) is 
considered. 
 Based on stoichometric amount fractions, one 
obtains the following expressions for the chemical 
potential and the activity coefficient (normalized 
according to the Lewis and Randall rule) for 
component A: 
 

(x)
A A pure liquidA

(x)
A A

(T,p,x ) (T, p)

RT ln ( x )

µ = µ +

+ γ
        (6) 

 
wherein xA is the stoichometric amount fraction of 
component A, calculated through: 
 

(x)
A

A (x) (x)
DA

n
x

n n
=

+

%
% %             (7) 

 

and (x)
An%  and (x)

Dn%  being the stoichiometric amount 
of components A and D, respectively. Analogous 
expressions hold for the inert component D. 
 
§ Hypothesis 1. The self-associating fluid is a 

mixture of clusters in chemical equilibrium 
according to equation (1) for i ≥ 1. 
 
The binary mixture of components A and D is 

therefore considered to be a multicomponent mixture 
of species, i.e. associates A1, A2, A3, A4, ... and the 
inert substance D. Based on microscopic amount 
fractions one gets for the chemical potential and the 
activity coefficient (normalized according to Lewis 
and Randall rule) for any species i: 
 

(z)
j i pure liquidi

(z)
i i

(T,p,z ) (T,p)

RT ln ( z )

µ = µ +

+ γ
        (8) 

 
where i stands for all species and zi is the 
microscopic amount fraction of species i (i.e. A1, A2, 
... or D): 
 

(z)
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i (z)
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 The relative values of the equilibrium constants 
will be the subject of another hypothesis. The second 
hypothesis is concerned with the use of the 
UNIQUAC equation and its parameters. 
 
§ Hypothesis 2. The non-ideal behavior of the liquid 

phase is described by the UNIQUAC excess Gibbs 
energy model. 

 
 The activity coefficient of a substance (either 
component or species) i in a multicomponent 
mixture from the UNIQUAC equation is: 
 

i i i
i i i j j

i i i j

j ij
i j ji i i

k kjj j
k

z
ln ln q ln l y l

y 2 y

q ln q q

   ϕ θ ϕ
γ = + + − −   ϕ   

θ τ
− θ τ + −

θ τ

∑

∑ ∑∑

%

  (11) 

 
with 
 

j j j j
z

l (r q ) (r 1)
2

= − − −
%

         (12) 

 

ji
ij

a
exp ( )

T
τ = −           (13) 

 
 For the sake of simplicity, equation (11) is written 
without superscripts (either (x) or (z)) and with 
amount fraction yi (instead of either xi or zi). z%  is the 
number of nearest neighbors in the lattice (in this 
work, as usual, z%  = 10). 

The volume and surface parameters of a species 
(associate) Ai are given by: 
 

=
iA Ar i r              (14) 

 
=

iA Aq i q                                           (15) 

 
where superscripts (x) and (z) have been omitted for 
the sake of simplicity. The binary parameters of the 
UNIQUAC model for interactions between 
interaction sites on an oligomer Ai and on an inert 
species D are assumed to be independent of the 
oligomer size: 
 

=
iA , D A, Da a             (16) 

 
=

iD, A D, Aa a                                  (17) 

The UNIQUAC parameters related to interactions 
between sites of any two oligomers Ai and Aj are null: 
 

= =
j i i jA , A A , Aa a 0           (18) 

  
Expressions for the mixture terms present in the 

UNIQUAC equation can now be developed. As 
association / solvation results in a reduction of the 
total amount of substance, a parameter ξ is defined to 
describe that reduction. ξ is the ratio of (x)

totn% , the 

macroscopic amount of substance, and (z)
totn% , the 

microscopic amount of substance: 
 

(x)
tot
(z)
tot

 n

n
ξ =

%
%              (19) 

 
which leads to: 
 

j
D

D A
Dj 1

z
z j z

x

∞

=

ξ = + =∑         (20) 

  

An average size parameter (z)
averr  using the 

microscopic amount fractions zi is defined: 
 

j
(z)
aver i i D D A A

i j 1

r z r z r r j z
∞

=

= = +∑ ∑     (21) 

 

as well as an average size parameter (x)
averr using 

stoichometric amount fractions (i.e. amount fractions 
xA and xD of components A and D): 
 

(x)
aver i i D D A A

i

r x r x r x r= = +∑          (22) 

  
Combining equation (20) with equations (21) and 

(22) results in: 
 

(z)
aver
(x)
aver

 r

r
ξ =              (23) 

  

The microscopic volume fractions 
j

(z)
Aϕ  and (z)

Dϕ of 

a species (oligomer) Aj and of the inert species, 
respectively, in the mixture are: 
 

j j j

j

A A A(z)
AA (z)

aver
i i

z r z
jr

r
z r

ϕ = =

∑
                              (24) 

and: 
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(z) D
DD (z)

aver

z
r

r
ϕ =                 (25) 

 
 The volume fractions of the components A and D 
from the overall amount fractions xA and xD 

( (x)
Aϕ and (x)

Dϕ ) are expressed similarly: 
 

(x)
Aϕ  = A

A (x)
aver

x
r

r
            (26) 

 
(x)
Dϕ  = D

D (x)
aver

x
r

r
                             (27) 

 
 It can be noticed that the volume fraction of D is 
independent of the consideration or neglect of 
association. One can also express the volume 
fraction of component A on stoichometric amount 

fraction scale (x)
Aϕ  through the volume fractions of 

the oligomers on microscopic amount fraction scale: 
 

