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Abstract - In this work the aerobic degradation of phenol (PH), catechol (CA), resorcinol (RE), hydroquinone 
(HY) and of the binary mixtures PH+CA, PH+RE, PH+HY by phenol-acclimated activated sludge was 
studied. Single substrate experiments show a Haldane-type dependence of the respiration rate on PH, RE and 
HY, while CA corresponded to the Monod model. Binary substrate experiments demonstrated that the 
presence of a second substrate only affected the kinetics, but not the stoichiometry of the oxidation of the 
compounds tested. While CA inhibited the oxidation of PH, PH inhibited the oxidation of RE and HY. A 
mathematical model was developed to represent the aerobic biodegradation of the phenolic compounds tested. 
The agreement between the proposed model and the experimental data indicates that the proposed model can 
be useful for predicting substrate and dissolved oxygen concentrations in bioreactors treating phenolic 
wastewaters.  
Keywords: Phenolic compounds; Biodegradation; Respirometry; Activated sludge; Mathematical model. 

 
 
 

INTRODUCTION 
 

Due to the wide use of phenol and its derivatives, 
phenolic compounds are widespread in the environ-
ment. Several physico-chemical methods, such as 
adsorption, Fenton, photo Fenton, or combinations of 
these techniques can be used to remove phenolic 
compounds from industrial wastewater (Houari et 
al., 2014; Wang et al., 2014). However, in some 
cases these treatments utilize expensive reagents and 
generate chemical sludges that are frequently toxic 

(Inchaurrondo et al., 2014). Conversely, most bio-
logical methods are simple to manage, utilize in-
nocuous reagents (e.g., atmospheric oxygen), and 
produce biodegradable sludges. For these reasons, 
biological methods are widely used (Busca et al., 
2008). 

Wastewaters generated by chemical facilities are 
often extremely variable in terms of flowrate, compo-
sition and concentration of organic compounds, caus-
ing operational problems in continuous flow treat-
ment systems (Edwards, 1995). Thus, despite the 
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presence of equalizer tanks, actual facilities operate 
under transient conditions. Because steady-state 
conditions are assumed when sizing continuous flow 
bioreactors, wastewater treatment plants are gener-
ally designed with excess capacity to ensure the 
degradation under overload conditions. The utiliza-
tion of biological processes for purification of toxic 
wastewaters emphasizes the practical requirement 
of developing adequate mathematical models to be 
used for the design and operation of these processes 
under transient conditions. The knowledge of mi-
crobial substrate utilization kinetics is important for 
the accurate prediction of the quality of the treatment 
process effluent. One key feature is the relationship 
between the concentrations of substrate and oxygen 
and their consumption rates (Arutchelvan et al., 2006; 
Kumar and Kumar, 2005; Nuhoglu and Yalcin, 
2005). While the actual substrate consumption rate 
determines the size of bioreactors, knowledge of the 
oxygen uptake rate (OUR) is crucial for an appro-
priate design of aeration devices. For example, ac-
cording to Vanrollehem and Gillot (2002), aeration 
costs represent about 45% of the total operational 
cost (e.g., aeration, pumping and sludge treatment) 
in a typical activated sludge wastewater treatment 
plant. Therefore, accurate kinetic parameters help 
engineers to optimize operational conditions in order 
to meet discharge requirements while minimizing 
costs.  

