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Abstract - Isotope separation with a gas centrifuge is a very complex process. Development and
optimization of a gas centrifuge requires experimentation. These data contain experimental errors, and like
other experimental data, there may be some gross errors, al'so known as outliers. The detection of outliersin
gas centrifuge experimental data is quite complicated because there is not enough repetition for precise
statistical determination and the physical equations may be applied only to control of the mass flow.
Moreover, the concentrations are poorly predicted by phenomenological models. This paper presents the
application of a three-layer feed-forward neural network to the detection of outliers in analysis of performed
on avery extensive experiment.
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INTRODUCTION

Any experimental data set has an associated error,
which may be systematic, random or, in most cases,
both. Correct use of these experimental data requires
a careful analysis of the associated errors, which
indicates the reproducibility, the representativeness
and the reliability of the data obtained. However, this
analysis can be an arduous task in the case of avery
complex process, where uncontrolled or unmonitored
parameters influence the process or where large
stochastic deviations are observed, resulting in a very
dispersed data set (Alves and Nascimento, 2002)

Several procedures have been proposed for the
treatment and anaysis of experimental data sets,
based on statistics or on the physics of the process

*To whom correspondence should be addressed

(Himmelblau, 1970; Placido and Loureiro, 1998).
Nonetheless, those techniques can be difficult to
apply. For instance, when the physics of the process
is not very well known, i.e, it cannot be totally
represented by means of eguations, or when there is
little data under any operationa condition. Many
processes, such as ultracentrifugation uranium
enrichment, have these characteristics (Migliavacca,
1999).

The detection of gross errors will be analyzed by
the application of a neural network to an experimental
data set from isotope separation tests of
ultracentrifuges. These data originated in the process
of evauation and optimization of ultracentrifuges
developed at the Centro Tecnolégico da Marinha em
S&0 Paulo (CTMSP) with the collaboration of the
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Instituto de Pesquisas Energéticas e Nucleares
(IPEN). In an isotope separation test of a centrifuge,
UFs gas with a known isotope composition is sent
through the centrifuge.. The operation is performed
for severa flow conditions as well as at severd
pressures in the feed, product and waste lines
(enriched material in **U and depleted material in
25U, respectively). Similar results on differences due
to technological changes, were published by Zippe
(1960) and Jordan (1966).

THEORETICAL BASIS

The numerical estimate of the separation
performance of a centrifuge requires calculation of
interna flow, whose solution is only feasible through
mathematical simplifications (Kai, 1989; Olander,
1972 and 1981; Soubbaramayer, 1979). On the other
hand, it is very difficult to relate the parameters used
to describe numericaly the countercurrent with the
physical devices used in the centrifuge (Kai, 1989;
Migliavacca et d., 1999; Migliavacca, 1999). Sinceit is
a process where by the gas flows a supersonic speeds,
the resulting flow is very sengtive to variations in the
characterigtics of centrifuge congtruction, and even to
differences possible mechanical precison.

| sotope Separ ation

Separation of the uranium isotope like separation
of other stable isotopes, is described by a generd
theory that is valid for any binary mixture. Due to the
smilar physica and chemical properties of the
isotopes, separation is usualy implemented in
sequential stages, known as the isotope separation
cascade. This theory of separation of the uranium
isotope is described by Cohen (1951), Benedict et a.
(1981) and Jordan (1966).

The smallest element that separates isotopesin an
enrichment facility is called a separation unit. In the
case of the gas ultracentrifuge, the separation unitisa
single ultracentrifuge. Some  ultracentrifuges
connected in a pardld arrangement congitute a
cascade stage. All the separation units in a stage have
inputs with the same isotopic concentration and
produce equal outputs of the enriched and of the
depleted fractions. The connection of a series of
stages costitute a cascade.

A simple separation element has one input feed
flow F of the isotopic binary mixture with the
composition xg of the light isotope (**U) and two
output flows, the enriched product P with
composition xp and the depleted waste W with
composition xyw. The abundance ratio R is defined by

the relation between the composition of the light
isotope and the composition of the heavy isotope
[R=x/(1-x)]. The main parameters of the separation
unit are defined as follows:

Separation factor:

_Rp =Xp(1' Xw)
Rw xw(l- xp)

a =b" g (1)

Enrichment factor:
—) )
Tail factor:

_ Re _xe(1- xw)
g_ =
Rw  Xw (1 Xg)

3

A case in which the enrichment and tail factors are
the same, b=g, thus a=b? is caled a symmetric
Separation process.

