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Abstract - A molecular simulation algorithm was implemented to calculate chemical potentials of hard-core 
molecular systems at high densities. The method is based on the Widom particle insertion method and the step-
function character of free energy variations. The algorithm was evaluated for hard-sphere mixtures at infinite 
dilution approximation by varying the solute/solvent diameter ratio, for systems with reduced densities from 0.1 
to 0.8. The proposed methodology was verified by comparing simulations of trimers diluted in spheres and of 
single-component dimer systems with results from the literature. Then, the method was applied to mixtures of 
hard-spheres and dimers at several conditions regarding composition, reduced density, and bond-length/diameter 
ratio. The results were used to validate equations of state from the literature. The proposed approach was able 
to obtain accurate chemical potentials for different hard-core molecular mixtures. Lower uncertainties were 
obtained when comparing with traditional methods, especially at high densities.
Keywords: Chemical potential; Entropy; Hard-core potential; Monte Carlo simulation; Widom method.

INTRODUCTION

The calculation of chemical potentials by Monte 
Carlo simulations has already been studied and ap-
plied to several systems, mainly to systems whose 
particles interact by the Lennard-Jones (LJ) poten-
tial  (Torrie and Valleau, 1977; Mon and Griffiths, 
1985; Tej and Meredith, 2002; Virnau and Müller, 
2004; Kristóf and Rutkai, 2007; Boulougouris, 2010). 

For mixtures composed of simple molecules, a great 
number of studies and methods are available. Some 
of the most common methods are listed in Dietrick 
et al. (1989) and Kofke and Cummings (1998), whi-
ch include expanded ensemble, thermodynamic inte-
gration, Bennett’s method, and umbrella sampling. 
Nevertheless, for systems with LJ interactions, the 
obtained chemical potential includes both energetic 
and entropic contributions. 
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Among the methods for chemical potential deter-
mination, the Widom test-particle insertion method 
(Widom, 1963) is efficient and easy to  implement, 
but is limited to low densities and simple molecular 
structures (Mon and Griffiths, 1985; Tej and Meredith, 
2002; Koda and Ikeda, 2002, Mehrotra et al., 2012). 
Under tougher conditions, however, the probability 
of a successful insertion becomes very low and the 
sampling tends to be poor. To overcome this situa-
tion, a considerable computational effort is required. 
Different methods have been proposed to alleviate 
these issues (Dietrick et al., 1989; Labík and Smith, 
1994; Labìk et al., 1995; Labik et al., 1998; Fay et al., 
1995; Kofke and Cummings, 1998; Koda and Ikeda, 
2002; Mehrotra et al., 2012). With the same purpose, 
in this work we aim at calculating purely entropic che-
mical potentials (hard-core interactions) in a way that 
can be applied to a wide range of densities and com-
plexities of molecular structures. These simulations 
of hard-core systems are important in the validation 
of chemical potential calculation methods (Allen and 
Tildesley ,1987; Escobedo and de Pablo, 1995; Tej and 
Meredith, 2002). Besides this, the purely entropic che-
mical potential from these simulations corresponds to 
the combinatorial contribution of activity coefficients, 
a commonly used tool in phase equilibrium studies. 

The proposed change of the insertion method con-
sists in a gradual insertion of the solute. One can find 
other gradual insertion methods in the literature. For 
instance, Mon and Griffiths (1985) gradually insert or 
delete the solute by turning on and off the energetic 
interactions in two-dimensional fluids of particles wi-
th Lennard-Jones pair interaction. In another example, 
Tej and Meredith (2002) applied an expanded ensem-
ble Monte Carlo method to calculate the chemical po-
tential of nanocolloidal particles in nanocolloid-poly-
mer mixtures, using hard-sphere model systems.  Their 
additional ensemble variable was the diameter of the 
colloidal particle taken as a hard sphere. Escobedo and 
de Pablo (1995) simulated hard-chain molecules in an 
expanded ensemble whose states varied in the chain 
size. They executed the state transitions by adding seg-
ments to the chain. Koda and Ikeda (2002) obtained 
the chemical potential of parallel hard-spherocylin-
ders using two different gradual insertion methods to 
obtain the insertion probability. One of the methods 
performs a thickening of the initial point to a sphere 
before lengthening, while the other process thickens 
the test particle after lengthening. Here, we carry out 
the gradual insertion by scaling the solute structure 
proportionally until it reaches its real size in hard-core 
molecular systems. 

