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Abstract  -  Bio-catalysis has attracted the special attention of industrial flavour producers in the production of 
valuable ester compounds. In this study, the synthesis of pentyl nonanoate ester (a short chain ester with fruity 
aroma) was carried out with a commercial immobilized lipase from Rhizomucor meihei Lipozyme (RMIM) as 
biocatalyst in the esterification reaction between nonanoic acid and pentanol. Various reaction parameters such 
as enzyme concentration, substrate concentration, reaction temperature and reaction time in solvent-free system 
were screened to enhance the ester formation with the best yield. A maximum yield for pentyl nonanoate (86.08 
%) in a solvent-free system was obtained within 150 min, at a reaction temperature of 45 OC, molar ratio of 1:9 
M, amount of enzyme of 0.2 g, water addition of 0.2 % v/v and shaking speed of 150 rpm. This work suggests that 
pentyl nonanoate ester can be produced in a very high yield and in a short period by lipase-catalysed reactions of 
nonanoic acid and pentanol, using immobilized lipase from RMIM (lipase from Rhizomucor miehei immobilized 
on anionic exchange support).
Keywords: Pentyl nonanoate; Immobilized enzyme (RMIM); Solvent free system.

INTRODUCTION

Generally esters are obtained either by organic 
synthesis (i.e., esterification, transesterification or 
inter-esterification) or by solid liquid extraction 
from natural resources. For example, lubricants 
and plasticizers used for high-precision machinery 
are products of esterification processes of long-
chain acids and alcohols. On the other hand, esters 
produced from the reaction of long chain acids with 
short chain alcohols are used as additives in food, 
detergent, cosmetic and pharmaceutical products. 
Moreover, esters have gained wide interest as solvents, 
fragrances (aromatic esters), flavours (aliphatic esters) 
and precursors for several processes in the food, drug 
and cosmetics industries (Gandhi, 1997; Abbas and 
Comeau, 2003; Rodrigues and Fernandez-Lafuente, 

2010a). Flavour esters, are short-chain esters which 
belongs to the class of compounds that are widely 
distributed in nature known as carboxylic acid esters. 
These types of esters are broadly used in foods, 
beverages, cosmetics and pharmaceutical industries. 
The natural aromas in flower and fruits are produced 
by these flavour esters. Traditionally, these compounds 
have been isolated from natural sources such as 
flowers, fruits and vegetables. When these natural 
flavour esters are extracted from plant materials they 
are often limited and very expensive for commercial 
use. To make it more economical and meet consumer’s 
demand, the use of cheaper and more widely available 
materials are needed to synthesize flavour esters. 

Several flavour esters of industrial interest have 
been obtained through esterification, transesterification 
or inter-esterification reactions using lipases (Gandhi, 
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1997; Alcantaraet al., 1998; Abbas and Comeau, 
2003; Silva and Jesus, 2003; Hasan et al., 2006). 
These esters have been applied in juices, cheeses, 
baked goods, candies and beverages (Mahapatra et 
al., 2009). However, the demand for these flavour 
esters has increased continuously at the rate of 4.3% 
per year (Dhakeet al., 2013). In order to make it 
economically viable, the reaction for ester production 
has to be slowed down and requires the use of specific 
catalysts. It is well known that traditional processes 
use inorganic acids (e.g., sulfuric acid) and bases (e.g., 
sodium hydroxide) as catalysts, and this tend to lead to 
difficulties in operational conditions (e.g., temperature, 
pressure and pH) and downstream operation, due to the 
generation of by-products (Kasche, 1986). Rodrigues 
and Fernandez-Lafuente, (2010b) and Dhake et al 
(2013) have presented relevant reviews on the wide 
applications of lipases for the synthesis of flavours.

