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Abstract - This paper introduces an effective optimization approach to investigate the morphological effects 
of nanocomposite gel electrophoresis and operational parameters (see below) by integrating the numerical 
simulations based on finite element method and population-based search algorithm such as differential 
evolution. Simulations are performed to study the solute transport by Convection-Diffusion-Electromigration 
in a microvoid with axially varying cross-section. Morphological parameters such as channel shape and size, 
as well as operational parameters such as pressure gradient in the axial direction, and electric field in the 
orthogonal direction were considered and found to have considerable effects on the separation resolution in 
electrophoresis. Key observations on the most favorable hydrogel morphology for an efficient electrophoresis 
separation are presented. 
Keywords: Gel-Electrophoresis; Differential Evolution; Optimal Separation; Hydrogel Morphology Design; 
Electrophoretic Transport; Axially-Diverging Pores. 

 
 
 

INTRODUCTION 
 

The global market for commercial biotechnology 
based separation systems reached $14.6 billion in 
2011, and it will further grow to $26.7 billion at an 
estimated compound annual growth rate (CAGR) of 
12.8% by 2016. Specifically, the electrophoresis 
based separations market is set to reach US $1.6 
billion by the end of 2013 (Research, 2011). Tradi-
tionally, two-dimensional gel electrophoresis (2DE) 
have been used for proteomic analyses which sepa-
rate proteins according to two distinct protein char-
acteristics, size and charge (Kolch et al., 2005). The 
ongoing challenge, for proteome analysis by 2DE, is 
the reproducible separation of complex protein mix-
tures with a high degree of resolution and to retain 
native state of the protein during the separation 
(Hortin et al., 2006). Improvements in gel electro-

phoresis will facilitate important advances in cancer 
diagnosis (Zhang et al., 2010), personalized medi-
cine (Weston and Hood, 2004), and environmental 
proteomics (Keller and Hettich, 2009) to name just a 
few cases.  

Gel morphology and charge effects have tradi-
tionally been manipulated by varying the copolymer 
composition (Stellawagen, 2009; Stellawagen and 
Stellawagen, 2009; Simhadri et al., 2010), but recent 
reports show that novel morphological changes can 
also lead to unique separations. Morphological 
changes can be induced in the gel using templating 
methods (Rill et al., 1996) and nanoparticle addition 
(Schexnailder and Schmidt, 2009). Of these various 
approaches to the hydrogel modification, the pres-
ence of nanoparticles can bring a significant change 
to the chemical physics of the gel morphology, and 
provide enhancements to other important properties 
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was played by geometrical parameters in the study of 
transport properties relevant for the separation of 
biomacromolecules. Ross et al. (2004) compared 
straight and diverging microchannels considering 
initial injection width of the dye as the primary fac-
tor for determining the best separation resolution. 
They found that diverging channels give the best 
resolution when the injection width is relatively 
wide. On the other hand, when the injection width is 
small, then straight channels gave the best resolu-
tions. Dennison et al. (1982) found that (macroscopi-
cally) electrophoretic resolutions are higher in coni-
cal/wedge shaped polyacrylamide gels than the regu-
lar gels. Protein transport in pores of different sizes 
have also been studied in membrane-based separa-
tions (Yu et al., 2003). Berezhkovskii and Dagdug 
(2011)  and Berezhkovskii et al. (2010) derived 
formulas to show the dependence of the transport 
coefficients i.e., effective mobility and diffusivity on 
driving force and geometric parameters of the capil-
lary based on mapping the particle random walk. 
Their results showed the potential impact of axially-
varying shapes within a microvoid and found quali-
tative differences in the dependence of effective mo-
bility and diffusion coefficient on the driving force in 
capillary domains formed by cylindrical and spheri-
cal compartments. Li et al. (2011) modeled disper-
sion of anisotropic particles moving in nanofilters 
operating in Ogston regime. They compared these 
transport parameters obtained from the 1-D analytical 
model (based on macrotransport theory) to the ones 
obtained from 2-D numerical model. Model of a 
microfabricated device having repeated arrays of 
alternating deep wells and shallow slits is used for 
the analysis. Under experimentally relevant electric 
fields, the results show the field and size depend-
ences of mobility and diffusivity with maximum 
difference on the order of 10%. Dutta et al. (Dutta et 
al., 2006) reviewed the effect of dispersion due to 
fluid shear in pressure-driven transport of fluid and 
solute on the channel geometry in microfluidic de-
vices. They analyzed dispersion in rectangular, ellip-
tical, trapezoidal, and isotropically etched designs 
and proposed optimum cross-sectional designs which 
have been shown to reduce the dispersion arising 
from the presence of channel walls. 
 