Batch and semicontinuous processes employing 
suspended or immobilized biomass were used to 
study the phenol degradation kinetics (Karigar et al., 
2006; Nuhoglu and Yalcin, 2005; Orupõld et al., 
2001; Tziotzios et al., 2005; Yoong et al., 2000). 
Several studies have also focused attention on the 
aerobic biodegradation of single phenolic com-
pounds and their mixtures by activated sludge (Bajaj 
et al., 2008; Lepik and Tenno, 2011; Pramparo et al., 
2012). Considering that the knowledge of OUR is 
crucial for an appropriate design of aeration devices, 
the aim of this work was a study of the aerobic 
degradation of phenol (PH), catechol (CA), resor-
cinol (RE), hydroquinone (HY) and the binary mix-
tures PH+CA, PH+RE, PH+HY by phenol-accli-
mated activated sludge. A mathematical model was 
developed to describe the aerobic degradation of 
binary mixtures of PH with CA, RE and HY by phe-
nol-acclimated activated sludge. The model was 
calibrated using respirometric profiles corresponding 
to single solutions of phenol (PH), catechol (CA), 
resorcinol (RE), and hydroquinone (HY). Then, the 
proposed model was validated using respirometric 
profiles corresponding to the binary mixtures of phe-
nolic compounds.  

MATERIALS AND METHODS 
 
Chemicals and Reagents 
 

Phenol (PH) (loose crystals, > 99%) and resorcinol 
(RE) (ACS reagent, > 99%) were obtained from Sigma 
(St. Louis, MO, USA). Catechol (CA) and hydroqui-
none (HY) were analytical grade from Biomed Inc. 
(Aurora, Ohio). Dehydrated cheese whey was from 
Food S.A. (Villa Maipú, Argentina). All inorganic 
salts were commercial products of reagent grade from 
Anedra (San Fernando, Argentina).  
 
Acclimation Procedure and Culture Conditions 
 

Phenol-acclimated activated sludge was obtained 
from a laboratory scale (2.5 L) cylindrical semicon-
tinuous fill and draw reactor. Aeration was provided 
at the bottom of the reactor through an air-stone us-
ing two air pumps at 2 L min-1; the dissolved oxygen 
(DO) concentration was maintained above 4 mgO2 L

-1. 
The reactor was fed with the following culture me-
dium with PH as the sole carbon-limiting source 
(Nuhoglu and Yalcin, 2005): (NH4)2SO4 226 mg L-1, 
K2HPO4 500 mg L-1

, KH2PO4 250 mg L-1 MgSO4.7H2O 
25.2 mg L-1, MnSO4.H2O 2.52 mg L-1, CaCl2 2 mg L-1, 
FeCl3 1.2 mg L-1, phenol 300 mg L-1. The pH was 
adjusted to 7.0 ± 0.05 by adding a few drops of con-
centrated solutions of NaOH or HCl. During this 
phase the solids retention time was 45 days to pre-
vent the biomass washout. The reactor was moni-
tored periodically by measurements of total sus-
pended solids (TSS), soluble chemical oxygen de-
mand (COD) consumption rate, and total phenols 
(TPh) consumption rate. The biomass was consid-
ered to be acclimated to phenol when the specific 
consumption rates of COD and TPh were constant 
for at least two weeks. This phenol-acclimated acti-
vated sludge was used in all further experiments. 
 
Respirometric Assays 
 

The aerobic degradation kinetics of the tested com-
pounds (phenol, resorcinol, catechol, and hydroqui-
none) by phenol-acclimated activated sludge was 
assessed using an open (flowing gas/static liquid) 
respirometer. Activated sludge samples (500 mL) 
were washed three times using a phosphate buffer 
(15 mM, pH = 7) and resuspended using 500 mL of 
the above mentioned buffer. Then, 0.5 mL of micro-
nutrient solutions M1 and M2 were added. The com-
position of M1 was (g/100 mL): FeSO4.7H2O 1.5, 
ZnSO4.7H2O 0.5, MnSO4.H2O 0.3, CuSO4.5H2O 0.075, 
CoCl2.6H2O 0.015, and citric acid 0.6. Micronutrient 
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solution M2 contained the following (g/100 mL): 
(NH4)6Mo7O24.4H2O 0.05, BO3H3 0.01, KI 0.01 
(Lobo et al., 2013).  

