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Abstract - Isotope separation with a gas centrifuge is a very complex process. Development and 
optimization of a gas centrifuge requires experimentation. These data contain experimental errors, and like 
other experimental data, there may be some gross errors, also known as outliers. The detection of outliers in 
gas centrifuge experimental data is quite complicated because there is not enough repetition for precise 
statistical determination and the physical equations may be applied only to control of the mass flow. 
Moreover, the concentrations are poorly predicted by phenomenological models. This paper presents the 
application of a three-layer feed-forward neural network to the detection of outliers in analysis of performed 
on a very extensive experiment. 
Keywords: Isotope separation; Gas centrifugation; Uranium isotopes; Outlier detection; Neural network. 

 
 
 

INTRODUCTION 
 
 Any experimental data set has an associated error, 
which may be systematic, random or, in most cases, 
both. Correct use of these experimental data requires 
a careful analysis of the associated errors, which 
indicates the reproducibility, the representativeness 
and the reliability of the data obtained. However, this 
analysis can be an arduous task in the case of a very 
complex process, where uncontrolled or unmonitored 
parameters influence the process or where large 
stochastic deviations are observed, resulting in a very 
dispersed data set (Alves and Nascimento, 2002) 
 Several procedures have been proposed for the 
treatment and analysis of experimental data sets, 
based on statistics or on the physics of the process 

(Himmelblau, 1970; Plácido and Loureiro, 1998). 
Nonetheless, those techniques can be difficult to 
apply. For instance, when the physics of the process 
is not very well known, i.e., it cannot be totally 
represented by means of equations, or when there is 
little data under any operational condition. Many 
processes, such as ultracentrifugation uranium 
enrichment, have these characteristics (Migliavacca, 
1999). 
 The detection of gross errors will be analyzed by 
the application of a neural network to an experimental 
data set from isotope separation tests of 
ultracentrifuges. These data originated in the process 
of evaluation and optimization of ultracentrifuges 
developed at the Centro Tecnológico da Marinha em 
São Paulo (CTMSP) with the collaboration of the 
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Instituto de Pesquisas Energéticas e Nucleares 
(IPEN). In an isotope separation test of a centrifuge, 
UF6 gas with a known isotope composition is sent 
through the centrifuge.. The operation is performed 
for several flow conditions as well as at several 
pressures in the feed, product and waste lines 
(enriched material in 235U and depleted material in 
235U, respectively). Similar results on differences due 
to technological changes, were published by Zippe 
(1960) and Jordan (1966). 
 

 
THEORETICAL BASIS 

 
 The numerical estimate of the separation 
performance of a centrifuge requires calculation of 
internal flow, whose solution is only feasible through 
mathematical simplifications (Kai, 1989; Olander, 
1972 and 1981; Soubbaramayer, 1979). On the other 
hand, it is very difficult to relate the parameters used 
to describe numerically the countercurrent with the 
physical devices used in the centrifuge (Kai, 1989; 
Migliavacca et al., 1999; Migliavacca, 1999). Since it is 
a process where by the gas flows at supersonic speeds, 
the resulting flow is very sensitive to variations in the 
characteristics of centrifuge construction, and even to 
differences possible mechanical precision. 
 
Isotope Separation 
  

Separation of the uranium isotope like separation 
of other stable isotopes, is described by a general 
theory that is valid for any binary mixture. Due to the 
similar physical and chemical properties of the 
isotopes, separation is usually implemented in 
sequential stages, known as the isotope separation 
cascade. This theory of separation of the uranium 
isotope is described by Cohen (1951), Benedict et al. 
(1981) and Jordan (1966). 
 The smallest element that separates isotopes in an 
enrichment facility is called a separation unit. In the 
case of the gas ultracentrifuge, the separation unit is a 
single ultracentrifuge. Some ultracentrifuges 
connected in a parallel arrangement constitute a 
cascade stage. All the separation units in a stage have 
inputs with the same isotopic concentration and 
produce equal outputs of the enriched and of the 
depleted fractions. The connection of a series of 
stages costitute a cascade.  
 A simple separation element has one input feed 
flow F of the isotopic binary mixture with the 
composition xF of the light isotope (235U) and two 
output flows, the enriched product P with 
composition xP and the depleted waste W with 
composition xW. The abundance ratio R is defined by 