(x)
Aϕ  = 

j

(z)
A

j 1

∞

=

ϕ∑                (28) 

 
 Analogous expressions for averaged surface 
parameters and surface fracions can be obtained in 
exactly the same way.  
 Applying equation (11) to describe the activity 
coefficient of species i (i.e. on microscopic amount 
fraction basis) gives: 
 

(z) (z)
(z) i i

ii (z)
i i

(z)
i

i j j
i j

(z)
i , jj(z)

i j,i i ij (z)
k, jkj j

k

z
ln ln q ln

z 2

l z l
z

q ln q q

   ϕ θ
γ = + +      ϕ   

ϕ
+ −

θ τ
− θ τ + −

θ τ

∑

∑ ∑∑

%

        (29) 

 
 The denominator of the last term on the right 
hand side of this equation is: 
 

(z) (z) (x) (x)
k, j A , j D , jDAj k

k

S = θ τ = θ τ + θ τ∑    (30) 

 

 As, from equations (16) to (18), 
i jA ,A 1τ = , 

jD,A D,Aτ = τ  and 
jA ,D A,Dτ = τ , for an oligomer j ≡ Ai 

one gets: 
 

i

(z)
AS = (x) (x)

D, ADAθ + θ τ         (31) 
 
which does not depend on the number of monomer 
units in Ai, being henceforth refered to as SA. For the 
species D, a similar procedure gives: 
 

(z)
DS  = (x) (x)

A, D DAθ τ + θ  = SD      (32) 
 

 The sum j j
j

z l∑  apeearing in equation (29) can 

be rearranged to: 
 

j j
j

z l∑ = ( )(z) (z) (z)
aver aver aver

z
1 r q r

2
+ − −

%
         (33) 

 
 Inserting this equation as well as equation (12) 
for li, and introducing ξ from equation (23) and its 
analogous for the surface parameters into equation 
(29) results in the activity coefficient for the 
associating species: 
 

i

(z) A A
A (x) (x)

aver aver

(x) (x)
A aver A aver

A (x) (x)
A aver A aver

(x)(x)
A DDA

A A
A D

r r
ln 1 i ln i

r r

q r r qz
iq ln 1

2 r q q r

iq 1 lnS
S S

 
γ = − + +  ξ ξ 

  
  + − + +

    

 θ τθ
 + − − −
 
 

%         (34) 

 
 In a very similar procedure the final expression 

for the activity coefficient (z)
Dγ of the inert species is: 

 

(z) D D
D (x) (x)

aver aver

(x) (x)
D aver D aver

D (x) (x)
D aver D aver

(x) (x)
A D

D D DA
A D

r r
ln 1 ln

r r

q r r qz
q ln 1

2 r q q r

q 1 lnS
S S

 
γ = − + +  ξ ξ 

  
+ − + +      
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 The third hypothesis is concerned with the 
relative value of the chemical equilibrium constants. 
 
§ Hypothesis 3. Following Kretschmer and Wiebe 

(1954), it is assumed that the chemical reaction (1) 
is accompanied by a Gibbs energy change that is 
independent of i when ocurring between isolated 
molecules. 

 
 According to the definition of equilibrium 
constant: 
 

i 1 i 1 i 1
i 1

G H S
ln K

RT RT R
+ + +

+
∆ ∆ ∆

= − = − +      (36) 

 
wherein Ki+1 is the equilibrium constant for the 
formation of species Ai+1 according to equation (1) 
and the changes in Gibbs energy, enthalpy and 
entropy are related to the reaction occurring between 
pure liquid species. In order to analyze the 
dependency of Ki+1 on i, one must consider that, 
when the standard state is changed to the pure liquid 
species, there is an aditional entropy change due to 
differences in volumes per amount of substance. 
Since the volume of the oligomer is considered to be 
proportional to the number of monomers, one can 
write after Kretschmer and Wiebe (1954): 
 

0
i 1G G i 1

ln
RT RT i
+∆ ∆ +

= −            (37) 

 
wherein ∆G0 does not depend on i. This expression 
leads to the following dependency of the equilibrium 
constant: 
 

i 1
i 1

ln K ln K ln
i+
+ = +  

 
                 (38) 

 
 From equation (34), one recognizes that the 
activity of an oligomer Ai can be written as: 
 

( )i i i

i

(z)
A A A

A
A A D(x)

aver

ln ln z 1

r
ln iz ig(x ,x , )

r

α = γ = +

 
+ + ξ  ξ 

              (39) 

 
in which g is a function that does not depend on i. As 
the thermodynamic chemical equilibrium constant is: 
 

i 1

i 1

A
i 1

A A
K +

+
α

=
α α

            (40) 

one gets: 
 

i 1

i 1

(x)
A aver

A A A

z r
1 ln K ln

z z r
+

 ξ
+ =   

 
        (41) 

 
 Setting ( )eK exp 1 ln K= +  results in: 
 

i 1
i 1

A A A
A e (x)

aver

z z r
z K

r+
=

ξ
          (42) 

 
 Equation (42) is a recursion formula that allows 
for the calculation of the amount fractions of the 
species Ai from the monomer amount fraction. Thus, 
only 

1Az  and ξ remain in fact to be determined. 

 There are two independent equations relating the 
two unknown variables: the definition of ξ, equation 
(19) and the sum of all amount fractions, equation 
(10). Details on the mathematic solution of the 
problem are presented in appendix A; the final 
expressions are: 
 

1

2

A D
A

1
z x

x
 ξ

= − ξ 
                           (43) 

 
and: 
 

A
D1

2
A A

e
A A D D

2x1
x

x r
1 1 4 K

x r x r

= +
ξ   

+ +  +  

       (44) 

 
 The value of zD, which is necessary to calculate 
the activity of the inert compound, is obtained from 
equation (20). The model expressed by the set of 
equations (34), (35), (43) and (44) is referred to 
hereafter as the A-UNIQUAC model. 
 