500 mL of washed activated sludge were poured 
into the respirometer. Agitation was provided by a 
magnetic stir-bar; the respirometer was continuously 
aerated by an air pump. Air was set to a stable flow 
rate (1.0 L min-1) using a high precision rotameter 
(Bruno Schilling model MB 60V, Argentina). The 
operation temperature was 20 ± 1 °C. Before the ad-
dition of the tested compound, the oxygen mass 
transfer coefficient of the respirometer (kLa) and the 
endogenous oxygen uptake rate (OURend) were ob-
tained using a non-steady state procedure (Lobo et 
al., 2014). According to the experimental conditions, 
such as biomass concentration and the compound 
tested, the kLa values employed ranged between 10 
and 40 h-1. When a stable DO concentration was ob-
tained, the respirometer was spiked with the tested 
compound and the dissolved oxygen concentration 
(C) was recorded as a function of time (t). The oxygen 
uptake rate associated with the substrate oxidation 
(OURex) was calculated from the DO mass balance 
in the respirometer: 
 

 L e ex
dC

k a C C OUR
dt

             (1) 

 

where Ce is the DO concentration in the absence of 
an oxidizable substrate and C is the instantaneous 
DO concentration. From the DO profile as a function 
of time, OURex values can be obtained by solving 
Eq. (1) for OURex. Then the oxygen consumed (OC) 
during the oxidation of the tested compound can be 
calculated as follows: 
 

t

ex

0

OC OUR dt               (2) 

 

At a given time t = tf the substrate was depleted 
and OURex values returned to zero. Thus, the OC 
value at time tf corresponded to the total oxygen 
consumed (OCT) during the oxidation of the tested 
compound. In the case of repeated additions of one 
or more substrates, the cumulative oxygen consump-
tion (Sum(OC)) was calculated as the sum over the 
individual OCT values. For all the tested compounds, 
abiotic control experiments (e.g., without biomass) 
were negative with regard to the oxygen consump-
tion (data not shown). 
 
Analytical Procedures 
 

Total suspended solids (TSS, mg/L) were used as 
a measure of the biomass concentration in the respi-

rometer. Known sample volumes (8 mL in this work) 
were poured into pre-weighed centrifuge tubes, cen-
trifuged and washed twice with distilled water, and 
incubated at 105 °C for 24h; the TSS of each sample 
was calculated as the difference between the final 
weight (dry sample + tube) and initial weight (tube 
alone) divided by the sample volume. Duplicate bio-
mass measurements were performed to reduce ex-
perimental errors; average and maximum relative 
errors for TSS were 4% and 13%, respectively. The 
DO concentration was measured using a YSI (model 
5739) polarographic DO probe; data were acquired 
on a personal computer interfaced to a YSI (model 
58) DO monitor at 1 measurement/sec. 
 
Estimation of the Model Coefficients and Dynamic 
Simulations 
 

Calculation of the coefficients of the mathemati-
cal model proposed in this work and the dynamic 
simulations were performed using the software pack-
age Gepasi 3 (Mendes, 1993). The routine LSODA 
(Livermore Solver of Ordinary Differential Equa-
tions) was selected to integrate the system of differ-
ential equations of the proposed model. The Multistart 
Optimization algorithm (with Levenberg-Marquardt 
local optimization) was selected to fit the proposed 
model to the experimental data. To describe the bio-
logical start-up phenomenon, a first order correction 
factor was included (Contreras et al., 2008). 
 
 

RESULTS AND DISCUSSION 
 
Oxidation of Single Phenolic Compounds by Phe-
nol-Acclimated Activated Sludge 
 

Figures 1 and 2 show typical examples of the DO 
profile and the corresponding exogenous oxygen 
uptake rate (OURex) as a function of time (t) during 
the biodegradation of phenol (PH), catechol (CA), 
resorcinol (RE) and hydroquinone (HY) by phenol-
acclimated activated sludge. As a general rule, sub-
strate and oxygen uptake rates corresponding to the 
biodegradation of PH and CA (Fig. 1) were about 4 
to 6 times higher than those corresponding to RE or 
HY (Fig. 2). During the biodegradation of PH and 
CA, OURex values rapidly increased towards a given 
maximum. Then, OURex decreased to a new pseudo 
steady-state value (Fig. 1b,d) caused by DO concen-
trations lower than 0.1 mM (Fig. 1a,c), which led to 
a DO limitation condition. The presence of these 
peaks in the OURex profiles due to an oxygen limita-
tion of the external substrate oxidation was also 
reported by several authors (Contreras et al., 2008;
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Modelling the Oxidation of Single Substrates and 
Binary Mixtures of Phenolic Compounds 
 