the relation between the composition of the light 
isotope and the composition of the heavy isotope 
[R=x/(1-x)]. The main parameters of the separation 
unit are defined as follows: 
 
Separation factor:  
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Tail factor:   
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 A case in which the enrichment and tail factors are 
the same, β=γ, thus α=β2, is called a symmetric 
separation process. 
 Another important parameter is the cut θ, defined 
as the relation between the product and the feed flow: 
 

P P
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θ = =
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                              (4) 

 
which may be written as a function of the 
composition 
 

F W

P W

x x
x x

−
θ =

−
                              (5) 

  
The separation unit may be described by the 

separation parameters α, β and γ and by the flow 
variables F and θ (or P and W), but none of these 
variables alone represent the separation performance 
of the separation unit. Thus a function must be 
defined to indicate the separative capacity of the 
separation unit, which takes into account the 
separation and the flow parameters, referred to as 
separative power δU, defined by Dirac and described 
by Cohen (Cohen, 1951). This function uses the idea 
of the value of the flow (U) that represents the value 
acquired by a material that is been processed in a 
separation unit. The value of the flow U is given by 
multiplying the mass flow and the value function 
V(x). Therefore, a separation element has three flows 
with different values: UF = FV(xF),     UP = PV(xP) 
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and UW = WV(xW) in the feed, product and waste 
flows. The separative power δU is then obtained by 
the variation in material introduced by the separation 
unit, given by 
    

P W FU PV(x ) WV(x ) FV(x )δ = + −                      (6) 
  
The value function V(x) is a function of composition 
x, is dimensionless and is given by 
     

(x)
x

V (2x 1) ln
1 x

= −
−

                                          (7) 

 
 This function is symmetric in x = 0.5, where 
V(0.5) = 0. For the other composition values, it is 
positive and increases, going to infinity as x goes to 0 
or 1. When function V(x) is used the separative 
power δU in the separation unit is independent of the 
concentration of the material being processed. The 
separative power δU was internationally adopted as 
the parameter to quantify the capacity of separation 
units and facilities.  
 
Uranium Enrichment with a Gas Ultracentrifuge 
 
 A gas ultracentrifuge, as schematized in Figure 1, 
is composed of a long, thin vertical cylinder (rotor), 

rotating around its axis at a high velocity inside a 
case under vacuum. The process gas, assumed to be a 
binary isotopic mixture with 235UF6 and 238UF6, inside 
the rotor is subjected to a ultracentrifuge force that is 
one thousand times stronger than gravity. A pressure 
gradient is established in the radial direction, 
increasing from the center to the rotor wall. That 
pressure distribution is slightly dissimilar for the 
different isotopes because it is proportional to mass. 
This results in a partial separation in the radial 
direction. A countercurrent axial flow increases the 
radial separation.  
 The separation performance of a gas 
ultracentrifuge depends on (Avery and Davis, 1973; 
Benedict et al., 1981) (a) the characteristics of the 
ultracentrifuge, given by the angular velocity, length 
and diameter of the rotor; (b) the operational 
conditions, given by the feed and extraction mass 
flows and by the mass hold-up (indirectly measured 
by the pressure at the product or at the waste 
extraction); (c) the axial feed position inside the rotor 
and (d) the strength and profile of the countercurrent 
axial flow. The countercurrent flow, shown in Figure 
1 with vertical arrows, is induced by mechanical 
drives as the rotating gas hits stationary obstacles 
inside the rotor (scoop or baffles) and by thermal 
drives, e.g., different temperatures at the end caps of 
the rotor.  