Optimization Methodologies in Designing New 
Morphological Structures 
 

In order to design a new nanocomposite gel there 
will be several morphological-based possibilities as 
well as operational-based parameters that need to be 
considered. In such a multiparameter system, simul-

taneously changing all the parameter values in-
creases the number of possibilities that can affect the 
electrophoresis separation efficiency. Therefore, a 
systematic optimization-based approach is appealing 
because an optimal separation of practical use can be 
achieved efficiently from a complete understanding 
of all possibilities. This (overall) morphology-based 
optimization could be helpful in assisting potential 
new designs that work towards systematically gener-
ating a multidimensional structure having broader 
tunability (Thompson et al., 2008) for a given type 
of molecule.  

The concept of automation through optimization 
techniques with the objective of increasing the sepa-
ration quality of biomolecules is becoming increas-
ingly important in the field of electrophoresis. For 
example, McGuffin and Tavares (1997) developed a 
computer-based program for the systematic opti-
mization of separations in capillary zone electropho-
retic systems; this was accomplished based on a 
combination of regression and theoretical models 
which requires no experimental data for implementa-
tion. They calculated both the separation resolution 
between the adjacent species and the chromato-
graphic resolution static (CRS), a response function 
used for the chromatographic separations to assess 
the overall quality of the separation. The main ad-
vantage of this optimization program is that by care-
fully adjusting the input parameters such as capillary 
dimensions, and buffer composition, the instrumental 
parameters for optimal experimental conditions can 
be predicted. Pfeiffer et al. (2004) implemented both 
heuristic and numerical optimization techniques for 
the design of microchip-based capillary electropho-
resis systems which have greater system performance 
while simultaneously occupying less area. Buchholz 
et al. (2002) used capillary electrophoresis in combi-
nation with genetic algorithms with the application 
to increase the separation quality of nucleotide and 
nucleotide sugar separation. There are several opti-
mization algorithms that have been applied to other 
electrophoresis (Buchholz et al., 2002; McGuffin 
and Tavares, 1997) techniques, but the application to 
gel electrophoresis seems to be missing. In this con-
tribution, a systematic-optimization-based approach 
is introduced and its first successful application to 
study the effect of a rectangular and diverging mi-
crovoid (i.e., an axially varying cross section) on the 
separation performance of the material is presented.  

Global optimization techniques can be classified as 
deterministic and stochastic methods. Deterministic 
methods require a first or second order derivative 
of the objective function to exist and also will in-
crease the difficulty in searching optimum solution 
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(Rangaiah, 2010). Stochastic methods for global 
optimization rely, on the other hand, on probabilistic 
approaches. They are easy to implement and require 
no transformation of original problem (treated as a 
black box) so that it can be linked to any other soft-
ware in which the dynamic model of the electropho-
retic system has been implemented. One such sto-
chastic method for global optimization of interest to 
the current work is the Differential Evolution (DE) 
method presented by Storn and Price (1997). It is a 
stochastic population-based optimization algorithm. 
Since its introduction, DE has been applied for the 
optimization of reactive distillation processes, ther-
mal cracking operation, heat exchanger equipment 
design to name a few in the field of engineering 
(Babu and Sastry, 1999).  
 