The use of enzymes as green catalyst for the 
esterification reactions will enhance the biomolecules 
to conduct the reaction under milder conditions and 
consequently reduce the amount of by-products due 
to side reactions (Rodrigues and Fernandez-Lafuente, 
2010a). Since enzymatic synthesis of esters is through 
a biological route it has economic advantages which 
indirectly enhance their market value (Gabelman, 
1994; Abbas and Comeau, 2003; Chang et al., 2007; 
Rodrigues and Fernandez-Lafuente, 2010a).

Lipases (triacylglycerol acyl hydrolases, 
E.C.3.1.1.3) are widely used in esterification reactions 
because of their ability to recognize several substrates 
and catalyse many different reactions (Barros et al., 
2010; Rodrigues and Fernandez-Lafuente, 2010a). 
Among the most frequently used enzymes in organic 
syntheses is lipase (Davis & Boyer, 2001; Sergeeva et 
al., 2000). Bio-catalysis involving lipase has been well 
documented (Castro et al., 2000; Domiinguezs et al., 
2002). Lipases are ubiquitous enzymes with different 
properties. For instance, one of the applications of 
lipases is the production of flavour esters. A wide 
range of flavours has been produced with this enzyme. 
Some of these flavours are farnesyl laurate (Rahman 
et al., 2010), butyl butyrate (Lorenzoni et al., 2012) 
and hexyl laurate (Hange et al., 2007). Furthermore, 
the suitability of lipase for ester synthesis has 
been evaluated under different conditions such as 
temperature and pressure (Noel and Combes, 2003), 
water content (Valivetyet al., 1992) and substrate 
molar ratio (Somashekaret al., 2007).

Free and immobilized lipases from various sources 
have been employed for direct esterification and 
transesterification reactions in organic solvents to 
produce flavour esters (Brault et al., 2014). Even the 
organic solvents are able to simplify product recovery, 
although there are difficulties in many applications 
because of solvent toxicity. Moreover, some organic 

solvents employed are too expensive to allow for 
profitable commercial scale-up. One of the major 
advantages of a solvent-free system is the absence 
of solvents which facilitates downstream processing. 
In addition, a solvent free system saves cost and 
minimizes environmental impact by eliminating 
solvents from the production steps. Besides that, there 
is the possibility of using high substrate concentrations. 
Few studies have reported lipase-catalysed production 
of flavour and fragrance esters in a solvent-free system. 
For instance, the synthesis of terpene esters (Yee et al, 
1997) and isoamyl isovalerate are good examples.

R. meihei Lipase (RML) is commercialized in the 
immobilized form as Lipozyme® RM IM, where the 
weak anion exchange resin Duolite ES 562, based 
on phenol-formaldehyde copolymers, is used as 
support (Rodrigues and Fernandez-Lafuente, 2010a; 
Rodrigues and Fernandez-Lafuente, 2010b). This kind 
of support provides the necessary requirements for 
proper immobilization of the biocatalyst, such as large 
area for interaction with the biomolecules (Rodrigues 
and Fernandez-Lafuente, 2010a). To establish its 
industrial utilization and enhances its features, 
the immobilization of the enzyme, along with its 
stabilization, is therefore necessary. This can result in 
higher activity, selectivity and a decrease in inhibition, 
and allows for the re-utilization of the biocatalyst 
(Rodrigues and Fernandez-Lafuente, 2010a; Garcia-
Galan et al., 2011). Non-immobilized enzymes are 
soluble, inhibited by substrates and products and 
exhibit low stability, it also has low activity for the 
catalysis of reactions involving non-physiological 
compounds (Garcia-Galan et al., 2011). Furthermore, 
RML is stable and remains active even at low water 
activity (aw). This quality allows the enzyme to be 
used in organic solvents, an important condition for its 
use in the direct esterification reaction with free acids 
(Rodrigues and Fernandez-Lafuente, 2010a). 

The intention of the present study was to investigate 
the effects of various reaction parameters such as 
enzyme amount, acid-/alcohol molar ratio, reaction 
time and temperature on pentyl nonanoate esterification 
with nonanoic acid using immobilized lipases from R. 
miehei (Lipozyme RM IM) in a solvent-free system.