Among the various substrate inhibition models, 
the Haldane equation has been widely used to de-
scribe the aerobic degradation kinetics of phenol and 
phenolic compounds (Christen et al., 2012; Lepik 
and Tenno, 2011; Pramparo et al., 2012). In the case 
of CA, Figure 1b suggests that the biodegradation 
rate obeyed a Monod-type equation with respect to 
CA within the tested concentrations. In addition, a 
similar expression is usually included to take into 
account the effect of the dissolved oxygen concentra-
tion (C) on substrate and oxygen consumption rates 
(Contreras et al., 2008; Guisasola et al., 2006). How-
ever, due to the low OURex values obtained when RE 
or HY were tested (Fig. 2), the DO concentration had 
a negligible effect on RE and HY biodegradation 
rates. To represent the effect of an inhibitor on a given 
bioprocess, the noncompetitive inhibition model is 
one of the most used. For example, in the Activated 
Sludge Model No. 1 (ASM1) and its progeny (ASM2, 
ASM3), the inhibition of denitrification by dissolved 
oxygen is modelled using this approach (Gujer et al., 
1999; Henze et al., 1987; Henze et al., 1999). Finally, 
it was assumed that, in the presence of several sub-
strates, the oxygen consumption rate can be repre-
sented by the sum of OUR corresponding to each 
substrate; moreover, the presence of a second sub-
strate only affects the kinetics, but not the stoichi-
ometry of the oxidation of the tested compounds.  

Based on these considerations, the following ex-
pressions for the consumption rates corresponding to 
PH (RPH), CA (RCA), RE and HY (RZ) and oxygen 
(OURex) were proposed: 
 

PH SmPH 2
SPH

iPH

inPH/CA

O2PH inPH/CA

PH
R q

PHK PH K

KC
X

K C K CA

 
 

  
  

 

  
     

     (3) 

 

CA SmCA
SCA O2CA

CA C
R q X

K CA K C

  
      

    (4) 

 

inZ/PH
Z SmZ 2

inZ/PHS
iZ

KZ
R q X

K PHZK Z K

 
  

       
 

 (5) 

 

ex O/PH PH O/CA CA O/Z ZOUR Y R Y R Y R       (6) 

where, 

 Z represents RE or HY. The term inPH/CA

inPH/CA

K

K CA

 
  

 

in Eq. (3) corresponds to the inhibition of the PH 
oxidation due to the presence of CA, KinPH/CA being 
the inhibition constant. For a given CA concentra-
tion, the lower the KinPH/CA value, the higher the inhi-
bition; thus, a low KinPH/CA value indicates a strong 
inhibition of the oxidation of PH by CA. According 
to Figure 6, PH is oxidized first and then RE of HY. 

For this reason, the term inZ/PH

inZ/PH

K

K PH

 
  

 that repre-

sents the inhibition of the oxidation of Z (e.g., RE or 
HY) by PH was included in Eq. (5), KinZ/PH being the 
inhibition constant. Although the proposed model 
(Eqs. (3) to (6)) has 20 coefficients, 17 of them can 
be estimated based on the OURex profiles corre-
sponding to the single compounds (Figs. 1 and 2). 
However, binary substrate respirometric experiments 
(Figs. 3 to 5) were necessary to evaluate the inhibi-
tion constants KinPH/CA, KinRE/PH and KinHY/PH.  