 

AN EFFECTIVE SOLUTION 
METHODOLOGY: BRIEF DESCRIPTION 

 
The methodology described in this section will be 

used for the exploration of (optimal) potential mor-
phological effects and favorable operation conditions 
applicable, potentially, to enhance electrophoresis-
based species separations by using, for example, 
nanocomposite gels. The combination of the dy-
namic numerical model in COMSOL software with 
the Differential Evolution (DE) (Storn and Price, 
1997)-one of the most robust population-based search 
algorithms available is proposed for the first time to 
study the species transport in electrophoretic sys-
tems. As known (COMSOL-Multiphysics, v3.5a), 
COMSOL is a software for the simulation of mul-
tiphysics problems and it is based on finite element 
method (FEM). The main advantage of the use of 
COMSOL lies in its capabilities to solve the poten-
tial highly nonlinear characteristics of physicochemi-
cal problems without over constraining their solution 
with simplifying assumptions. The modeling and 
analysis of the different model applications are con-
ducted through modules within the COMSOL Mul-
tiphysics software interface. The module created in 
COMSOL, for handling electrophoretic transport 
problems such as the one of interest in this work is 
used. This module is efficient for formulating and 
solving the convection-electromigration-diffusion 
transport involved. In addition, Differential Evolu-
tion (Storn and Price, 1997) is comparatively a recent 
technique in the class of population based search 
heuristics and it has emerged as one of the most 
favored techniques by engineers for solving continu-
ous optimization problems (Ali et al., 2009; Babu 
and Angira, 2003).  

For the current paper, the transport characteristics 
of solute are studied in an expanding (or diverging) 
domains by modeling the axially-expanding domain 
using convective-diffusive-electromigrative transport 
equations based on continuum mechanics. There are 
several parameters that need to be considered related 
to the study of the effect of the divergent angle, α, of 
the idealized microvoid domain shown in Figure 1. 
Indeed, several discrete combinations of morphologi-
cal (such as height and length of the domain) and 
operational parameter (electric field, flow rate) val-
ues are possible if approached in an empirical man-
ner. In order to reduce the time and cost necessary to 
potentially design the internal structure of gels for 
improving separation quality, optimization methods 
such as DE can be used as a tool to predict or suggest 
optimal design conditions that, in addition, will guide 
the selection of optimal conditions for the experi-
mentalist.	The flowchart shown in Figure 2 illustrates 
the steps carried out for the entire optimization pro-
cedure for its application to electrophoresis in nano-
composite gel used in this study. The functionality of 
COMSOL’s integrating capabilities with MATLAB 
(MATLAB, 2008) (M) has been very advantageous 
for this work so that the COMSOL-generating M-file 
can be converted into a black box (optimization 
method guided  by the value of the electrophoresis 
resolution) for executing the DE optimization algo-
rithm. Application of DE in the optimization pro-
cesses require electrophoretic spatial resolution val-
ues only and hence identification of parameters using 
this strategy is possible without a need for a mecha-
nistic understanding of the discrete combinations of 
parameters (Price, 1999). The first step in the optimi-
zation is the generation of randomized set of parame-
ter values of each design variable. The parameter 
values are given to the FEM package where the para-
metrically defined FEM model of the electrophoretic 
system is updated according to the parameter values 
set of the microvoid domain.  Then the separation 
quality of the given sample mixture is judged by 
evaluating the objective function value (specified by 
electrophoretic resolution, see Equation (4)) of all 
the individuals of population (design parameter set) 
and finding out the best parameter values of the cur-
rent generation in the computational iteration. The 
individual parameter values obtained from the first 
generation forms the basis set of parameter values 
for the next generation. The cycle of DE generating 
new values for the desired parameters to be opti-
mized, and COMSOL simulating the electrophoresis 
model while keeping other parameters constant is 
repeated until a best separation criterion (as given 
by the electrophoresis resolution, Equation (4)) is 
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Sauer et al., 1995). The hydrodynamic velocity of the 
solvent of the system is determined by using the 
Navier-Stokes equation with suitable boundary 
conditions. 
 
Initial and Boundary Conditions  
 

A mixture of two sample test solutes A and B 
(point particles), each having a fixed valence (z), 
mobility, diffusivity, and a total initial concentration 
are injected at the center of the inlet wall of mi-
crovoid. The mathematical representation of initial 
and boundary conditions are given below. 

The walls of the microvoid are assumed to be im-
permeable to the solute transport, and thus the no-
flux boundary condition is applied and is given as 
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At the initial time, t=0 a Gaussian plug of solute 

is injected at the center of the microvoid that is mathe-
matically given by, 
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where, 0  is the initial injection standard deviation, 
and C0 is the initial concentration of solute. 
 