Cross-Association: Concepts and Equations 
  

There are two ways to consider a chemical 
equilibrium between an active compound (e. g. an 
aromatic hydrocarbon) and an associating compound 
(e. g., an alcohol). One way is to consider that the 
hydrocarbon molecule may bond to any cluster 
regardless of its size – cf. Kretschmer and Wiebe 
(1954) and Nagata (1985). The other approach 
considers that the hydrocarbon molecule bonds only 
to a single cluster of solvent molecules, as in the 
treatment presented by Asprion et al. (2003) and, by 
analogy, Yu et al. (1993). The first approach 
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introduces some mathematical difficulties which 
stand in the way of a rigorous solution of chemical 
equilibrium. The second is mathematically simpler 
and provides similar results; consequently, it was 
adopted to represent cross-association in the present 
work. One must be aware that it is not an exact 
representation of the molecular phenomenon: cross-
association is accounted for only through its effect in 
correcting the abnormal departure from the ideal 
behavior caused by self-association rather than its 
molecular implications – for it would be impossible 
to take any possible electron donning reaction into 
account. This assumption is a break-even between 
mathematical feasibility and the correct description 
of the macroscopic effects of the microscopic 
phenomenon. 
 Thus, besides the self-association reactions 
considered earlier, a single cross-association 
reaction: 
 

jB A+   jBA            (45) 
 
is considered to occur. The compound BAj is 
regarded as an inert one, i. e, it will not undergo any 
other chemical reaction with other compounds. 
 The equilibrium constant for the reaction is KAB: 
 

jj j

j j j

(z)
BABA BA

AB (z) (z)
B A B AB A

z
K

z z

γα
= =

α α γ γ
       (46) 

 
 This reaction causes changes in the mass balance. 
Therefore, a new parameter, the dimensionless extent 
of cross-association χ is introduced. χ is defined as 
the amount of B undergoing cross-association 
divided by the overall amount of substance in the 
solution: 
 

j

(z)
BA

(x)
tot

n

n
χ =

%
%

(x) (z)
B B

(x)
tot

n n

n

−
=

% %
%          (47) 

 
 The numerator of this equation can be substituted 
using the amount of the associating species, i. e, 
species containing only segments A1, resulting in: 
 

i

(x) (z)
A A

i 1
(x)
tot

n in

jn

∞

=

−

χ =
∑% %

%                            (48) 

 
 The values of χ and KAB are related to each other, 
as will be seen later. The following relations hold for 
the composition: 

jBAz = ξχ              (49) 
 

B Bz (x )= ξ − χ             (50) 
 

 The value of 
iAz  is to be obtained through 

solving the chemical equilibrium. 
 In order to adapt the model, the second hypothesis, 
presented earlier, is extended: the pure compound 
UNIQUAC parameters for the new species are: 
 

jBA B Aq q jq= +            (51) 
 

jBA B Ar r jr= +                 (52) 
 
 Also the hypothesis that the solvation does not 
modify the value of the interaction parameters for the 
inert compound is made, leading to 

j iBA ,A B,Aa a= , 

i jA,BA A,Ba a=  and 
j j j j i kB,BA BA ,B BA ,BA B,B A ,Aa a a a a 0= = = = = . 

These expressions are obviously a simplification of 
the actual problem. In principle, it is possible to 
account for the differences between the distinct 
species using the definition of aij as the difference of 
interaction energies; however, it would complicate 
the subsequent development, and other simplifying 
assumptions would be necessary. 
 The definition of averaged values (x)

averr , 
(z)
averr , (x)

averq  and (z)
averq  remains the same, although the 

expressions of (z)
averr  and (z)

averq  are changed to 
account for the new species: 
 

i i j j
(z)
aver A A B B BA BA

i 1

r z r z r z r
∞

=

= + +∑      (53) 

 

and similarly for (z)
averq . As before, the values (x)

averr  

and (z)
averr , and (x)

averq  and (z)
averq  are related through ξ, 

as given by equation (23) for the size parameters, for 
instance. Size and surface fractions are also 
calculated through the same expressions. 
 The activity coefficient takes different forms 
according to the compound to which it is related. In 
any case, the sum (z)

mS  is written as: 
 

( )i j

(z)(z)
m k, mk

k

(z) (z) (z)
A, m B ,mBA BA

i 1

S

∞

=

= θ τ =

 
= θ τ + θ + θ τ 

 
 

∑

∑
        (54) 
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 For an oligomer Ai it becomes: 
 

( )i i j

(z) (z) (z) (z) (z)
BAB AA A BA

i 1

S S
∞

=

= θ + θ + θ τ =∑         (55) 

 
and for B and BAj: 
 

( )j i j

(z) (z) (z) (z) (z)
ABB BBA A BA

i 1

S S
∞

=

 
= = θ τ + θ + θ  

 
∑   (56) 

 
 Substituting these expressions in equation (29), 
one gets for the activity coefficient of the 
oligomers: 

 

i
j

i

(z)
(z) (z)A(x) (x) A ,BB BA(z) (z)A aver A averA A i 1

A A AA (x) (x) (x) (x) (z) (z)
aver aver A aver A aver BA

( )q r r qr r z
ln 1 i ln i iq ln 1 iq 1 lnS

2r r r q q r S S

∞

=

 
θ θ + θ τ       γ = − + + − + + − − −       ξ ξ     

 
 