CHEMICAL POTENTIAL CALCULATION

The chemical potential obtained by the Widom me-
thod for hard-core potential systems, in an ensemble 
with fixed volume and number of molecules, is repre-
sented by (de Souza et al., 1994; Stamatopoulou et 
al., 1995; Labìk et al., 1995; Frenkel and Smit, 1996; 
Kofke and Cummings, 1998; Boulougouris et al., 
1999; Boulougouris, 2010):

where kb is the Boltzmann constant and p1 is the pro-
bability of a successful solute insertion at randomly 
selected locations and orientations in the solvent 
medium.

Throughout this work, we use the terms solute and 
solvent to denote, respectively, the molecule being in-
serted and the set of molecules that already exist in 
the system. This is done even when all molecules are 
identical. Under these conditions, the residual chemi-
cal potential (μR) depends only on the probability of a 
successful insertion. This corresponds to the free ener-
gy variation of the solvent from the initial state in the 
absence of any solute (state ‘0’) to the final state in the 
presence of the inserted molecule (state ‘1’), as illus-
trated in Figure 1. A hard-sphere solvent and a fused-
-sphere dimer solute were used as an example. Note 
that the solute is never really inserted in the simulated 
system because the successful attempts are recorded, 
but they are never actually performed.
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Figure 1: Illustration of the Widom method. An example of dimer insertion 
in hard-sphere solvent at infinite dilution. The chemical potential depends 
only on the probability of successful insertion attempts and corresponds to 
the free energy variation from state ‘0’ to state ‘1’.
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As mentioned before, this method is limited to 
low densities and to molecules with simple structu-
res (Labìk et al., 1995; Kofke and Cummings, 1998; 
Boulougouris et al., 1999; Boulougouris, 2010). At hi-
gh densities or for systems with higher complexity, the 
insertion method requires a significant computational 
effort, that is, a large number of samples is necessary 
to achieve an adequate statistical sampling. In order to 
solve this issue, we propose here a stepwise path to the 
solute insertion.

The proposed path consists in inserting the molecu-
le into the solvent in a small scale and then increasing 
it until the inserted solute reaches its real size. The so-
lute structure is unaltered, in the sense that all sizes 
and distances vary proportionally according to a sca-
ling factor λi ∈[0,1], in which   represents a simulation 
step. For each transition of state from λi-1 to λi , a Monte 
Carlo simulation is carried out and the chemical po-
tentials for intermediate steps are obtained. Given that 
thermodynamic properties depend only on the initial 
and final states, the total residual chemical potential 
will be the sum of all stepwise contributions.

Hereafter, we show that this procedure is thermody-
namically consistent. Consider an athermic, N-particle 
system at constant volume V whose potential energy U  
consists of two terms as in:

We can obtain Equation (4) for the residual chemi-
cal potential by integrating the residual free energy:
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The second term of Equation (2) represents the 
interaction of all other particles amongst themselves. 
Here, we adopted the hard-core potential model.

The first term, presented below, corresponds to the 
potential energy of interaction between the molecule 
to be inserted (1) and all other molecules in the system 
(j). This term depends on the coupling factor λ such 
that, for λ = 0, the first term is “decoupled” from the 
system, while for λ = 1 the first term corresponds to the 
potential energy with the molecule completely inser-
ted. Between these two values of λ, the potential varies 
continuously. This dependency is generally linear, but 
may be non-linear as, for example, for hard-core po-
tentials applied here. 
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The residual chemical potential can be defined as 
a partial derivative of the residual Helmholtz energy  
(Hill, 1960) as
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Then, we rearrange to represent all the simulation 
steps of the proposed algorithm,
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Finally, one can calculate the residual chemical po-
tential from:
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Equation (7) demonstrates that the free energy va-
riation from state ‘0’ to state ‘1’ is equivalent to the 
sum of the free energy variations between all the in-
termediate states as in the methodology proposed here.

