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Abstract - Heat exchanger networks present an interesting control problem due to coupling among process 
streams. In this work, the linear quadratic regulator (LQR), a feedback optimal control technique, is used to 
control stream temperatures on a laboratory scale heat exchanger network, through bypass manipulation, in a 
multivariable system. The LQR design was based on a mathematical model of the plant and its performance 
was compared to traditional PID control and to dynamical decoupling. Experimental tests were performed to 
evaluate the controllers, involving regulatory and servo problems. The performance of the different controllers 
was quantitatively compared by using the integral absolute error. Although LQR is not a new control 
methodology, the results obtained in this work suggest that LQR is an interesting alternative to control HEN 
when compared to the PID and to the dynamic decoupler. Moreover, one of the main advantages of the LQR 
is its tuning simplicity, since only one parameter is sufficient for this application. 
Keywords: Heat exchanger network; Optimal control; LQR. 

 
 
 

INTRODUCTION 
 

Due to the oil price rise since the seventies and to 
environmental issues, efficient use of energy in 
chemical processes is very important. Almost thirty 
years ago the theoretical foundations of Process Inte-
gration for the efficient use of energy were estab-
lished, with Pinch Technology, an elegant approach 
to set energy / cost targets for heat exchanger networks 
(HEN), as well as rules to design such networks 
(Linhoff et al., 1982). Nowadays these synthesis tech-
niques, including some which are based on mathe-
matical programming, are well established in Process 

Design and are easily found in many Chemical Engi-
neering textbooks. 

The design of a HEN depends on nominal stream 
supply temperatures and flowrates. However, during 
plant operation such nominal operating conditions 
can change, influencing stream target temperatures 
and propagating in the network, since the heat ex-
changers introduce coupling among different parts of 
the process. Therefore, HEN control is an interesting 
issue and has been addressed in the literature since 
the eighties. A preliminary important contribution 
can be found in Marselle et al. (1982), where the 
authors proposed a HEN design technique by consid-
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ering process operability and controllability, which 
they called process resilience. Operability is defined 
as the ability of the network to remain steady-state 
feasible when subjected to process disturbances, 
whereas controllability is regarded as the network 
capacity to go from one steady-state to a different 
one, in a finite time. 

Later on, Calandranis and Stephanopoulos (1988) 
proposed a sequence of control actions of the loops 
in a network to solve the regulatory and servo control 
problems in a HEN, exploiting its structural charac-
teristics. The idea of the strategy was the identifica-
tion of routes through the HEN that could allocate 
disturbances or setpoint changes to available sinks, 
i.e., utility heat exchangers. 

Based on a previous work on HEN control by Ma-
thisen (1994), Glemmestad et al. (1996) applied a 
method for optimal operation of the network and 
studied the coupling of manipulated variables, repre-
sented by bypasses positions on the exchangers, with 
controlled variables, represented by stream target 
temperatures. In addition to the input / output pairing 
in the suggested decentralized control scheme, the 
proposed approach also contemplated the optimiza-
tion of utility consumption in the HEN, since the 
number of manipulated variables is greater than the 
number of controlled parameters, which resulted in a 
positive degree of freedom. More recently and due to 
this positive degree of freedom, Sun et al. (2013) 
used non-square relative gain arrays to choose which 
bypasses should be selected to control a HEN. 

Glemmestad et al. (1999) presented an alternative 
approach to the optimal operation of HEN systems 
based on on-line optimization of a steady state func-
tion and a fixed control structure. Later, Giovanini 
and Marchetti (2003) showed that a low-level Dis-
tributed Control System is also capable of handling 
HEN control problems when a flexible control loop 
structure is provided. 

In the work of Lersbamrungsuk et al. (2008), a 
linear programming (LP) problem for the optimal 
operation of a HEN was formulated. As a conse-
quence of the LP problem, the optimal point of oper-
ation of a HEN remained at some of its constraints. 
The authors also proposed an offline strategy to 
switch between active constraints, identifying possi-
ble operational regions, and combined this with de-
centralized control. Previously, Aguilera and Mar-
chetti (1998) developed a procedure for optimization 
and control of a HEN, in a more complex approach 
than the latter, since a nonlinear programming problem 
(NLP) needs to be solved online, during operation. 

From the point of view of performance, there are 
a lot of different control techniques that could be 

used in heat exchanger networks. These techniques 
range from methodologies that have a complex and 
highly engineered design, typically with a superior 
performance, down to methodologies that are easy 
and effortless to design, but normally not capable to 
lead to a desirable performance. As an example, the 
PID is the most common controller due to its straight-
forward design procedure and easy implementation. 