In a first step, the model proposed in the present 
work was fitted to the respirometric profiles (e.g., 
DO concentration as a function of time) correspond-
ing to the single phenolic compounds. Figures 1 and 
2 show that, using the coefficients depicted in Table 
1, the proposed model adequately represented DO 
and OURex profiles during the degradation of all the 
tested compounds. Table 1 shows that the maximum 
specific substrate consumption rate (qSm) correspond-
ing to PH was 7- and 9-fold greater than the values 
corresponding to RE or HY, respectively. Moreover, 
the qSm value corresponding to CA was about 4 times 
the value corresponding to PH, suggesting that dur-
ing the metabolism of PH there was no accumulation 
of CA. Based on the values of qSm (Table 1), the 
tested phenolic compounds can be ordered as fol-
lows: CA > PH >> RE > HY. This order of metabo-
lism rates agrees with other authors that studied the 
oxygen consumption rate in the presence of phenolic 
compounds by intact cells, and enzyme (cell-free) 
preparations (Ahuatzi-Chacón et al., 2004; Lepik and 
Tenno, 2011; Lobo et al., 2013, 2014; Orupõld et al., 
2001). Table 1 shows that the values corresponding 
to the coefficients KS, and Ki had relative errors 
ranging from 30 to 53%. However, it is known that 
the sensitivity of OUR with respect to Ki is rather 
low (e.g., a high variation of Ki has a small effect on 
OUR). For this reason, large variations in the 
estimation of Ki are frequently obtained when OUR 
measurements are used to evaluate this parameter 
(Guisasola et al., 2006).  
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Table 1: Kinetic coefficients corresponding to the aerobic degradation of phenol (PH), catechol (CA), 
resorcinol (RE) and hydroquinone (HY) by phenol-acclimated activated sludge (mean ± confidence 
interval at a 95% confidence level are reported) 
 

 
qSm 

(mmol gTSS-1 h-1) 
KS 

(mM) 
Ki 

(mM) 
KO2 

(mM) 
YO/S 

(mol/mol) 
PH 1.82 ± 0.26 0.021 ± 0.004 2.1 ± 0.6 0.06* 1.52 ± 0.07 
CA 7.40 ± 1.21 0.045 ± 0.030 n.a. 0.087 ± 0.018 0.87 ± 0.13 
RE 0.26 ± 0.11 0.013 ± 0.004 3.6 ± 1.4 n.a. 2.04 ± 0.11 
HY 0.20 ± 0.04 0.029 ± 0.010 1.7 ± 0.5 n.a. 2.05 ± 0.41 

n.a.: not applicable 
* from Contreras et al. (2008) 

 
The YO/S values obtained (Table 1) are in accord-

ance with those reported by other authors (Divari et 
al., 2003; Lepik and Tenno, 2011; Lobo et al., 2013; 
Orupõld et al., 2001). Table 1 shows that, within the 
experimental error, 1.5 mol of oxygen is consumed 
by phenol-acclimated activated sludge during the 
oxidation of one mol of PH under the tested condi-
tions. Taking into account that the activated sludge 
studied also readily oxidized CA, and that about 1 
mol of oxygen is consumed per mol of CA oxidized 
(Table 1), it is concluded that, during the first oxida-
tion step of PH to CA, only 0.5 mol of oxygen is 
consumed per mol of PH oxidized under the tested 
conditions. 

Several authors report that the stoichiometry of 
PH oxidation by in vitro preparations of PHMO in 
the presence of NADPH is one mol of oxygen con-
sumed per mol of PH oxidized, producing one mol of 
CA (Detmer and Massey, 1985; Enroth et al., 1998; 
Sejlitz and Neujahr, 1987). It must be pointed out 
that most of these studies were performed using a 
PHMO isolated from an eukaryote, the soil yeast 
Trichosporon cutaneum. However, activated sludge 
is mainly comprised of bacteria (Henze et al., 2002); 
thus, this difference could be the reason that the stoi-
chiometric coefficient corresponding to the oxygen 
consumption during the oxidation of phenol to cate-
chol obtained in this work was one half the value 
reported by other authors. 