For the proposed path, the coupling factor does 
not directly multiply the potential energy. Actually, it 
represents a scale factor and multiplies both the inte-
ratomic distances and atomic radii of the rigid solute 
molecule. This is done while maintaining the location 
of the geometric center and the orientation of the mo-
lecule unaltered. For λ = 0 , the solute molecule does 
not interact with the solvent. When λ = 1, the solute 
is completely inserted into the system. In Figure 2 we 
illustrate the proposed path with the example of a di-
mer solute being inserted in a solvent of hard spheres. 
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The method performs insertion attempts of the 
solute on its initial scale (λ1) to obtain the insertion 
chemical potential increment (∆μ1

R). This procedure 
is identical to the conventional Widom method. The 
other steps intend to obtain the probabilities of incre-
asing the solute by a pre-determined increment ∆λi of 
the scaling factor. Separate simulations carry out each 
step. This is an advantage because one can perform it 
in parallel. For these stages, the probability to incre-
ase the solute from a state i - 1 to the next state i is 
obtained by simulating the system with the solute alre-
ady inserted with scale λi-1. This procedure consists of 
multiplying the full-size atomic radii and interatomic 
distances by λi = λi-1 + ∆λi and recording the number of 
successful attempts. At the end of all simulations, the 
residual chemical potential between initial and final 
states is given by:

MONTE CARLO SIMULATIONS

The Monte Carlo simulations followed the 
Metropolis method at constant volume (V) and cons-
tant number of molecules (N) for athermic systems. 
The hard-core potential was applied in all simulated 
systems to obtain only entropic contributions. Thus, 
we calculated the free energy taking into account only 
the configuration because we used no attractive ener-
getic interactions.

The volume of the simulation box was determined 
from the desired reduced density ρ* = (NHS/V)σs

3, whe-
re σs is the diameter of the hard sphere which consti-
tutes the solvent molecules, since in this work all the 
spheres present in the solvent have the same diameter 
and NHS is the number of hard-spheres present in the 
solvent. We used cubic geometry for all simulations 
boxes. Furthermore, we applied periodic boundary 
conditions in all directions. The initial configurations 
were generated using the software package Packmol 
(Martínez et al., 2009). To reduce computational effort 
with the overlap-test procedure, we implemented a nei-
ghbor list technique based on that of Yao et al. (2004). 

We reproduced each simulation ten times inde-
pendently, with the purpose of estimating the residual 
chemical potential uncertainties. For each stage i, we 
obtained the average of the probability and its standard 
deviation (SD). As the chemical potential has the form  

)ln( ib
R
i pTkf −== µ , its variance at each stage 

was taken as:

Figure 2: Illustrative scheme for the proposed gradual insertion. We 
present a dimer insertion in a fluid of hard sphere. Each simulation step 
results in a free energy increment. Initially, the residual chemical potential 
corresponding to the insertion of the small dimer (λ) is calculated. Then, 
we obtain the residual chemical potential for each step up to the last one, 
with the final step λm = 1, which corresponds to the solute molecule at its 
real size.
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where p1 is the probability of a successful solute in-
sertion attempt from λ0 = 0 to λ1 and pi-1,i is the pro-
bability of a successful increase of the solute size 
from λi-1 to λi. Even though we have shown Equation 
(8) for a pure component, the extension to mixtures is 
straightforward.
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where SDpᵢ and SDμᵢ are the probability and chemical 
potential standard deviations at the stage i, respectively.