Nonetheless, in multivariable control problems, 
as is the case of a HEN, the PID design will demand 
a supplementary engineering effort to tune well the 
controllers. In this situation, model predictive control 
(MPC) may be considered to be a suitable control 
strategy to be used within industrial process, as it can 
deal with multivariable systems, complex dynamics 
and constraints on input and/or output variables. In 
this approach the future moves of the manipulated 
variables depend on the model and on plant meas-
ured output variables, in such a way that an on-line 
constrained optimization is performed. 

Gonzalez et al. (2006) presented an application of 
optimization and control of heat exchanger networks, 
through a two-level control structure. In the lower 
level, a constrained MPC was used and the higher 
level was supervised by an online optimizer. The 
MPC was based on a linear approximate plant model 
whereas the optimizer was based on a rigorous 
model. By using a moving horizon, hard constraints 
on the manipulated variables were dealt with in a 
straightforward way. Although the proposed method-
ology uses a consolidated control strategy, just simu-
lated results were presented. Besides, modeling er-
rors were not explicitly included in the design. 

In the range of suitable controllers for the control 
of a HEN, one can also point out the Linear Quadratic 
Regulator (LQR), which has a very simple design in 
the time domain. During the design of a LQR, the 
expected dynamic response is explicitly not taken 
into account, and the closed-loop response is 
checked afterwards. If the time response does not 
present an acceptable performance, it is possible to 
try a new controller by changing the penalty matri-
ces, resulting in an extraordinary ease to design, and 
normally a good performance (Delatore et al., 2009). 

In order to reduce the difficulties involved in con-
troller design, in this work a control solution for a 
HEN based on optimal linear control is proposed. 
The LQR controller performance was successfully 
checked by experimental results obtained in a pilot 
plant. It must be pointed out that LQR control ap-
plied to a HEN is not commonly found in the scien-
tific literature (Delatore et al., 2009). The objective 
of this work is to illustrate the proposed design pro-
cedure, as well as to show the reasonable perfor-
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Table 4: Controller performance under disturbance 
in THIN2. 

 
 TCOUT1 TCOUT2

LQR 169.6 268.1 
PID 132.8 187.2 

Decoupling 202.5 364.9 

 
By observing the performance of the Integral Ab-

solute Error for the three controllers (Table 4), one 
can see that the PID has the best response for TCOUT1 
and also for TCOUT2. However, even with a more 
vigorous action, the LQR controller also showed a 
good performance when compared to the PID. These 
results suggest that the tuning parameter in Q, which 
multiplies the identity matrix, and chosen as Q equal 
to 10-4·I for the LQR design, seems to be high and 
leded to a faster control action when compared to the 
PID and dynamic decoupler.  

It is worth noting that the PID and the decoupler 
controllers have more tuning parameters than LQR, 
which has only one, as considered in this work. 
Since this value is the unique design parameter in the 
controller, it is simpler to tune than the PID and the 
dynamic decoupler. 

 
b) Servo and Regulatory Problem 
 

To evaluate the servo problem in the experimental 
HEN, the setpoints of TCOUT1 and TCOUT2 were re-
duced 0.5 ºC at a time t equal to 500 s, i.e., TCOUT1 
and TCOUT2 were set to 28.0 ºC and 29.5 ºC, respec-
tively. Besides, to evaluate the servo problem and 
also the regulatory problem, an increase in cold 
stream flowrate mC of 0.010 kg/s was imposed at 
1000 s. Figure 11 shows the responses of TCOUT1 and 
TCOUT2, where the black, green and red curves are 
related to LQR, PID and dynamic decoupler, respec-
tively. Figure 12 indicates the control effort of the 
three controllers. 

By observing Figures 11 and 12, one can see that 
until 500 s the plant was under nominal operating con-
ditions, with TCOUT1 and TCOUT2 equal to 28.5 ºC and 
30.0 ºC, and the bypasses valves completely closed.  

After the setpoint change at 500 s, the plots in 
Figures 11 and 12 suggest a relatively smooth perfor-
mance for setpoint tracking, as well as for disturb-
ance rejection, which was imposed at 1000 s. 

This behavior is quantitatively indicated in Table 
5, by using the IAE criteria. Since there is a setpoint 
decrease at 500 s, the bypass valves tend to open 
until 1000 s, when an increase in mC takes place, 
disturbing both TCOUT1 and TCOUT2, and then the 
bypasses begin to close. It can be observed that LQR 
action is fast when compared to the PID and the de-

coupler controller, leading to a quick setpoint track-
ing and also disturbance rejection. This fact can be 
noted in Table 5, where LQR presents the smallest 
IAE among the three controllers. 
 