∑% (57) 

 
and for B and BAj: 
 

i
j

(z)
(z) (z)A(x) (x) B BA(z)(z) m aver m averm m i 1

m m m B,AB(x) (x) (x) (x) (z) (z)
aver aver m aver m aver BA

q r r qr r z
ln 1 ln q ln 1 q 1 lnS

2r r r q q r S S

∞

=

 
θ θ +θ      

γ = − + + − + + − − τ −          ξ ξ      
 
 

∑%
  (58) 

 
where in m stands for either B or BAj. 
 Again, the activity of the oligomers can be 
written as: 
 

i

(z) A
A BA (x)

aver

r
ln 1 ln i ig (x ,x , , )

r

 
′γ = + + χ ξ  ξ 

        (59) 

 
wherein g´ is not a function of i. The use of the 
chemical equilibrium relationship, equation (40), 
leads to the same recursive equation (42). However, 
the procedure to obtain 

1Az  and ξ is slightly 

different, as the mass balance has to be adapted. As 
shown in appendix B, it results in: 
 

1

2

A B
A

1
z x

(x j )
 ξ

= − − χ ξ 
                         (60) 

 
and: 
 

A
B1

2
A A

e
A A B B

2(x j )1
x

(x j )r
1 1 4 K

x r x r

− χ
= +

ξ   − χ+ +  +  

    (61) 

 
 With these expressions, the concentration 

iAz , Bz  

and 
jBAz , as well as the activity coefficient 

i

(z)
Aγ , (z)

Bγ  

and 
j

(z)
BAγ  can be calculated when χ is known. While the 

hypotheses made so far facilitated the mathematical 
manipulation of the equations, it is not possible to 
eliminate the need of a trial-and-error solution for χ. One 
way to do so would be to substitute the expressions for 
the activity coefficients in equation (46) and solve it; 
however, as there are other equations being considered 
(the self-association ones), it is difficult to tell in advance 
whether the solution to be found is an actual stable 
solution. The other way is to minimize the Gibbs energy 
of the system. 
 Total Gibbs energy is given by: 
 

i ji j

(z) (z) (z)
A B BABA BA

i 1

G n n n
∞

=

= µ + µ + µ∑ % % %              (62) 

 
 The condition of equilibrium between the 
oligomers (

i 1A Aiµ = µ ) leads to: 

 

1 ji j

(z) (z) (z)
A B BABA BA

i 1

G in n n
∞

=

 
= µ + µ + µ  

 
∑ % %     (63) 

 
 Introducing the concept of activity gives: 
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1 ji j

1 ji j

(z) (z) (z)
A ,pure liquid B,pure liquid BA ,pure liquidBA BA

i 1

(z) (z) (z)
A B BABA BA

i 1

G in n n

RT in ln n ln n ln

∞

=

∞

=

 
= µ + µ + µ  

 

  
 + α + α + α     

∑

∑

% % %

% % %
                 (64) 

 
 Using the definition of the extent of cross-association extent, the expression for G can be rewritten: 
 

( )1 j 1

1 ji j

(x) (x) (x)
A ,pure liquid B,pure liquid tot BA B AB,totA,tot pure liquid

(z) (z) (z)
A B BABA BA

i 1

G n n n j

RT in ln n ln n ln
∞

=

= µ + µ + χ µ − µ − µ

  
 + α + α + α     

∑

% % %

% % %
             (65) 

 
 The standard chemical potentials in the above equation are related to the equilibrium constants through: 
 

( ) ( )j 1BA B A AB
pure liquid

j RT ln K (j 1) ln K ln( j)µ − µ − µ = − + − +                   (66) 

 
 

The amount of the species are related to χ 
through equations (47) and (48). The term 

1
(x) (x)

A ,pure liquid B,pure liquidB,totA,totn nµ + µ% %  is constant for 

a given stoichometric composition, and has no 
influence in the minimization procedure. Therefore, 
χ is found by minimizing the following expression 
for a given stoichometric composition (xA and xB) of 
a liquid mixture: 
 

( )

( ) ( )

( )

1

1

j

(x) (x)
A ,pure liquid B,pure liquidB,totA,tot(x)

tot

AB A A

B B BA

G
n n

n
min

RT

lnK (j 1)ln K ln( j)  x j ln

x ln ln s.t.  0 1

χ

− µ + µ

=

= −χ + − + + − χ α +

+ − χ α + χ α ≤ χ ≤

% %
%

   (67) 

 
 For the sake of simplicity, the modified model 
taking both self and cross-association into account is 
called AS-UNIQUAC. 
 