The estimated errors for all stages lead to a propa-
gation of uncertainty at the final chemical potential. 
The final chemical potential is a linear combination of 
the kind ∑

=

=
m

i
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0

, and because the replicas were in-

dependently measured there were no covariance and 
the combinatorial factor was null. Thus, we can obtain 
the standard deviation from
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where SDμ is the final chemical potential standard 
deviation.
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Here, we define a cycle as a set of operations ran-
domly proposed, performed in sequence. At each 
cycle, “N” molecules were randomly selected from the 
system one at a time. For each random molecule, we 
proposed a random operation. Because we considered 
a rigid molecular structure, there were only two pos-
sible moves to be performed with the solvent molecu-
les: rotation and translation. The translation move was 
applied to the geometric center, with initial position 
r = (rx,ry,rz), according to the procedure described in 
Allen  and Tildesley (1987). The rotation move was 
applied with a randomly chosen rotation angle betwe-
en -∆θmax and ∆θmax about one of the three orthonormal 
axis (x,y,z) also determined at random. The adopted 
probability of translation and rotation proposals was 
50% for each. We performed these proposals for ran-
domly selected molecules from the solvent. 

In order to obtain the residual chemical potential, 
the first stage of the stepwise path corresponds to the 
Widom insertion method. The insertion of the solute 
molecule was attempted at each 20 cycles with λ1 = 0.1, 
that means 10% of its real scale. The fixed sampling 
interval does not obey the detailed balance condition, 
but satisfies the weaker balance condition that is consi-
dered mathematically sufficient (Manousiouthakis and 
Deem, 1999; Ren et al., 2007; Earl and Deem, 2008; 
Suwa and Todo, 2010). For the insertion, we selected 
a uniformly distributed random position and a random 
orientation. Given the problems of non-uniformity 
and irreversibility described by Brannon et al. (2002), 
we applied the quaternion rotation to select a random 
orientation uniformly for the insertion step. This ap-
proach solves rotation problems in an uncomplicated 
way without the use of coordinates, allowing a more 
compact representation of the rotation and is free of 
the singularity problem (Karney, 2007).

To generate a uniform quaternion, the SHOEMAKE 
algorithm described by Brannon et al. (2002) was used. 
Then, we applied the quaternion rotation matrix of the 
SHOEMAKE form to the geometric center of the solu-
te structure. With the chosen orientation, we executed 
an attempt to insert the solute in the random position.

In the developed algorithm, the proposed 
coordinates were accepted or rejected according to an 
overlap test (Metropolis criterion). Thus, the moves 
that resulted in overlaps (∆U = ∞) were rejected. Those 
that did not result in overlaps (∆U = 0) were accepted. 
We verified the absence of overlaps by calculating the 
shortest distance between each atom of the chosen 
molecule to the other atoms in the system (considering 
the minimum image convention). 

For the insertion step, the total number of attempted 
insertions of the small solute molecule (λ1 = 0.1) and 
the number of virtually accepted ones were recorded. 
At the end of a simulation, we used these values to 
obtain the insertion probability, corresponding to the 
first transition, according to Equation (1). The other 
simulations were designed to obtain the intermediate 
probabilities for the gradual increases.

The algorithm implemented for the particle growth 
was similar to the Widom method. Instead of inserting 
the solute into the system, the reduced molecule was 
already present in the solvent. The main difference lies 
in that we replaced the virtual insertion attempt by a 
virtual increase attempt for the solute. This was done 
by multiplying the solute structure and diameters by 
the corresponding scale factor. Therefore, to increase 
from λi-1 to λi, we multiplied the real distance of each 
solute atom from the geometric center of the molecule 
by the scale factor λi. We did the same for the diame-
ters. To obtain the increase in probability for each state 
transition, we used the number of accepted moves and 
the total number of attempts. For this work, we adop-
ted an increment ∆λ of 0.1. We obtained the chemical 
potential from Equation (8).

RESULTS AND DISCUSSION

Validation results 

Initially, test simulations with the original Widom 
method (that is, with a single insertion step) were exe-
cuted so as to reproduce simulations for  highly dilute 
solutions of spheres in spheres carried out by de Souza 
et al. (1994), and of dimers in spheres performed by 
Stamatopoulou et al. ( 1995), respectively. The succes-
sful insertion probability and chemical potential were 
obtained as a function of the diameter ratio, given by:

 
sd σσ 11 = (11)

where σ1 is the segment diameter of the solute (the lar-
gest one in the case of solutes composed of distinct 
spheres) and σS is the diameter of the solvent.