 

Figure 11: Plots of TCOUT responses under setpoint 
change and flowrate disturbance. 
 

 

Figure 12: Control effort of bypass valves under set-
point change and flowrate disturbance. 
 
Table 5: Controller performance under setpoint 
change and flowrate disturbance. 

 
 TCOUT1 TCOUT2 

LQR 371.9 340.9 
PID 431.8 374.3 

Decoupling 458.9 366.9 

 
c) Disturbance in Cold Stream Flowrate mC 
 

To evaluate a disturbance rejection in cold stream 
flowrate mC, a variation from 0.165 kg/s to 0.135 kg/s 
was imposed at a time t equal to 500 s and then re-
moved at 1200 s. The responses of TCOUT1 and TCOUT2 
for the three controllers are shown in Figure 13, where 
the black, green and red curves are related to LQR, 
PID and dynamic decoupler, respectively. As previ-
ously mentioned in Table 3, setpoints of TCOUT1 and 

0 500 1000 1500
27.5

28

28.5

29

29.5

30

30.5

Time(s)

T
em

pe
ra

tu
re

 (
ºC

)

 

 

TC
OUT1

 LQR TC
OUT2

 LQR TC
OUT1

 PID TC
OUT2

 PID TC
OUT1

 Decoupling TC
OUT2

 Decoupling

0 500 1000 1500
0

1

2

3

4

5

6

7

8

9

10

Time (s)

V
a

lv
e 

O
pp

e
ni

ng
 (

V
o

lts
)

 

 

LQR - fci
1

LQR - fci
2

PID - fci
1

PID - fci
2

Decoupling - fci
1

Decoupling - fci
2



 
 
 
 

142                                      F. Delatore, L. F. Novazzi, F. Leonardi and J. J. da Cruz 
 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

TCOUT2 are equal to 28.5 ºC and 30.0 ºC. Figure 14 
indicates the control effort of the three controllers, 
using the same color patterns as in Figure 13. 

It can be seen from the plots in Figure 13 and 14 
that the LQR controller reacted fast, and opened both 
bypass valves near 500 s, when the cold stream flow-
rate increased. When the flowrate in C1 returned to 
its nominal operating value, at 1200 s, once more the 
LQR was fast and drove the controlled variables to 
28.5 ºC and 30.0 ºC. Table 6 presents the controllers 
performance based on IAE for LQR, PID and the 
dynamic decoupler. 
 

 
Figure 13: Plots of TCOUT responses under step dis-
turbance in mC. 
 

 
Figure 14: Control effort of bypass valves under dis-
turbance in mC. 
 
Table 6: Controller performance under disturbance 
in mC. 
 

 TCOUT1 TCOUT2

LQR 403.9 145.9 
PID 431.3 374.3 

Decoupling 160.5 132.9 

 
For the first controlled variable, TCOUT1, the de-

coupling technique shows the best performance and 

the LQR is slightly better than the PID. As for 
TCOUT2, the decoupler has once more the best perfor-
mance and the LQR is much better than the PID. 
Although the LQR was not the best option in this 
test, it is still a reasonable choice, due to its tuning 
simplicity. 
 

CONCLUSIONS 
 

In this work the use of a linear quadratic regulator 
to control heat exchanger networks was studied. This 
control technique is an alternative approach which 
presents advantages in HEN control: the LQR con-
troller is easily designed and its performance can be 
even better than more common control techniques, 
such as PID and the dynamic decoupler. The aim of 
the proposed approach is not to accomplish a better 
performance than the one typically obtained with 
model predictive control techniques. On the other 
hand, the LQR can be designed just by using an ap-
proximate plant model and only one tuning parame-
ter, which can be iteratively chosen. 

The approximate dynamic plant model used in the 
design of the LQR was based on energy balance equa-
tions, which were linearized and their order reduced. 
However, this dynamic model could also be obtained 
directly from plant operation, in a more straightfor-
ward way and probably with equivalent results. 

The LQR was applied to a lab scale heat ex-
changer network, constituted by two heat exchangers 
with two hot and one cold stream. Manipulated vari-
ables were the bypass valve positions and the con-
trolled outputs were outlet temperatures. The LQR 
tuning parameter was determined by simulation and 
the controller performance was compared to the PID 
and the dynamic decoupler. The controllers’ perfor-
mance was quantitatively assessed by the integral ab-
solute error and this index showed that the LQR per-
formed well both in regulatory and servo problems. 
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