 

FEED

WASTE

PRODUCT

Vacuum system
Magnetic bearing
Product scoop
Rotating baffle

Rotor

Casing

Electromagnetic motor
Waste scoop

Feed injection

Feed and extraction system

 
Figure 1: Countercurrent gas centrifuge (from Benedict et al., 1981) 
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EXPERIMENTAL DATA 
 

The bench plant is composed of an ultracentrifuge 
and a UF6 container, interconnected by pipes and 
valves, where instruments and control valves are 
properly located to control and to monitor the whole 
process of injection and extraction of the process gas 
UF6 in the ultracentrifuge. The operational condition 
is defined by the pressures in the feed pF, product pP 
and output of the waste pW lines; by the feed flow F 
and extractions of the product P and waste W; or by 
the cut relationship θ. Under each condition, samples 
are collected for verification of the separation 
obtained by the measures of the abundance ratio of 
the enriched and depleted streams, RP and RW, 
respectively. An isotope separation test consists in the 
operation of an ultracentrifuge under different 
operational conditions, defined by three of the process 
variables (the feed flow F, the pressure of the 
extraction product header pP and the cut θ), as shown 
in Figure 2. Thus, several groups of data are 
generated and each of them is denominated a 

separation experiment. They are composed of the 
control variables that define the operational condition; 
the other process variables, which are the observed 
answers response; and the respective separation 
parameters, calculated with Eqs. (1) to (6). These 
experiments can be divided into groups of 
experiments obtained under similar conditions.  
 Seven hundred and ninety-one experiments were 
performed; however some were eliminated due to 
conditions insufficient for sample analysis, resulting in a 
group of 764 experiments. The test was programmed to 
use the cascade design (this separation technology uses a 
cascade system of ultracentrifuges), covering the whole 
domain of interest for these variables, consisting of eight 
values of feed flow F, seven values of cut θ and five 
values of pressure pP. These data were organized and 
analyzed according to conventional statistical 
procedures, taking into consideration the macroscopic 
mass balance, cluster analysis and the statistical analysis 
of the errors in the experimental results, as described 
below. Then, a neural network technique was employed.   

 

 
Figure 2: Scheme of isotope separation test in a gas centrifuge 

 
 
Macroscopic Mass Balance 
  

During the isotope separation test, the 
macroscopic mass balance was constantly verified by 
comparing the cut obtained through measurement of 
flow product waste θ = P/(P+W) and the cut obtained 

from the abundance ratio 
( )
( )

( )
( )

F W P

P W F

R R R 1
R R R 1

− +
θ = ⋅

− +
, 

resulting from Eq. (5). Experiments where the 
difference between these two cut values was greater 
than 0.03 were regarded and should be repeated. This 
procedure is necessary due to the possibility of an 
error in the sampling procedure, which uses an 
external element (the sample vessel) and bypasses the 
material flow coming from the ultracentrifuge to the 

sampling system, which may disturb the steady-state 
ultracentrifuge condition. 
 Application of this procedure, to the complete 
group of experiments, aimed to the experiments with 
gross errors. Those 176 experiments from the original 
data set were excluded, because they did not obey the 
mass balance. Thus, the experimental data set 
remained with 588 experiments. 
 