Resolution  
 

The most important parameter that measures the 
performance of the system is the resolution; this 
parameter helps to understand how the solute bands 
are separated sufficiently so that separation can take 
place. Giddings (1991) mathematically defined the 
resolution as a ratio of distance between the two 
adjacent solute bands to the function of band disper-
sion as 
 

2 1

4 avg

x x
R




                (4) 

 

In the above equation x1 and x2 can be obtained 
from the first moments whereas the average standard 
deviation of the two bands can be calculated from 
the second moments for the solute bands approxi-
mated as Gaussian distributions (Giddings, 1991). 

Typical desirable resolution is 1.5 which corresponds 
to “baseline” resolution. The resolution can be im-
peded due to dispersion in the microvoid which is a 
result of diffusion, microvoid geometry, and flow 
conditions, among other parameters.  

Numerical illustration of this model to show the 
optimized parameters for separation will be dis-
cussed in the next section. 
 
 
ILLUSTRATIVE RESULTS AND DISCUSSION 
 

This section includes graphical illustrations show-
ing the numerical results obtained from the simula-
tion of rectangular diverging microvoid domain (as 
sketched in Figure 1) of a single microcavity in, for 
example, a nanocomposite gel material.  

The numerical approach is incorporated into the 
optimization routine as shown in Figure 2. In total 
five parameters i.e., microvoid size (L/H), shape 
(given by inclination angle α), dimensionless or-
thogonal potential (Ω), flow rate of the buffer (given 
by Pe) and mobility ratio of two species were con-
sidered to study the influence on the separation 
quality and the selected parameter values are moti-
vated by the analysis of electric field effects given in 
Oyanader and Arce (2005). Even though numerous 
parameters are available the strategy of optimizing 
the effect of microvoid shape (α), and operational 
parameters (Ω, Pe) is utilized while fixing the other 
parameters. 

The selected parameters, their ranges and result-
ing optimized parameters are shown Table 1 and 
Table 2 for aspect ratios of 9 and 15, respectively. 
Overall, from both the tables it can be observed that 
microdomains which have smaller values of the 
divergent angle are able to produce high separation 
resolution compared to higher angle values. As the 
species band travels down the axially varying cross 
section, it broadens or disperses and this dispersion 
can be attributed to an increase of diffusion over con-
vection and microvoid morphology. This increased 
dispersion (over convection) smears the species 
bands, leading to a lower separation efficiency of the 
electrophoresis separation; this result is clearly due 
to changing the competition between diffusive-
transport with respect to the convective-transport. As 
the mobility ratio increases the optimized values of 
the operational parameter i.e., Ω values are lower 
than for the case of lower mobility even though the 
resolutions are similar in values for example, for 
fixed Pe=2, α=0°, L/H=9 the highest resolution of 2 
is obtained at Ω=4.8 when µb/µa=2, but the same 
resolution value is obtained when Ω=3.9 for a 
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µb/µa=5. From this it can thus be said that it appears 
to require a smaller magnitude of orthogonal electric 
field when the difference in species mobility be-
comes higher. However, as the Pe is increased (for 
the fixed L/H, and model solution run time) the reso-
lution appears to decrease and also it requires higher 
values of orthogonal electric field. For example, for a 
fixed time, α=0°, µb/µa=2, L/H=9 when Pe=2 the 
resolution is 2.0 when Ω=4.8, but the resolution 
reduced is to 1.6 for Pe=6, and further reduced to 1.2 
for Pe=10 and also the values of orthogonal field 
needed are also higher as the Pe increases. Similar 
trends are observed for an aspect ratio of L/H=15 but 
however the values of resolution and Ω are different 
from those of the L/H=9 case which means that the 
change in the size parameter of the microvoid has an 
important effect on the separation efficiency. 
 
Table 1: Optimized values of selected parameters 
and their effect on electrophoresis separation reso-
lution for L/H=9. 
 