To represent the oxygen uptake rate (OUR) in the 
presence of more than one phenolic compound (Eq. 
(6)), it was assumed that the observed oxygen con-
sumption rate is the sum of the OUR corresponding 
to each substrate. This hypothesis was tested as fol-
lows. According to Lobo et al. (2013), in the case of 
repeated additions of a single substrate, the cumula-
tive oxygen consumption (Sum(OC)) can be calcu-
lated as the product between the cumulative substrate 
concentration (Sum(S)) and the corresponding oxida-
tion coefficient (YO/S). In the case of binary mixtures, 
if both oxidation coefficients were not affected by 
the presence of the other substrate, the cumulative 

oxygen consumption (Sum(OC)) corresponding to a 
binary mixture composed of PH and a given com-
pound S can be calculated as follows: 
 

     O/PH O/Scalc
Sum OC Y Sum PH Y Sum S      (7) 

 
where S represents CA, RE or HY, YO/PH is the PH 
oxidation coefficient, and YO/S corresponds to the 
oxidation coefficient of CA, RE or HY. Figure 7 
shows that using the oxidation coefficients depicted 
in Table 1, Eq. (7) satisfactorily predicts the oxygen 
consumed due to the oxidation of the tested phenolic 
compounds and of the binary mixtures composed of 
PH and CA, RE or HY. Additionally, 78% of the 
calculated Sum(OC) values using Eq. (7) were 
within ±15% of the experimental values, with -19% 
and +26% being the minimum and maximum rela-
tive deviations, respectively. These results indicate 
that, within the experimental errors, oxidation coeffi-
cients corresponding to PH, CA, RE, and HY can be 
considered to be independent with respect to the 
presence of another phenolic compound in a binary 
mixture, confirming the validity of Eq. (6).  

Figure 6a suggests that, for the mixture PH+CA, 
CA was metabolized first and then PH. For this rea-
son, an inhibition term of PH consumption due to the 
presence of CA was included in Eq. (3). To evaluate 
the inhibition constant KinPH/CA, the fraction of PH 
that was consumed during the first phase of the respi-
rogram corresponding to the binary mixture PH+CA 
was calculated as follows. According to Figure 7, the 
oxidation coefficients corresponding to the single 
compounds were not affected by the presence of a 
second phenolic compound. Thus, the oxygen con-
sumed (OC) during the oxidation of the binary mix-
ture PH+CA can be calculated as follows: 
 

   O/PH 0 O/CA 0OC Y PH PH Y CA CA        (8) 

 
where PH0 and CA0 represent the initial PH and CA 
concentrations, respectively. The total OC (OCT) is 
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Rearranging Eq. (11), the fraction of PH con-
sumed during the first phase of the respirogram (fPH1) 
during the oxidation of the binary mixture PH+CA 
can be calculated as follows: 
 

0 1 1
PH1

0 T

O/CA 0 1

O/PH 0 T

PH PH OC
f

PH OC

Y CA OC
1

Y PH OC


 

  
   

  

     (12) 

 
With regard to the mixtures PH+RE and PH+HY, 

Figure 6b,c suggests that the first phase of these 
respirograms corresponded to the oxidation of PH; 
thus, it can be assumed that at t = t1 (i.e., the end of 
the first phase), PH was completely consumed (PH1 
 0). Using a similar procedure, it can be demon-
strated that the fraction of RE or HY consumed dur-
ing the first phase of the respirogram (fZ1) corre-
sponding to the oxidation of the binary mixture 
PH+RE or PH+HY is: 
 

0 1 O/PH 01 1
Z1

0 T O/Z 0 T

Z Z Y PHOC OC
f 1

Z OC Y Z OC

  
     

  
(13) 

 
where Z0 represents the initial concentration of RE or 
HY, and Z1 is the concentration of the compound Z 
(RE or HY) at the end of the first phase of the respi-
rogram. 