Statistical Analysis of the Errors 
 
§ Statistical Analysis by Hypothesis Test 
 
 The 588 remaining experiments were clustered by 
process primary variables F and θ; then RP and RW 
averages were  obtained.  These  experiments  were  
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divided into 158 groups. Thus, the error of the 
experimental data was calculated in relation to these 
averages. For example, if a given group has three 
samples (three experiments), one has an average for 
RP of RPavgj and eRpi is the difference between RPi and 
RPavgj , such that: 
RPi - RPavgj = eRpi  , where i = 1,....n  and n = data set 
with 588 experiments j = 1,...m and m = 158 groups 
The same approach for RW was followed.  
 The analysis was then conducted for the errors in 
RP (eRp) and in RW (eRw).  
 The resulting errors were assumed to be a random 
sample of normal random variables eRp and eRw, 
where eRpavg and eRwavg are the averages: 
 

n
Rpi

Rpavg
i 1

e
e

n
=

= ∑ , 
n

Rwi
Rwavg

i 1

e
e

n
=

= ∑           (8) 

 
 The statistical test, referred to as the extreme 
deviate statistic, involves the difference between the 
extreme value and the sample mean value, where YRp 
and YRw are defined as the residual: 
 

Rpi Rpi RpavgY e e= − ,    Rwi Rwi RwavgY e e= −     (9) 

 
 Thus, the statistical analysis was performed based 
on a hypothesis test for means, which involves a 
confidence interval estimate with a confidence level of 
98%, and Anscombe suggests the following rules, 
giving c implicitly in terms of t in Himmelblau 
(1970):  
 

1
2

0
2

(v v 1)0
2 10 2

nc (v v 1)
t

v(v v nc / v)
+ −

α
−

 + −
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      (10) 

 
and explicitly by the following approximate relation 
in terms of the F distribution: 
 

( ) ( )
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1 q
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n 1 3F 1 1
−

−
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   (11) 

 
 Using this procedure, 15 experiments were 
suspected to contain gross errors in eRp, and nine  
in eRw. 
 Table 1 shows the coded number of the 
experiments detected by the statistical analysis. 
 
§ Cluster Analysis  
  

The original data set was submitted to a cluster 
analysis. It was subdivided into groups where two of 
the control variables were constant, and each 
response was analyzed through graphical inspections 
as a function of the third control variable. The 
analysis evaluated of the response obtained in terms 
of the separation power δU for each experiment,  
since this is the most significant variable in the 
analysis of the separation performance of an 
ultracentrifuge. 
 The following variables are used: the feed flow F 
at eight levels, cut θ at seven levels and the pressure 
in the product extraction pP at five levels. When a 
different result of the separation power δU is 
observed in a block of similar data, the corresponding 
experiment may be rejected. Points that are dispersed 
in relation to the tendency lines were detected in each 
cluster analysis performed. Figure 3 shows one of 
these analyses. 
 The general behavior of the separation power δU 
as a function of the feed flow F, cut θ or pressure in 
the product line pP, keeping constant two of these 
variables, is known and has been presented by 
Migliavacca et. al. (1999 and 2002). 
 The five suspect experiments detected by cluster 
analysis are shown in Table 1. 

 
Figure 3: Behavior of the separation power δU as a function of the feed flow F 

with cut θ and product pressure kept constant (normalized values) 
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Table 1: The coded numbers of the experiments considered  
suspect by the statistical and cluster analysis 

 
eRp eRw Cluster 
347 248 415 
415 251 423 
423 252 537 
424 253 689 
537 260 732 
746 423 - 
768 459 - 