For sphere-in-sphere solutions, a solvent medium 
constituted of 108 hard spheres was simulated as in de 
Souza et al. (1994) for reduced density values of 0.1, 
0.4, and 0.8. Each run consisted of 105 Monte Carlo 
cycles, from which the first 104 cycles were discarded 
(that is, considered as equilibration cycles). In Figure 
3, one can observe a good agreement between our 
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simulation results and those from de Souza et al. (1994). The results were also compared with the residual chemical 
potential at infinite dilution obtained from the Boublik-Mansoori-Carnahan-Starling-Leland (BMSCL) equation of 
state for hard sphere mixtures (de Souza et al., 1994), which is given by:

We performed additional simulations by varying 
the density while keeping a fixed diameter ratio of 
1.0 for hard-sphere systems in order to observe the 
density-related limitation of the Widom method. We 
carried out simulations at reduced densities between 
0.1 and 0.9. In Figure 5, we show the results in terms 
of insertion probabilities to highlight the high-density 
problem.  The insertion probabilities, shown in Figure 
5a, approach zero as the density increases. This figu-
re illustrates the increasing difficulty of inserting the 
solute and, consequently, of obtaining the correct pro-
bability if the original Widom method is employed. 
Quantitatively, the percentage deviation varied from 
0.11% at ρ* = 0.1 to almost 60%, at ρ* = 0.9. These 
values exemplify the large uncertainty in the single-
-step method for higher density systems, with equal 
number of cycles. Therefore, we can verify that such a 
bad sampling takes place even for the simplest syste-
ms. The insertion probability difficulties are going to 
be worse for large molecules.
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in which η represents the packing fraction, that is,

The single-step insertion of dimers in hard-sphere 
solvents was simulated and the results were compared 
to those from Stamatopoulou et al. (1995). In this case, 
the solute is a diatomic molecule with atomic diameters 
of 1.75 Å and 1.20 Å, and a bond length of 1.27 Å. 
The reduced densities of the solvent were 0.1, 0.4, and 
0.8. For this system, σ1 corresponds to the diameter 
of the largest sphere that composes the dimer, i.e., 
σ1 = 1.75 Å. The solvent contained 108 hard-sphere 
particles. Again, it can be verified in Figure 4 that a 
good agreement occurred between the results obtained 
in the present work and those from Stamatopoulou et 
al. (1995).

Figure 3: Residual chemical potential at infinite dilution vs. diameter 
ratio for hard sphere-in-sphere mixtures. The simulation results are in 
good agreement with the de Souza et al. (1994) and BMCSL results. This 
validates our single-step insertion method for hard sphere systems.
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Figure 4: Probability of a successful insertion (p1) vs. diameter ratio (d1) 
for dimer-in-sphere mixtures at infinite dilution. The simulation results are 
in good agreement with the results of Stamatopoulou et al. (1995). This 
validates our single-step insertion method for this type of system.
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 One can verify the same behavior for homonuclear 
tangent dimers in spheres. We choose three diameter 
ratios, namely 0.2, 0.5, and 1.0. The reduced density 
ranged from 0.1 to 0.9. The results, shown in Figure 
5b, illustrate a reduction in the probability of insertion 
with the increase of the system density for all three-
-diameter ratios. As expected, the lower the diameter 
ratio the higher is the insertion acceptance frequency 
for a given density. The percentage deviation for this 
system varied from 0.06%, at ρ* = 0.1, to 0.9%, at ρ* 
= 0.85, for d1 = 0.2. This small variation is related to 
the small diameter ratio, which does not present diffi-
culties in the insertion process. For d1 = 0.5, we have 
deviations of 0.15% at ρ* =0.1 and of 8.37% at ρ* = 
0.9. Thus, we observe the insertion difficulty beco-
ming problematic for the direct insertion method. The 
increase of uncertainty with the density increase beco-
mes even larger for d1 = 1.0. In this density, we have 

a percentage deviation of 0.15% at ρ* = 0.1 to almost 
30% at ρ* = 0.85.