Based on the respirograms shown in Figures 3 to 
5, the OC1 and OCT values corresponding to the tested 
binary mixtures were obtained. Then, using Eqs. (12) 
and (13) with the stoichiometric coefficients depicted 
in Table 1, the fractions of PH and RE (or HY) con

sumed during the first phase of the respirogram (fPH1, 
fZ1) were calculated. Table 2 shows that, in the case 
of the mixture PH+CA, the consumption of PH dur-
ing the first phase of the respirogram (fPH1) was 
about 5% of the initial concentration, confirming that 
this part mainly reflected the oxidation of CA. In the 
case of the mixtures PH+RE and PH+HY, the frac-
tions of RE and HY degraded during the first phase 
of the respirograms (fZ1) were 27% and 21%, respec-
tively.  

Once these fractions (fPH1, fZ1) were obtained (Ta-
ble 2), the inhibition constants KinPH/CA, KinRE/PH and 
KinHY/PH were estimated as follows. For example, in 
the case of the binary mixture PH+CA, a set of simu-
lations was performed using the proposed model 
(Eqs. (3) to (6)) with the coefficients depicted in 
Table 1 and assuming different KinPH/CA values. Then, 
for each assumed KinPH/CA value, the PH consumed 
during the first part of the simulated respirograms 
(PH1) was evaluated. Finally, the obtained PH1 val-
ues were plotted as a function of KinPH/CA (Fig. 8a). 
According to the experimental results depicted in 
Table 2, PH1 was about 5%. From the comparison 
between the experimental and simulated PH1 values, 
it was concluded that the KinPH/CA value was about 
0.03 mM (Fig. 8a). Based on a similar procedure, the 
estimated KinRE/PH and KinHY/PH values were 0.21 and 
0.18 mM, respectively (Fig. 8b,c). Using these inhi-
bition constants along with the kinetic coefficients 
shown in Table 1, Eqs. (3) to (6) were used to simu-
late the OURex profiles corresponding to the tested 
binary mixtures. Figure 6 shows that the model pro-
posed in the present work adequately describes the 
oxygen consumption during the oxidation of binary 
mixtures of phenolic compounds by phenol-acclimated 
activated sludge.  

 
 
Table 2: Oxygen consumption during the first phase of the respirogram (OC1), total oxygen consumption 
(OCT) and fraction of PH and RE (or HY) consumed during the first phase of the respirograms shown in 
Figures 3 to 5 corresponding to the binary mixtures studied. 
 
 PH+CA PH+RE PH+HY 

Test number 
OC1  

(mM) 
OCT  
(mM) 

fPH1(%)* OC1  
(mM) 

OCT  
(mM) 

fRE1(%)** OC1  
(mM) 

OCT  
(mM) 

fHY1(%)**

1 0.49 2.15 4.0 2.33 3.16 27.6 2.16 3.08 17.9 
2 0.39 1.61 5.8 2.00 2.63 34.0 2.00 2.84 18.7 
3 0.31 1.49 1.6 1.64 2.29 21.8 1.99 2.69 28.5 
4 0.44 1.75 6.9 1.94 2.67 24.7 1.93 2.73 19.5 
5 0.56 2.04 9.8 1.62 2.21 26.4    
6 0.37 1.64 3.7       

Mean 0.42 1.78 5.3 1.91 2.59 26.9 2.02 2.84 21.2 
Confidence interval 

(95%) 
0.10 0.27 3.0 0.36 0.47 5.6 0.16 0.28 7.8 

* Eq. (12) using YO/PH = 1.52, YO/CA = 0.87, PH0 = 1.06 mM, CA0 = 0.45 mM 
** Eq. (13) using YO/PH = 1.52, YO/RE = 2.04, YO/HY = 2.05, PH0 = 1.06 mM, RE0 = 0.45 mM, HY0 = 0.45 mM 
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YO/PH oxidation coefficient for phenol (mol/mol) 
YO/S oxidation coefficient for S, where S 

represents CA, RE or HY (mol/mol) 
Z0 initial concentration of RE or HY (mM) 
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