Pe=2, µb/µa =2 Pe=2, µb/µa =5 

α 0° 0.5° 1° 2° 3° 0° 0.5° 1° 2° 3° 

Ω 4.8 5.0 5.1 6.1 6.4 3.9 4.0 4.2 4.1 2.9 

R 2.0 1.5 1.1 0.72 0.49 2.0 1.5 1.1 0.74 0.47

Pe=6, µb/µa =2 Pe=6, µb/µa =5 

α 0° 0.5° 1° 2° 3° 0° 0.5° 1° 2° 3° 

Ω 5.8 6.0 6.0 6.9 7.1 4.0 4.1 5.3 4.3 5.0 

R 1.6 1.1 0.91 0.46 0.28 1.6 1.1 0.82 0.46 0.28

Pe=10, µb/µa =2 Pe=10, µb/µa =5 

α 0° 0.5° 1° 2° 3° 0° 0.5° 1° 2° 3° 

Ω 7.0 7.2 7.1 8.0 8.3 3.9 5.0 5.1 4.9 5.2 

R 1.2 0.81 0.55 0.29 0.16 1.2 0.8 0.55 0.29 0.16

 
Table 2: Optimized values of selected parameters 
and their effect on electrophoresis separation reso-
lution for L/H=15. 
 

Pe=2, µb/µa =2 Pe=2, µb/µa =5 

α 0° 0.5° 1° 2° 3° 0° 0.5° 1° 2° 3° 

Ω 4.9 5.2 6.0 6.2 6.3 4.0 3.9 4.1 4.3 4.3 

R 2.0 1.2 0.83 0.44 0.26 2.0 1.3 0.85 0.45 0.30

Pe=6, µb/µa =2 Pe=6, µb/µa =5 

α 0° 0.5° 1° 2° 3° 0° 0.5° 1° 2° 3° 

Ω 5.1 5.0 6.2 7.2 8.1 3.8 4.0 4.0 5.0 5.1 

R 1.6 0.92 0.56 0.24 0.12 1.6 0.91 0.55 0.24 0.15

Pe=10, µb/µa =2 Pe=10, µb/µa =5 

α 0° 0.5° 1° 2° 3° 0° 0.5° 1° 2° 3° 

Ω 6.9 7.0 7.4 8.1 10.0 4.0 5.3 5.3 5.5 6.2 

R 1.2 0.62 0.35 0.14 0.064 1.2 0.65 0.35 0.14 0.07

SUMMARY AND CONCLUDING REMARKS 
 

In this contribution, an effective differential evo-
lution approach (DEA) is introduced and imple-
mented to obtain the optimal morphological and 
values of the operational parameters describing gel 
electrophoresis separation. The hydrogel’s structure 
is described by using a capillary model and, in par-
ticular, a rectangular geometry of their microvoid is 
used. The parameters considered include the mi-
crovoid size, L/H and the microvoid shape, α (mor-
phological); the flow rate of the buffer given by the 
Pe and the dimensionless orthogonal electric field, Ω 
(operational); and the mobility ratio of species 
(transport). From the analysis, we can infer the fol-
lowing key observations: 1-All the parameters men-
tioned above had an effect on the separation resolu-
tion for electrophoresis; however, the DEA does an 
excellent performance in handling the multiparame-
ter space to suggest optimal values; 2- The highest 
possible separation resolution can be obtained when 
the angle of deviation of the microvoid domain is 
relatively small; and 3- Imperfections in microvoids, 
i.e. deviations from an ideal type of geometry such 
as rectilinear channels or cells (obtained by a mag-
netic orientation of the nanoparticle in the gels, see 
Thompson et al., 2012) should be avoided in order to 
increase separation efficiency.  

In particular, and as an overall conclusion, this 
study suggests that the magnetic alignment of nano-
particles within the gels achieved by Thompson et al. 
(2012) and that showed potential for improving sepa-
ration has now a possibly fundamental explanation 
based on the study reported here. This study also 
suggests (for the first time and to the best of our 
knowledge) a possible useful approach to choose 
both a favorable hydrogel morphology as well as 
optimal values of the operating parameters for a 
given type of separation medium The use of nano-
particles (Thompson et al., 2010; Thompson et al., 
2012) such as ceramic, metallic or polymer types 
might be an excellent way to achieve this objective 
by orienting them during the gels manufacture with 
the use of magnetic fields, for example. 
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