Phase Equilibrium 
  

The previous discussion was restricted to liquid 
phases. Applying those results in describing the 
vapor-liquid equilibrium requires some additional 
assumptions for the vapor phase. We assume that the 
vapor is an ideal gas of monomers A1 and species D. 
When the pure liquids (i. e, A1 and D) are chosen as 
the reference state, the conditions for vapor liquid 

equilibrium result in: 
 

1 1 1
sat

A A A Az P y Pγ =            (68) 

 
sat

D D D Dz P y Pγ =            (69) 
 

1
sat
AP  is the saturation pressure of a hypothetical 

liquid consisting of monomeric species A1 only. 
1

sat
AP  

is not directly accessible by experiment as it is not 

the saturation pressure sat
AP  above pure liquid 

component A (which is a mixture of monomers A1 

and associates An). 1
sat
AP  is eliminated by considering 

the vapor liquid equilibrium of pure liquid 
component A: 
 

 
11 1

(pure A) (pure A) sat sat
A AA Az P Pγ =         (70) 

 

wherein 
1

(pure A)
Az  and 

1

(pure A)
Aγ  are the amount 

fraction and the activity coefficient of monomers A1 
in pure liquid A. Introducing equation (70) into 
equation (68) gives: 
 

1 1

1 1

A A A
(pure A) (pure A) sat

AA A

z y P

Pz

γ
=

γ
         (71) 
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 The composition of the vapor and the pressure 
above a liquid mixture of an alcohol A and an inert 
component D of given stochiometric composition at 
temperature T is then calculated in several steps: 

§ Calculation of 
1

(pure A)
Az  and 

1

(pure A)
Aγ  in pure liquid 

A at temperature T. 
§ Calculation of amount fractions 

1Az  and zD from 

equations (43), (44) and (20). 
§ Calculation of activity coefficients 

1Aγ  and Dγ  

from equations (34) and (35). 
§ Calculation of vapor phase fugacities Ay P  and 

Dy P  from equations (69) and (71). 
 If cross-association has to be accounted for, the 
procedure is similar, except for the fact that solvation 
equilibrium must be calculated prior to phase 
equilibrium, through solving the minimization 
problem, equation (67). 
 
Obtaining the Parameters 
  

The model requires three parameters to 
characterize an alcohol A: size parameter rA, surface 
parameter qA and the association equilibrium 
constant K , equation (38). We assume that K 
depends on temperature through: 
 

0
0

B
ln K A

T
= +            (72) 

 
 A0 and B0 are obtained in a procedure adopted 
from Brandani (1983), using experimental data for 
the saturation pressure of the alcohol sat

AP  and the 
saturation pressure of an inert hydrocarbon having 

(nearly) the same molecular mass ( sat
homomorphP ). The 

procedure consists of minimizing the following 
objective function: 
 

1 1

0 0

n
sat k * k * k sat k
alcohol A A homomorph

k 1

O.F.( S , H )

1
P (T ) z (T ) (T )P (T )

n
=

∆ ∆ =

= − γ∑
  (73) 

 
 For a binary mixture of an alcohol A and a 
neither associating nor cross-associating component 
D the model further requires two binary interaction 
parameters (aAD and aDA). These are obtained as 
usual by fitting binary vapor-liquid equilibrium data. 
In the present work the following objective function 
is used: 

 
AD DA

n
expcalc k k k k k k

bubble A D A Dbubble
k 1

O.F.(a ,a )

1
P (T , x , x ) P (T , x , x )

n
=

=

= −∑
 (74) 

 
 When cross-association between an inter species 
B and an associate Aj has to be taken into account, 
the chemical equilibrium constant KAB , equation 
(46) has also to be determined from an extension of 
equation (74): 
 

AB BA AB

n
expcalc k k k k k k

bubble A B A Bbubble
k 1

O.F.(a ,a ,K )

1
P (T ,x ,x ) P (T ,x ,x )

n
=

=

= −∑
  (75) 

 
 The dependency of KAB on the temperature is 
written in the usual pattern for equilibrium constants: 
 

1
AB 1

B
ln K A

T
= +            (76) 

 
 The binary interaction parameters, regardless 
which equation they refer to, were considered to be 
independent of the temperature. 
 
 

RESULTS 
Self-Association 
  

The equations previously developed were applied for 
the determination of the parameter A0 and B0 of equation 
(72) for five alcohols; these values are given in Table 1. 
Brandani (1983) also reported numerical values for A0 
and B0, which are, for comparison purposes, also given 
in Table 1.The difference in the values of B0 is small and 
is mainly due to the different range of temperature for 
which vapor pressure data were used. The difference in 
the value A0 is larger, due to the distinct standard states 
chosen. 
 The model was subsequently used to calculate the 
vapor-liquid equilibrium of six binary systems of an 
alcohol and a paraffin at seventeen temperatures. The 
mean relative errors in the bubble point pressure 
calculated with A-UNIQUAC were compared to 
those obtained with the UNIQUAC Gibbs excess 
energy model (without taking association into 
account) in Table 2. The parameters of both 
equations are given in Table C-1 of Appendix C. The 
correlation with A-UNIQUAC always produced a 
better agreement with experimental data than 
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obtained with the UNIQUAC. The relative 
difference in the bubble point pressure was reduced 
by a minimum of almost 20% (ethanol / 
methylcyclohexane system) and by a maximum 
factor of eight (for the ethanol / heptane system). The 
composition of the vapor phase calculated using the 
A-UNIQUAC equation is also closer to the 
experimental one (Table 2). When association was 
neglected, the correlation predicted a liquid-liquid 

phase separation, e. g., for the systems ethanol / 
hexane, ethanol / octane and 1-propanol / 
cyclohexane. Taking association into account 
avoided this false prediction and resulted in a better 
agreement with experimental data. As both A-
UNIQUAC and UNIQUAC required two adjustable 
parameters, the improvement in correlation was a 
result of the explicit consideration of the self-
association of the alcohol. 

 
 

Table 1: Parameters of the equilibrium constant of self-association.  
Comparison with data from Brandani (1983). 