MATERIALS AND METHODS

Lipase from R. miehei immobilized on anionic 
exchange resin (RMIM) was obtained from Novo 
Nordisk (NOVO Nordisk A/S (Bagsvaerd, Denmark). 
Lipase, immobilized on Immobead 150 from R. 
miehei (based on covalent bonding), (purity ≥ 300 
U/g) was obtained from Sigma (Aldrich, USA). Pentyl 
nonanoate standard (purity 90%) was obtained from 
BOC Sciences, (New York, USA), Pentanol, American 
Chemical Society (ACS) reagent (purity, ≥ 99%) was 
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obtained from Sigma (Aldrich, USA). Nonanoic acid 
(purity ≥ 96%); Flavour grade (FG) was obtained from 
Sigma (Aldrich, USA). Methanol was of analytical 
grade and was purchased from Sigma (Aldrich, USA). 
Acetone was purchased from Sigma (Aldrich, USA). 
Ethanol (purity, 98%) was obtained from Merck 
(Darmstadt, Germany). Filter paper, Grade 1 Circles, 
90mm was purchased from Sigma (Aldrich, USA), 
sodium hydroxide was obtained from Sigma (Aldrich, 
USA). All other chemicals used in this experiment 
were also obtained from Merck (Darmstadt, Germany) 
and were of analytical grade. All other reagents used 
were of analytical grade and used as received. The 
experiments were carried out in a 100 ml stoppered 
rubber shake flask, which was incubated in an Incu-
Shaker Mini (Benchmark Scientific, New Jersey) at 
150 rpm. Temperature was set between 30 °C to 50 °C. 
Working pressure was at ambient pressure condition.

Synthesis of pentyl nonanoate
Pentyl nonanoate synthesis was performed in 

screw-capped vials containing 50 mM each of pentanol 
and nonanoic acid with different ratios (0.1 - 10 %) 
of additional water. The reaction was initiated by the 
addition of different amounts (0.1 - 1.0 g) of lipozyme 
RMIM. Samples were reacted at different reaction 
times (30 - 1440 min) in a horizontal water bath shaker 
at rpm (150) and temperatures (25 - 70 °C), along with 
the controls (samples without lipozyme RMIM). At 
specific time intervals, samples were withdrawn from 
the reaction medium and centrifuge at 1500 to remove 
the immobilized enzyme. The substrates were diluted 
with hexane (x 10) and analysed using GC.

Identification of reaction product
Detection and identification of reaction products 

were carried out with a QP-5050A GC-MS (Shimauzu, 
Kyoto, Japan) equipment with a GC-17A Version 3aru 
LHW with a DB- 5 column (30 m X 0.32 mm 1.0: 
lens thickness, 0.25 µm: Scientific, Inc., Ringoes NJ). 
Helium was employed as the carrier gas at 1.0 ml/min. 
The temperature was increased at 10 °C per min to 
200 °C, and then 250 °C and the final temperature was 
fixed at 250 °C. The injector and detector temperatures 
were maintained at 250 °C and 300 °C respectively. 
Pentyl nonanoate eluted at approximately 17.21 min 
after injection.

Screening for lipase
The production of pentyl nonanoate using two 

different lipases (RMIM and immobead 150) was 
measured by the percentage conversion (%) by 
determining the remaining unreacted fatty acids in the 
reaction mixture by titration with 1.0 M NaOH solution 
to determine the residual concentrations of fatty acids 
using phenolphthalein indicator and methanol as 

quenching agent. Control experiments were conducted 
without Lipozyme under the same condition. The 
reaction was then terminated by dilution with 7.0 ml of 
ethanol/acetone (1:1 v/v). All the samples were assayed 
in triplicate and the experiment was repeated twice.