- 756 - 
- 732 - 

 
NEURAL NETWORKS 

 
 Neural networks are one of the fastest growing 
areas of artificial intelligence in chemical and nuclear 
engineering. Their main applications are in fault 
diagnosis, dynamic modeling and control of chemical 
processes (Bhat and McAvoy, 1990; Hoskins and 
Himmelblau, 1988) and in solving nonlinear 
optimization problems (Nascimento & Giudici, 1998; 
Nascimento et al., 2000), among others. 
 Artificial neural networks are made up of highly 
interconnected layers of simple neuron like nodes. The 
neurons act as nonlinear processing elements within the 
network. Of the many existing artificial neural network 
paradigms, the three-layer feed-forward neural network 
consisting of an input layer, a hidden layer and an output 
layer, is the most widely used in process modeling. The 
input layer consists of ni+1 neurons, where ni is the 
number of input variables, and there is no processing in 
this layer. Besides the inputs, a bias is given to the 
network. The number of neurons in the hidden layer is 
defined by the user. According to Pollard et al. (1992), 
the precision is only slightly sensitive to the number of 
neurons in the hidden layer after a minimum value. The 
output layer consists of a number of neurons equivalent 
to the number of outputs of the process. The 
interconnections between a set of artificial neurons are 
called the weights of the neural model, which are 
calculated iteratively using a backpropagation  
algorithm, i.e., the steepest descent based optimization 
routine in order to minimize a given objective function 
(Rumelhart & McClelland, 1986). The computations are 
carried out over the entire network, except the input 
layer. The mapping of each unit is in terms of the 
combination of all its inputs, followed by the application 
of a nonlinear function, called the activation function. 
 The application of neural networks in the 
simulation of chemical and nuclear processes, 
specifically in isotope separation with the gas 
ultracentrifuge, is of great interest due to the 
nonlinearity of these processes (Migliavacca et. al., 
1999 and 2002; Migliavacca, 1999). The success of 

this kind of modeling depends heavily on knowledge 
of the main variables affecting the process and the 
availability of a good data base with the necessary 
information on the desired domain. This work uses 
this technique of data treatment to identify the outliers 
based on the scheme of modeling by neural network 
defined by Migliavacca (1999) for data sets. The 
software for training the neural network was 
developed in FORTRAN by the Laboratory of 
Process Simulation and Control of the Departament 
of Chemical Engineering at the University of São 
Paulo (Nascimento, 1996). All data were included in 
the training data set and during the training process 
several thousand iteration were performed. 
 Conduction of the experiments took several 
months, and a worsening of the calibration of some 
instruments (the flow meters) occurred. Around the 
experiments coded 294 to 308, a severe error was 
detected through verification of the mass balance, and 
thus, the instruments were recalibrated. The same 
problem occurred after experiment number 604. 
These problems were found in using the neural 
network. Figures 4 and 5 show the error between the 
experimental and calculated values, in sequential 
order. These graphics show three different regions of 
experiments. Thus, the data set was divided into three 
groups of experiments, for the three different bias 
observed in the sequential experimental residues: 
§ First group: from experiment number 1 to 294  
§ Second group: from experiment number 308 to 604  
§ Third group: from experiment number 605 to 788 
  The points where errors between the experimental and 
calculated data appear to be scattered far from the majority 
of the values are probably outliers (Bülau et al., 1999). 
 The residues of the first training run were 
analyzed by application of the statistical test 
described above, according to Himmelblau (1970). 
 The procedure was repeated several times until the 
scattered data showed no more abnormal points. 
Table 2 shows the results of this methodology and 
Table 3 shows the coded number of points eliminated 
from each run for the three groups in the data set. 
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Figure 4: Residual YRp of the experimental data in sequential order 

 

 
Figure 5: Residual YRw of the experimental data in sequential order 

 
Table 2: Hypothesis test for means 

 
Groups 1 2 3 

No of points 239 236 113 
C 3.100919 3.100468 3.061339 
Variable eNRP eNRW eNRP eNRW eNRP eNRW 
Minimum -0.0143 -0.01022 -0.02127 -0.01051 -0.01102 -0.01463 
Maximum 0.01175 0.00871 0.02701 0.0089 0.01534 0.01132 
Mean -0.001195 -0.00656 0.000581 0.000354 0.000643 0.000192 
Std dev  S 0.004680 0.003247 0.005261 0.002743 0.004835 0.004235 
Mean + c*S 0.013325 0.009412 0.015731 0.008857 0.015444 0.013155 
Mean - c*S -0.015715 -0.010724 -0.016893 -0.008149 -0.014158 -0.012771 

 
Table 3: The coded number of experiments eliminated from each run for the three groups 