 
Compound Tmin / K Tmax / K A0 B0 / K A0

# B0
#/ K 

ethanol 231 351  -5.64 3.08.103 -4.30 3.11.103 

1-propanol 280 398 -6.17 3.13.103 -4.50 3.25.103 

2-propanol 279 383 -6.15 3.06.103 -4.50 3.17.103 

1-butanol 295 438 -6.35 3.13.103 -4.51 3.26.103 

1-pentanol 278 475 -6.34 3.07.103 -4.07 2.95.103 

* Reference for vapor pressure data of alcohols: Smith and Srivastava (1986b) and of homomorph: Smith and Srivastava (1986a) 
# Data from Brandani (1983) 

 
 

Table 2: Comparison of experimental data for the vapor pressure above binary mixtures of an  
alcohol and a paraffin with calculations for A-UNIQUAC and UNIQUAC equation. 

 
P/P∆ * y∆ † 

System T / K 
A-UNIQUAC UNIQUAC A-UNIQUAC UNIQUAC 

Ref. exp. data# 

ethanol / hexane 298.15 - 328.15 1.30 2.14 0.01975 0.02594 1 

ethanol / cyclohexane 283.15 - 338.15 0.58 1.60 0.00568 0.01686 1 

ethanol / heptane 303.15 0.63 5.17 0.00904 0.04165 1 

ethanol / methylcyclohexane 283.15 - 293.15 1.22 1.47 0.00840 0.01936 1 

ethanol / n-octane 318.15 - 348.15 2.02 4.49 0.01145 0.02112 2 

1-propanol/ cyclohexane 328.15 - 338.15 0.80 1.54 0.00689 0.01138 1 

* n expcalc
i i

exp
ii 1

P PP 100
P N P=

−∆
= ∑ ,      

† 
n

expcalc
j,i j,i

i 1

1
y y y

N
=

∆ = −∑ , ∀ j 

#Legend: 1. Gmehling and Onken (1977), 2. Gmehling et al. (1982a). 
 
Solvation 
 
 In liquid mixtures of an alcohol and an aromatic 
hydrocarbon, such as benzene or toluene, the aromatic 
ring acts as an electron donor, and hydrogen bonding 
would occur between the aromatic ring and the alcohol. 
Although this cross-association is weaker than the self-
association of an alcohol, it would also need to be 
considered in Gibbs excess energy models. 
 In the present work solvation between an alcohol 
and benzene or toluene was taken into account as 

discussed before. As the chemical constant for the 
reaction could not be estimated from pure 
component data, it had to be introduced as a third 
adjustable parameter. An alternative way to take self-
association into account was given by Kretschmer 
and Wiebe (1954) for the system ethanol / toluene. 
As cross-association reduces self-association, 
Kretschmer and Wiebe used for the chemical 
equilibrium constant for the self-association of 
ethanol in toluene a much smaller value than for 
ethanol in an inert hydrocarbon. 
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The AS-UNIQUAC model was applied to fit 
VLE data of four mixtures of an alcohol (ethanol, 1-
propanol, 1-butanol) with benzene or toluene at 
eleven temperatures. As benzene and toluene have 
only a single electron donor site, only cross-
association between one aromatic ring and one 
alcohol molecule or oligomer was expected. The 
influence of temperature on cross-association was 
described by equation (76). Thus, when temperature 
varies, the AS-UNIQUAC model has four adjustable 
parameters, plus the average number of the oligomer 
cross-associated. 
 The parameters were obtained by fitting the 
bubble point pressure data of the four binary 
systems. As the parameter j can assume only integer 

values, it was varied independently; in all cases 
studied, the optimum value was found to be one. 
These parameters are given in Table C-2 of appendix 
C. The relative mean deviation between calculated 
and experimental values for the bubble point 
pressure and the absolute mean deviation in the 
vapor phase composition are given in Table 3. The 
parameter B1 of equation (76) for the cross-
association is always smaller than the same 
parameter for the self-association of an alcohol, as 
can be seen in Table 4. As B is directly related to the 
association enthalpy, this finding is in agreement 
with the expectation that the absolute value for the 
self-association enthalpy should be larger than the 
absolute value for the cross-association enthalpy. 

 
Table 3: Comparison of experimental data for the vapor pressure above binary mixtures  

of an alcohol and a cross-associating hydrocarbon with calculations for  
AS-UNIQUAC, A-UNIQUAC and UNIQUAC equation. 

 
P/P∆  y∆  

System T / K 
AS-UNIQUAC A-UNIQUAC UNIQUAC AS-UNIQUAC A-UNIQUAC UNIQUAC 

Ref# 

ethanol / benzene 298.15 0.15 1.95 0.86 0.00599 0.01985 0.01171 2 

ethanol / toluene 323.15 - 358.15 1.38 3.69 2.05 0.01319 0.01795 0.01783 1 

1-propanol / benzene 318.15 - 333.15 2.26 4.52 2.13 0.01027 0.02145 0.01120 1 

1-butanol / toluene 333.31 - 353.44 0.64 2.31 1.25 0.00624 0.01689 0.00751 3 
# Legend: 1. Gmehling and Onken (1977), 2. Gmehling et al. (1982a). 3. Gmehling et al. (1982b). 

 
Table 4: Values for A1 and B1. 

 
System A1 B1 / K 

ethanol / benzene 2.55 - 

ethanol / toluene -4.12 2.20.103 

1-propanol / benzene -0.69 7.17.102 

1-butanol / toluene 0.22 3.09.102 

 
 
 

Table 3 also gives a comparison of the results 
obtained when correlating the bubble point pressure 
data using UNIQUAC (i. e, without any association) 
to those obtained using A-UNIQUAC (i. e, with self-
association only) and AS-UNIQUAC. As expected, 
AS-UNIQUAC gives the best agreement with the 
experimental data. However, in this case the 
improvement is not as remarkable as for alcohol / 
paraffin mixtures, as the UNIQUAC equation 
already results in reasonable accuracy. Taking self-
association into account, but neglecting cross-
association (i. e, using A-UNIQUAC) results in 
comparatively large deviations between the 
calculated and the experimental data. 

