Acessibilidade / Reportar erro

CHOOSING THE OPTIMAL GEL MORPHOLOGY IN ELECTROPHORESIS SEPARATION BY A DIFFERENTIAL EVOLUTION APPROACH (DEA)

Abstract

This paper introduces an effective optimization approach to investigate the morphological effects of nanocomposite gel electrophoresis and operational parameters (see below) by integrating the numerical simulations based on finite element method and population-based search algorithm such as differential evolution. Simulations are performed to study the solute transport by Convection-Diffusion-Electromigration in a microvoid with axially varying cross-section. Morphological parameters such as channel shape and size, as well as operational parameters such as pressure gradient in the axial direction, and electric field in the orthogonal direction were considered and found to have considerable effects on the separation resolution in electrophoresis. Key observations on the most favorable hydrogel morphology for an efficient electrophoresis separation are presented.

Keywords:
Gel-Electrophoresis; Differential Evolution; Optimal Separation; Hydrogel Morphology Design; Electrophoretic Transport; Axially-Diverging Pores

Brazilian Society of Chemical Engineering Rua Líbero Badaró, 152 , 11. and., 01008-903 São Paulo SP Brazil, Tel.: +55 11 3107-8747, Fax.: +55 11 3104-4649, Fax: +55 11 3104-4649 - São Paulo - SP - Brazil
E-mail: rgiudici@usp.br