Once we had validated the basic algorithm with 
one-step movement (insertion), the proposed metho-
dology with multiple steps can be tested, as presented 
hereafter. We validated the proposed stepwise inser-
tion Monte Carlo method through the calculation of 
residual chemical potentials of highly dilute trimers in 
spheres. The trimers are composed of identical sphe-
res whose centers form an equilateral triangle with 
side length equal to one spherical diameter, so that 
we could reproduce the results of Ben-Amotz et al. 
(1997). The simulation box contained 256 spheres and 
the diameter ratio d1 = σ1/σS varied from 0.1 to 0.9 at 
the reduced densities of 0.1, 0.5, and 0.8.

Results are presented in  Figure 6 and were compa-
red with those of Ben-Amotz et al. (1997), who calcu-
lated the chemical potential with two different metho-
dologies, both based on the Widom insertion method.  
One can observe an increase of residual chemical po-
tential with the increase of the diameter ratio. Again, 
solutes with smaller diameter ratios require smaller 
free volume for successful insertions, which then lo-
wer the residual chemical potential. This effect is mo-
re important at high densities (liquid phase). From the 
results, we can only verify that the agreement with the 
literature and the calculation capacity of our method 
were satisfied. To compare the methods we have no 
exact information of the chemical potentials and the 
error values obtained by Ben-Amotz et al (1997).

Figure 5: Probability of successful insertion vs. reduced density (ρ*). 
(a) Hard sphere mixtures at infinite dilution. (b) Dimer in hard spheres 
at high dilution. In both figures, we illustrate the problem of insertion at 
high densities: as the reduced density increases, the insertion probabilities 
approach zero.

Figure 6: Chemical potential of trimers in spheres at infinite dilution vs. 
diameter ratio. The calculated residual chemical potentials were consistent 
with those from Ben-Amotz et al. (1997). Therefore, the algorithm was 
capable of obtaining the chemical potential for molecules with a non-
colinear geometry. We observe an increase of chemical potential with the 
increase of the diameter ratio.
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We also applied the proposed method to systems 
constituted only of dimer molecules. Similar simula-
tions were performed by Labìk et al. (1995) for a ho-
monuclear, tangent dimer solute at reduced densities 
of 0.5, 0.6, 0.7, 0.8, and 0.9. They simulated systems 
with lower diameter solute and extrapolated the results 
to obtain the chemical potentials for higher diameters. 
We carried out all simulations with 600 solvent parti-
cles for this system. The results presented in Table 1 
and Figure 7 show good agreement with those from 
Labìk et al. (1995) for "n = 3" (polynomial order of 
the extrapolation equation), considered by the authors 
as their more accurate results. Table 1 and  Figure 7 
also contain calculated residual chemical potentials 
from the Generalized Flory–(r’-mer) Theory (GF-
Theory) (Escobedo and de Pablo, 1995; Honnell and 
Hall, 1989) equation of state, which are also close to 
our values. In addition, it can be verified that the calcu-
lated errors were smaller than those from Labìk et al. 
(1995), showing that the use of the proposed methodo-
logy can obtain reliable values for chemical potentials 
with lower uncertainty.

Sphere + dimer mixtures

We applied the proposed methodology to mixtures 
of hard spheres (1) and dimers (2) of varying concen-
trations and at reduced density of mixture (defined as  
 ( ) ( ) 3

2

3

1 21
2* σσρ VNVN HSHS += , in which σ1 = σ2 of 0.1, 

0.4, and 0.8. For all simulations, the adopted incre-
ment for the scale factor was ∆λ = 0.1. At each density, 
sphere+dimer mixtures with different concentrations 
were considered as the solvent, while either a dimer 
or a hard sphere was considered as the solute. Each 
run contained 107 cycles, from which the 500000 ini-
tial ones were discarded, and 475000  transitions were 
attempted in each stage of solute growth. We tested si-
mulation boxes with 300, 500, 800, and 1200 particles 
to check for finite-size effects. The chosen number of 
particles was equal to 800 for ρ* = 0.8 and 300 for lo-
wer densities (0.4 and 0.1). Note that all dimers simu-
lated in this mixture were homonuclear and tangent, 
and we assumed the diameter ratio to be unitary.