 
Run 1st group 2nd  group 3rd  group 

312       423 - 
377       459 - 
414       537 - 1 0 

415 641 
2 - 376       428 0 
3 - 311       418 - 
4 - 309       416 - 
5 - 0 - 
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Applying the neural network to the first group in 
the data set, corrected previously to include a bias, no 
suspect experiment (with gross error) was detected, 
as shown in Figures 6a and 6b. Using the same 
methodology for the second group, seven experiments 
with gross error in the first run were detected, as 
shown in Figures 7a and 7b. These seven points were 
excluded from the data set and then the neural 
network was applied again. In the second run, two 
additional experiments with gross error were 
identified and eliminated from the data set. Figures 8a 
and 8b show this. The same procedure was followed 
until no experiment with gross error was detected. A 
total of 13 experiments were eliminated. The third 
group of experiments was carried out under extreme 

experimental conditions. Under these conditions, the 
experimental process error was higher than it was for 
the two previous groups. Only one experiment was 
eliminated, as shown in Figures 9a and 9b.  
 Thus, after the neural network analysis for the 
three groups, a new, unique data set was formed with 
574 experiments. This means that 14 suspect 
experiments were eliminated. Four of them are 
justified by cluster and statistical analysis. Four 
others experiments, that were identified in the first 
run, can be justified by small deviation in the steady 
state conditions defined. The neural network 
approach showed the capability to identify two 
different classes of errors: instrument bias and 
outliers.  

 
 
 

 
Figure 6a: Residual YRp of the experimental data in sequential  

order for the first group in the first run 
 
 
 

 
Figure 6b: Residual YRw of the experimental data in sequential  

order for the first group in the first run 
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Figure 7a: Residual YRp of the experimental data in sequential  

order for the second group in the first run 
 

 
Figure 7b: Residual YRw of the experimental data in sequential  

order for the second group in the first run 
 

 
Figure 8a: Residual YRp of the experimental data in sequential  

order for the second group in the second run 
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Figure 8b: Residual YRw of the experimental data in sequential  
order for the second group in the second run 

 

 
Figure 9a: Residual YRp of the experimental data in sequential  

order for the third group in the first run 
 

 
Figure 9b: Residual YRw of the experimental data in sequential  

order for the third group in the first run 
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CONCLUSIONS 
 

 The neural network model has been shown to be a 
very attractive tool for identifying systematic and 
gross error. The statistical methods employed 
identified some experiments suspected of being 
outliers. A direct comparison between the statistical 
analysis employed in this work and neural network 
analysis was not possible, since only the NN was able 
to identify groups with different bias. Statistical 
analysis of the points with bias is not reliable. 
 The process operation of an ultracentrifuge is very 
complex. Under many conditions high variability may 
occur. Some abnormal results may appear and can be 
misleading with gross error. In this case, all the 
results from any technique employed must be verified 
by of the research staff.  
 
 

NOMENCLATURE 
 

eRp   error in abundance ratio of the product 
eRw  error in abundance ratio of the waste 
F   feed mass flow 
n   size of the sample 
P   product mass flow 
pF   pressure in the feed line 
pP   pressure in the product line  
pW   pressure in the waste line  
RP   abundance ratio of the product 
RW  abundance ratio of the waste 
v   degrees of freedom 
W   waste mass flow 
 

xF   light isotope concentration in the feed 
flow 

xP   light isotope concentration in the 
product flow 

xP   light isotope concentration in the waste 
flow 

YRp 
  

residual in abundance ratio of the 
product 

YRw 
  

residual in abundance ratio of the 
waste 

 
Subscripts  
 

avg  pertain to average  
i   pertain to the indices of the sample 
j   pertain to the indices of the group of 

samples 
 

Greek Symbols 
 
θ  θ  cut (= P/F) 
α   separation factor (= RP/RW) 
β   head separation factor (= RP/RF) 
γ   tail separation factor (= RF/RW) 
δU   separation power 
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