Vcontrol VsampleCFE 100
V
−

= ×

where: CFE - conversion of flavour ester (%); Vcontrol 
- volume of NaOH (without enzyme) (control); 
Vsample - volume of NaOH (with enzyme) (sample); 
V - Volume of NaOH (without enzyme).

The lipase with the higher conversion yield was 
selected and used for the subsequent analyses.

Effect of reaction time on esterification activity
The effect of time on the ester synthesis was 

investigated by varying reaction time (30, 60, 90, 
120, 150,360, 480, 720, 960, 1200, 1440 min) using a 
horizontal water bath shaker with continuous shaking 
speed of 150 rpm while fixing the other conditions. The 
percentage conversion of flavour ester was determined 
as described above.

Effect of reaction temperature on esterification activity
The reaction mixtures were incubated at various 

reaction temperatures (30, 35, 40, 45, 50, 55, 60, 65, 
70, 75 and 80 °C) using a horizontal water bath shaker 
with continuous shaking speed of 150 rpm while 
fixing the other conditions. The percentage conversion 
of flavour ester was determined as described above.

Effect of amount of enzymes on esterification activity
The reaction mixture was catalysed by varying 

amounts of enzyme RMIM and Immobead 150 (0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 g) using a 
horizontal water bath shaker with continuous shaking 
speed of 150 rpm while fixing the other conditions. The 
percentage conversion of flavour ester was determined 
as described above.

Effect of molar ratio on esterification activity
The reaction mixtures were reacted with different 

molar ratio of substrates, mmole pentanol/ mmole 
nonanoic acid (molar ratio = 1, 2, 3, 4 and 5) using a 
horizontal water bath shaker with continuous shaking 
speed of 150 rpm while fixing the other conditions. The 
percentage conversion of flavour ester was determined 
as described above.

RESULTS AND DISCUSSION

Screening for the immobilized enzymes
The screening of immobilized enzymes (lipozyme 

RMIM and immobead 150) for the synthesis of penthyl 

(1)
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nonanoate was carried out in screw-capped vials. A 
conventional method of varying one parameter-at-
a-time was applied to obtain the optimum operating 
conditions. The effect of various parameters that 
influenced the reactions such as temperature, time, 
enzyme amount and molar ratio were studied. 
Preliminary screening of immobilized enzymes at 
different reaction conditions showed that lipozyme 
RMIM gave a higher percentage conversion compared 
to immobilized lipase, on immobead 150 (Figure 1). 
An enzymatic reaction with a maximum yield of 88.08 
% for pentyl nonanoate was obtained using lipozyme 
RMIM.

Lipozyme RMIM, which uses acid-regenerated 
cation resin exchangers as catalysts for effecting 
esterification, offers distinct advantages over 
conventional methods. Several types of cation-
exchange resins can be used as solid catalysts for 
esterification (Polichnowski et al, 1986). The low 
molecular weight acids and alcohols and, in most cases, 
the resin structure produce little effect on the yield of 
the esterification. Lipozyme RMIM is a catalyst which 
contains strongly acidic groups. Its catalytic activity 
is dependent on the water content of the resin, the 
rate determining step of the surface reaction of the 
chemisorbed acid and adsorbed alcohol, respectively. 
The activity of the covalent bonded enzyme depends 

on the size and shape of carrier material, nature of the 
coupling method, composition of the carrier material 
and specific conditions during coupling.

Effect of amount of immobilized enzyme on the 
esterification reaction

The effect of varying the amount of enzyme on the 
esterification reaction is shown in Figure 2. Results have 
shown that the percentage conversion increased from 
94.03 % to 96.34 % when the amount of immobilized 
enzyme was increased from 0.1 g to 0.2 g, respectively. 
Further increase of the immobilized lipase resulted in 
a decrease in the conversion. Therefore, the amount 
of enzyme at 0.1 g to 0.2 g was sufficient to catalyse 
the esterification reaction. In addition, the excess 
amount of immobilized lipase did not contribute to the 
increase in the percentage conversion. Similar results 
have been reported by Garlapat and Banerjee (2013), 
on the synthesis of methyl butyrate and octyl acetate 
through immobilized Rhizopus oryzae NRRL 3562 
lipase mediated esterification. The probable reason for 
the observed decrease in the percentage conversion 
of pentyl nonanoate with increase in amount of lipase 
might be due to the difficulty in sustaining uniform 
suspension of the biocatalyst at higher immobilized 
lipase concentration and the agglomeration of 
immobilized lipase (Karra-chaabouni et al, 2006).