We present the obtained residual chemical potentials 
in Figure 8a for hard spheres and in Figure 8b for 
dimers. The results were compared with predictions 
of the GF-Theory as presented by Escobedo and de 
Pablo (1995). For pure systems, the chemical potential 
of each component (μᵢR,)ͦ was obtained from the 
integration of the equation of state, expressed in terms 
of compressibility factor (Z) of hard chains as:

Table 1. Residual chemical potential for homonucle-
ar, tangent dimer system.

ρ*
This work Labìk et al. (1995) GF-Theory
μR,∞/kbT μR,∞/kbT μR,∞/kbT

0.5 5.86 ± 0.005 5.92 ± 0.01 5.932
0.6 8.43 ± 0.007 8.54 ± 0.02 8.509
0.7 11.97 ± 0.012 12.10 ± 0.03 12.048
0.8 16.98 ± 0.021 17.13 ± 0.05 17.015
0.9 24.21 ± 0.033 24.12 ± 0.08 24.177

Figure 7: Chemical potential of dimers in dimers at infinite dilution 
vs. reduced density. The calculated residual chemical potentials were 
consistent with those from Labìk et al. (1995) and the GF-Theory model. 
As expected, we observe an increase of chemical potential as the density 
increases.
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The constants used for the equation of state model 
were taken from Escobedo and de Pablo (1995). For 
a sphere (monomer), they are c1 = 1.0, c2 = 1.0, and 
c3 = -1.0, while for dimers they are c1 = 2.45696, c2 = 
4.10386, and c3 = -3.75503.

For binary mixtures, an analogy to GF-Theory 
(Honnell and Hall, 1989; Escobedo and de Pablo, 
1995) proposed by Honnell et al. (1989) was applied 
as a free volume correction. For a two-component sys-
tem, we applied the analogy as:
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where Yn corresponds to a correction term based on 
free volume differences between dimer and monomer 
systems, representing the free volume change with the 
presence of other components. The term VL,1 is the free 
volume of a system constituted only of monomers and 
the term VL,2 is the free volume of a system constitu-
ted only of dimers. The values used were VL,1 =4/3 and  
VL,2 = 9/4 (Escobedo and de Pablo, 1995).

When x1 → 0 we have that Yn,2 → 0 , and the 
residual chemical potentials turn into μ2

R, ͦ (pure) and 
μ1

R,∞(infinite dilution). In addition, when x1 → 1, 
Yn,2  becomes the correction for the case in which all 
solvent particles are replaced by hard-spheres and we 
have μ1

R, ͦand μ2
R,∞.

In Figure 8 one can observe good agreement be-
tween simulation results and equation-of-state calcula-
tions regarding residual chemical potentials of compo-
nents 1 and 2 at mixtures with different compositions, 
especially at the lowest densities. As expected, the 
equation of state presented larger deviations at the hi-
ghest density, ρ* = 0.8. However, the results followed 
a similar trend. 

In Figure 8 the residual chemical potentials of both 
spheres and dimers decrease with increasing concen-
tration of dimers. We expected this behavior because 
the arrangement of dimer molecules results in a greater 
volume of interstices due to their geometric constraint. 
Thus, a higher concentration of dimer molecules makes 
it easier to insert the solute and, consequently, lowers 
the residual chemical potential. Although we have si-
mulated different size boxes, the percentage deviations 
presented a small variation between the different den-
sities, compared with the single-step method. For the 
hard-sphere residual chemical potential, the percenta-
ge deviation was in the range of 0.083 to 0.177%. For 
the dimer residual chemical potential, that range was 
from 0.02 to 0.20%. 