 Figure 1 shows the extent of the cross-
association reaction χ as a function of concentration 
for the 1-propanol / benzene system at two different 
temperature. In this figure, the value of B/ xχ  (i. e, 
the fraction of hydrocarbon molecules that undergo 
solvation) is plotted versus xA (the stoichometric 
amount fraction of the alcohol). It can be verified 
that the extent of cross-association is not large: 
while neglecting it worsens significantly the 
correlation, its low value may be the responsible for 
the fact that only one alcohol molecule is calculated 
to be associated to each electron-donor site. The 
extent of cross-association increases with 
increasing amount fraction of the alcohol, passes 
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through a maximum and decreases to a nearly 
concentration independent number that increases 
with increasing temperature. This is the result of 
two counteracting effects: at higher temperatures 
there is a lower extent of self-association (i. e, a 
higher amount fraction of alcohol monomers, 
Figure 2), which leads to a higher extent of 
solvation. This higher extent overcompensates the 
otherwise reducing effect of temperature on 

solvation. Accounting for concurrent reactions also 
explain the existence of a maximum for B/ xχ  at 
lower alcohol amount fractions, as can be verified 
in Figure 3 the total fraction of self-association fA, 
defined as the ratio of the calculated number of 
hydrogen bonds to the maximum allowed, is 
presented for the same system: both self- and cross-
association reactions experience an steep increase 
for lower concentrations of alcohol.  
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Figure 1: Extent of cross-association reaction  

in the liquid phase of the system  
1-propanol / benzene. 
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Figure 2: Amount fraction of monomers of    

1-propanol as a function of the stoichometric amount 
fraction of 1-propanol in benzene. 
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Figure 3: Total fraction of self-association in the liquid phase 

of the system 1-propanol / benzene. 
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CONCLUSIONS 
  

The effect of linear chain self-association and 
solvation was incorporated into the UNIQUAC 
model for Gibbs energy in a straightforward way, 
without postulating any expression for the 
equilibrium constant, but using instead the activity of 
the oligomers as they are obtained from the 
UNIQUAC equation to calculate the chemical 
equilibrium. The pure self-association model thus 
developed presented good results for the correlation 
of VLE data of alcohol / alkane mixtures, being able 
to correlate systems at various temperatures within 
experimental uncertainty. For systems containing an 
alcohol and an aromatic hydrocarbon a cross-
association reaction was considered; it was found 
that the correlation was also excelent in this case, 
with low deviations from experimental data, 
notwithstanding the fact that the extent of cross-
association was calculated to be small. 
 

NOMENCLATURE 
Latin Letters 
 
A monomer of a self-associating component 
A0, A1 parameters in the equation of the 

equilibrium constant 
Ai oligomer of i monomors of A, i = 1, 2, ... 
ai,j binary UNIQUAC interaction parameter 

between sites of component i and j. 
B active compound 
B0, B1 parameters in the equation of the 

equilibrium constant 
ci concentration of species i (amount of 

substance per volume) 
D inert compound 
e 2.7182818... 
fA dimensionless extent of self-association 
g function defined by equation (39) 
G Gibbs energy [J.mol-1] 
G total Gibbs energy of a sample [J] 
H enthalpy [J.mol-1] 
i number of monomers in a multimer 
j number of monomers in a multimer 
KAB equilibrium constant of solvation  

reaction 
Ki chemical reaction equilibrium constant 

for the formation of Ai;      i = 2, 3, 4... 
lj parameter in the UNIQUAC equation 

defined by equation (12) 
(x)
totn%   total amount of components [mol] 

(x)
in%  overall amount of component i [mol] 

(z)
totn%  or microscopic amount of compounds 

[mol] 
(z)
in%  microscopic total amount of species i 

[mol] 
N number of components 
Nz number of species 
P pressure [Pa] 

sat
iP  saturation pressure of species i [Pa] 

q surface parameter of the UNIQUAC 
equation 

(x)
averq  average surface parameter on 

stoichometric amount fraction basis 
(z)
averq  average surface parameter on microscopic 

amount fraction basis 
R universal gas constant [8.314 J.mol-1.K-1] 
r  size parameter of the UNIQUAC 

equation 
(x)
averr  average size parameter on stoichometric 

amount fraction basis 
(z)
averr  average size parameter on microscopic 

amount fraction basis 
S entropy [J.mol-1.K-1] 
Si parameter in the UNIQUAC equation 

defined by equation (30) 
T thermodynamic temperature [K] 
V volume per amount of substance [L.mol-1] 
xi  stoichiometric amount fraction of 

component i 
yi amount fraction of component i in the 

vapor phase 
zi  or microscopic amount fraction of species 

i 
z%  number of nearest neighbors in the lattice 
 
Greek Letters 
 
αi activity of component i 
χ dimensionless extent of reaction, 

defined by equation (47) 
ξ = (x)

totn%  / (z)
totn%  

iγ  activity coefficient of component i 

iθ  surface fraction of component i 

iϕ  volume fraction of component i 

iµ  chemical potential of component i 
[J.mol-1] 

τij  ijexp( a / T)−  
 

Subscripts 
 
aver average 
A monomer of self-associating 

component 
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Ai oligomer species consisting of i 
monomors of component A; i = 1, 
..., ∞ 