Since all the substrates are bound to the enzyme, any 
added enzyme molecule could not find any substrate to 
serve as a reactant when it reaches the saturation point, 
thus, when the enzyme concentration is increased 
more than the saturation point it will cause a decline 
in reaction due to the steric hindrance produced by 
excessive enzyme. This shows that substrate was the 
limiting factor. 

Figure1. Effect of different types of immobilized 
lipase (lipozyme RMIM and immobead 150) on the 
synthesis of pentyl nonanoate. 1, 2, 3, 4 and 6 were the 
different reaction conditions employed as listed below: 
1. Reaction time 150 min; temperature 45 o C; amount 
of enzyme 0.2 g; molar ratio 1:9 M and agitation speed 
of 150 rpm; 2. Reaction time 120 min; temperature 
35 o C; amount of enzyme 0.1 g; molar ratio 1:1 M 
and agitation speed of 150 rpm; 3. Reaction time 90 
min; temperature 40 o C; amount of enzyme 0.3 g; 
molar ratio 1:5 M and agitation speed of 150 rpm; 4. 
Reaction time 60 min; temperature 50 o C; amount of 
enzyme 0.4 g; molar ratio 1:13 M and agitation speed 
of 150 rpm; 5. Reaction time 480 min; temperature 
60 o C; amount of enzyme 0.5 g; molar ratio 1:17 M 
and agitation speed of 150 rpm; 6. Reaction time 1440 
min; temperature 70 o C; amount of enzyme 1.0 g; 
molar ratio 1:21 M and agitation speed of 150 rpm.

Figure 2. Effect of RMIM enzyme on the synthesis of 
pentylnonanoate. Reaction conditions: reaction time 
(150 min), temperature (45 ºC), molar ratio (1:9 M) 
and agitation speed (150 rpm).

Effect of molar ratio of substrates on the 
esterification reaction

The effect of pentanol / nonanoic acid percentage 
concentration on the molar ratio of pentyl nonanoate 
was investigated in a solvent free system (Figure 3). 
Results revealed a maximum molar conversion of 
pentyl nonanoate (85.55 %) at a molar ratio of 1:9. 
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Increasing the molar ratio resulted in lower molar 
conversion of pentyl nonanoate. When the acid level 
was in excess, the conversion decreased from 85.55 % 
to 82.10 %. This finding is in agreement with previous 
studies on the enzymatic synthesis of isoamyl acetate 
with immobilized Candida antarctica (Romeo et al., 
2005) and the production of flavour esters catalysed 
by Lipase B from C. antarctica (Souza et al., 2017). 

The observed decrease in conversion rate with 
increasing excess of nonanoic acid implies that the 
substrate was inhibited by the excess acid. Souza 
et al. (2017) suggested that the acid and alcohol 
inhibit lipases through similar mechanisms of 
competitive inhibition. In addition, the increase in 
acid concentration increases the proton content in the 
system, and this subsequently reduces the enzymatic 
activity through detrimental protonation (Nordblad 
and Adlercreutz, 2008).