To study the effect of free volume, we calculated 
the residual chemical potential of dimers with diffe-
rent ratios of bond length/sphere diameter (l/σ1) at 
infinite dilution having hard spheres as solvents. In 
Figure 9, the l/σ ratio variation for homonuclear dimer 
particles is illustrated. Observe that, when l/σ is zero, 
the dimer is reduced to a sphere, thus identical to the 
solvent molecules. At the other extreme (l/σ = 1), the 
dimer becomes a pair of tangent spheres.

In Figure 10, at low densities, there is almost no di-
fference among the curves. This can be assigned to the 
largely similar solute structures and a larger interstitial 
space present at low densities. Nonetheless, the diffe-
rence increases as the reduced density also increases. 
At high densities, the interstitial space becomes incre-
asingly restricted and, accordingly, the bond length 
becomes an important factor for the insertion probabi-
lity. For higher l/σ ratio values, the residual chemical 
potential increases. Thus, a dimer with greater bond 
length is more difficult to insert. We observe a linear 

 ( ) oo ,

21,

,

11,,1 1 R
n

R
n

R
mix YY µµµ ++= , and (17)
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Figure 8: Residual chemical potential of solute vs. dimer fraction in the 
solvent, at the reduced densities of 0.1, 0.4 and 0.8. (a) Sphere as solute. (b) 
Dimer as solute. The residual chemical potential decreases with increasing 
concentration of dimers for both solutes. This behavior is consistent with 
the fact that a dimer molecule contains a greater volume of void space.

Figure 9: Representation of bond length/diameter ratio values.
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relationship between the chemical potential and the l/σ 
ratio at all studied densities. The curve slope increa-
ses with increasing density, from 0.2334 at ρ* = 0.1 to 
8.3414 at ρ* = 0.8. This quantifies the great influence 
of density in calculating the chemical potential in a 
way that makes other factors such as the bond length 
more influential.

CONCLUSIONS

The application of the Widom insertion method 
is a traditional way to obtain chemical potentials. 
However, it is limited to simple and low-density syste-
ms because its computational demand tends to become 
impracticable for complex molecules, especially at hi-
gh densities. Based on the Widom method, we propo-
sed an intermediate path to obtain chemical potentials 
of rigid molecules with hard-core potential in order to 
overcome the Widom method’s limitation. 

We validated the implemented Monte Carlo algo-
rithm by comparing results obtained by the Widom 
method for sphere and dimer solutes infinitely diluted 
in sphere solvents. We verified the proposed metho-
dology by comparing simulations of trimers in sphe-
res and dimers in dimers with results from the litera-
ture. The proposed method generated similar results 
with lower uncertainties, especially at high densities. 
Then, we applied the method to systems constituted 
of hard-spheres and dimers. We analyzed the behavior 
of chemical potentials with dimer concentration to in-
vestigate the potential use of the proposed method in 
thermodynamics studies. The calculated residual che-
mical potential of each component decreases as the 
dimer concentration becomes higher. It corresponds 

Figure 10: Residual chemical potential of dimers at infinite dilution vs. l/σ 
ratio, for different reduced densities ρ*. The influence of l/σ on the residual 
chemical is linear in all densities studied.

to the expected behavior because dimers systems pre-
sent more free space. In turn, the obtained uncertainty 
is promising for the obtainment of entropic residual 
chemical potentials even at higher densities, allowing 
its use in systems in the liquid state. We also obtained 
the residual chemical potential at infinite dilution of 
a dimer in hard spheres varying its bond length. We 
observed that the bond length had a higher influence in 
higher density systems. 

In general, the methodology of gradual solute inser-
tion was effective for both low and high densities for 
all systems studied. The calculated residual chemical 
potentials were consistent with the expected results. 
Future work will explore the range of applicability 
of this method to systems with increased complexity 
such as hard chain and real systems. In addition, the 
study of the applied λ increment is necessary.
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