D inert component or inert species 
s solvation 
tot total 
 
Superscripts 
 
c based on concentration 
calc calculated 
E excess 
exp experimental 
L liquid 
sat saturation 
x stoichiometric 
z microscopic 
0 standard 
ϕ based on volume fraction 
* pure alcohol 
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APPENDIX A 
 
 Applying the recursive formula, equation (42), 
gives: 
 

i 1

i 1
ie A

A A(x)
aver

K r
z (z )

r

−
 

=   ξ 
        (A1) 

 
from which one obtains: 
 

1
i

1

A
A

e A
A(x)

aver

z
z

K r
1 z

r

=
−

ξ

∑                          (A2) 

 
and: 
 

1
i

1

A
A 2

e A
A(x)

aver

z
iz

K r
1 z

r

=
 

−  ξ 

∑                     (A3) 

 
 From equation (20): 
 

( )iA D Diz z 1 x= ξ − = ξ −∑       (A4) 

 
and: 
 

iA D Dz 1 z 1 x= − = − ξ∑                              (A5) 

 
 Relating equations (A2) to (A5), and (A3) to 
(A4), one obtains a set of two equations with the 
unknown 

1Az  and ξ: 

 

( )1 1
e A

A D A(x)
aver

K r
z 1 x 1 z

r

 
= − ξ −  ξ 

       (A6) 

 

( )1 1

2
e A

A D A(x)
aver

K r
z 1 x 1 z

r

 
= ξ − −  ξ 

                      (A7) 

 
 Dividing the square of equation (A6) by equation 
(A7), and recalling that A Dx 1 x= − , gives: 
 

1

2

A D
A

1
z x

x
 ξ

= − ξ 
         (A8) 

  
The expression for ξ is obtained by inserting 

equation (A8) into equation (A6). After some 
rearrangement, one gets: 
 

D
A

2
e A

D(x)
Aaver

1 1
x

x
1

K r 1 1
1 x

xr

 
− ξ  =
 

− − ξ 

        (A9) 

 
which is a quadratic equation that can be solved by 
means of usual algebra. The only meaningful 
solution is obtained by considering that for Ax 0= , 

Dx 1=  and 1ξ = : 
 

1 / 2
A

e A(x)
aver

D
A

e (x)
aver

r
1 1 4K x

r1
x

r
2K

r

 
− + +   = +

ξ
      (A10) 

 
 In order to avoid numerical problems when 

eK 0→  and the self-association vanishes, 
rearrangement is made resulting in equation (44). 
With some variations, this form of equation is 
usually found in chemical-theory based models. 
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APPENDIX B 
 
 The procedure to be followed to obtain 

1Az  and ξ 

when both self and cross-association are considered 
is slightly different from that presented in appendix 
A. Equations (A1) to (A3) remain the same, but their 
relation with overall quantities is changed. In this 
case, from equations (10), (49) and (50): 
 

iA Bz 1 x= − ξ∑           (B1) 

 
 From equations (19) and (48): 
 

i
i

(z) (x) (x)
A A total

A A(z) (z)
total total

in n j n
iz (x j )

n n

− χ
= = = − χ ξ∑∑

% % %
% %  (B2) 

 
 From equations (A2) and (B1): 
 

1

1

A
B

e A
A(x)

aver

z
1 x

K r
1 z

r

= − ξ
 

−  ξ 

                     (B3) 

 
  

From equations (A3) and (B2): 
 

1

1

A
A2

e A
A(x)

aver

z
(x j )

K r
1 z

r

= − χ ξ
 

−  ξ 

          (B4) 

 
 After similar rearrangement: 
 

1

2

A B
A

1
z x

(x j )
 ξ

= − − χ ξ 
           (B5) 

 
 In order to obtain the value of ξ, equations (B1) 
and (B5) are substituted in equation (A2), leading to: 
 

B
A

2
e A

B(x)
Aaver

1 1
x

(x j )
1

K r 1 1
1 x

(x j )r

 
− − χ ξ  =
 

− − − χ ξ 

         (B6) 

 
whose only meaningful solution is equation (61).  

APPENDIX C 
 

Table C-1: Parameters for A-UNIQUAC (pure self-association model) and UNIQUAC equations. 
 

A-UNIQUAC UNIQUAC 
System T / K 

a12 / K a21 / K a12 / K a21 / K 

ethanol / hexane 298.15 - 328.15 57.150 -2.526 -74.096 557.358 

ethanol / heptane 303.15 18.901 25.586 -71.722 546.132 

ethanol / cyclohexane 283.15 - 338.15 53.721 -12.732 -60.745 510.314 

ethanol / methylcyclohexane 283.15 - 293.15 78.596 -41.013 -52.456 472.024 

ethanol / n-octane 318.15 - 348.15 79.509 -30.234 -71.547 536.181 

1-propanol/ cyclohexane 328.15 - 338.15 9.012 16.232 -92.385 425.964 

 
Table C-2: Parameters for AS-UNIQUAC and UNIQUAC equations. 

 
AS-UNIQUAC UNIQUAC 

System T / K 
a12 / K a21 / K a12 / K a21 / K 

ethanol / benzene 298.15 252.557 -170.166 -39.598 357.177 

ethanol / toluene 323.15 - 358.15 6.191 27.936 10.163 276.695 

1-propanol / benzene 318.15 - 333.15 17.832 -7.412 -65.584 318.491 

1-butanol / toluene 333.31 - 353.44 15.572 -10.131 -52.982 218.077 

 