Effect of reaction temperature on the esterification 
reaction

The effect of temperature on the esterification 
reaction is shown in Figure 4. Results showed that 
the percentage conversion of pentyl nonanoate 
increased with an increase in temperature from 25 ºC 
to 50 ºC. The conversion remained slightly constant at 
maximum range of 45 ºC to 55 ºC (80.35 % to 86.08 
%) and it subsequently dipped at 60 ºC to 74.34 %. It 
is worthy of note that Novozyme 435 is known to be 

stable up to 60 ºC and thus there was no denaturation 
of the enzyme (Yadav and Trivedi, 2003). To confirm 
that Novozyme 435 was not deactivated during the 
conversion of pentyl nonanoate, the immobilized 
catalyst was filtered off, washed with n-hexane 
and reused. It was found that esterification activity 
remained unaffected after the third reuse.

In addition, the observed decrease in conversion 
after 60 ºC might be due to the vibration and movement 
of the enzyme molecule, which probably affected the 
hydrogen bonds and other bonds in the lipase structure, 
thus resulting in enzyme molecule unfolding and the 
alteration of the tertiary and quaternary structure of the 
enzyme (Radzi et al., 2005).

Effect of reaction time on the esterification reaction 
The reaction time or time course study is a good 

indicator of enzyme performance and reaction 
progress. This gives an insight into the performance 
of an enzyme as the reaction progresses, it helps to 
determine the shortest time necessary to obtain good 
yield and also enhance the cost-effectiveness of the 
process reaction conditions (Yee et al. 1997).

In the present study, the effect of reaction time 
on the esterification reaction of nonanoic acid with 
pentanol is shown in Figure 5. The experiments at 
different times (between 30 min and 1440 min) were 
carried out to analyse its influence on the esterification 
reaction. Generally, the relative percentage conversion 
(extent of reaction) of pentyl nonanoate increased 
with increasing reaction time. The highest conversion 
was obtained for pentyl nonanoate (86.08 %) at an 
incubation time of 150 min. There was no further 
increase in conversion with increased incubation time. 

Different studies (Dave and Madamwar., 2005, 
Aragao et al. 2011, Grosso et al. 2012) have reported 
similar observation with several different immobilized 
lipases in the production of ethyl butyrate. For 
example, Aragao et al. (2011) reported a conversion of 
88 % to ethyl butyrate in 3 h of reaction, using lipase 
from M. meihei, immobilized on commercial resin 
beads. After this the percentage conversion remained 
slightly constant, which might be due to the effect of 
the reactions attaining equilibrium.

Figure 3. Effect of molar ratio on the synthesis of 
pentylnonanoate. Reaction conditions: reaction time 
(150 min), temperature (45 ºC), amount of enzyme 
(0.2 g) and agitation speed (150 rpm).

Figure 4. Effect of temperature on the synthesis of 
pentylnonanoate. Reaction conditions: reaction time 
(150 min), amount of enzyme (0.2 g), molar ratio (1:9 
M) and agitation speed (150 rpm).

Figure 5. Effect of reaction time on the synthesis of 
pentylnonanoate. Reaction conditions: temperature 
(45 ºC), amount of enzyme (0.2 g), molar ratio (1:9 M) 
and agitation speed (150 rpm). 
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Effect of water addition on the esterification 
reaction

Water has been shown to affect the dimensional 
structural integrity of lipase in many lipase mediated 
reactions (Paez et al., 2003). In addition, water plays 
an important role in providing optimal catalytic 
activity for the enzyme during reaction (Paez et al., 
2003). In the present study, addition of water ranging 
from 0.1 % to 10 % (v/v) to the reaction mixture 
produced varying responses. For example, addition of 
0.2 % water resulted in maximum conversion to pentyl 
nonoate while addition of higher amounts of water 
>0.4 % (v/v) resulted in decreased conversion. The 
probable reason for this observation is that an increase 
in water level tends to isolate the enzyme molecules 
from the substrate thus reducing the catalytic activity 
of the enzyme (Paez et al., 2003).

period by lipase-catalysed reactions of nonanoic 
acid and pentanol using immobilized lipase from 
RMIM (lipase from R. miehei immobilized on anionic 
exchange resin). The high percentage conversion is 
also essential for possible large scale synthesis.
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