Another important parameter is the cut g, defined
as the relation between the product and the feed flow:

=P (4)
P+W

q:

Tlo

which may be written as a function of the
composition

Xg-X
g=—"—"% (5)
XP' XW

The separation unit may be described by the
separation parameters a, b and g and by the flow
variables F and g (or P and W), but none of these
variables aone represent the separation performance
of the separation unit. Thus a function must be
defined to indicate the separative capacity of the
separation unit, which takes into account the
separation and the flow parameters, referred to as
separative power dU, defined by Dirac and described
by Cohen (Cohen, 1951). This function uses the idea
of the vaue of the flow (U) that represents the value
acquired by a materia that is been processed in a
separation unit. The value of the flow U is given by
multiplying the mass flow and the value function
V(). Therefore, a separation element has three flows
with different values. Ug = FV(Xg), Up = PV(Xp)
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and Uy = WV(xy) in the feed, product and waste
flows. The separative power dU is then obtained by
the variation in materia introduced by the separation
unit, given by

dU = PV (xp) + WV (X ) - FV(Xp) (6)

The value function V(x) is a function of composition
X, isdimensionless and is given by

X
V(X) = (2X - 1) Inﬁ (7)

This function is symmetric in x = 0.5, where
V(0.5) = 0. For the other composition values, it is
positive and increases, going to infinity as x goesto O
or 1. When function V(x) is used the separative
power dU in the separation unit is independent of the
concentration of the material being processed. The
separative power dU was internationally adopted as
the parameter to quantify the capacity of separation
units and facilities.

Uranium Enrichment with a Gas Ultracentrifuge

A gas ultracentrifuge, as schematized in Figure 1,
is composed of a long, thin vertical cylinder (rotor),

rotating around its axis a a high velocity inside a
case under vacuum. The process gas, assumed to be a
binary isotopic mixture with °UFg and 2®UFs, inside
the rotor is subjected to a ultracentrifuge force that is
one thousand times stronger than gravity. A pressure
gradient is edtablished in the radia direction,
increasing from the center to the rotor wall. That
pressure distribution is dightly dissmilar for the
different isotopes because it is proportional to mass.
This results in a partia separation in the radia
direction. A countercurrent axia flow increases the
radial separation.

The separation performance of a gas
ultracentrifuge depends on (Avery and Davis, 1973;
Benedict et a., 1981) (a) the characteristics of the
ultracentrifuge, given by the angular velocity, length
and diameter of the rotor; (b) the operationa
conditions, given by the feed and extraction mass
flows and by the mass hold-up (indirectly measured
by the pressure at the product or a the waste
extraction); (c) the axia feed position inside the rotor
and (d) the strength and profile of the countercurrent
axia flow. The countercurrent flow, shown in Figure
1 with vertica arrows, is induced by mechanical
drives as the rotating gas hits stationary obstacles
inside the rotor (scoop or baffles) and by thermal
drives, e.g., different temperatures at the end caps of
the rotor.

} WASTE
_ PRODUCT
|- Vacuum system
ﬁ Magnetic bearing
— || Product scoop
e “i Rotating baffle
1 l Rotor
1 j ‘ -
{»u Feed injection
1 j “'H Feed and extraction system
| Waste scoop
I!!I!- | Electromagnetic motor
[ |

Figure 1. Countercurrent gas centrifuge (from Benedict et al., 1981)
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EXPERIMENTAL DATA

The bench plant is composed of an ultracentrifuge
and a UFg container, interconnected by pipes and
valves, where instruments and control valves are
properly located to control and to monitor the whole
process of injection and extraction of the process gas
UFs in the ultracentrifuge. The operationa condition
is defined by the pressures in the feed pg, product pp
and output of the waste pw lines; by the feed flow F
and extractions of the product P and waste W; or by
the cut relationship g. Under each condition, samples
are collected for verification of the separation
obtained by the measures of the abundance ratio of
the enriched and depleted streams, Rp and Ry,
respectively. An isotope separation test consists in the
operation of an ultracentrifuge under different
operational conditions, defined by three of the process
variables (the feed flow F, the pressure of the
extraction product header p- and the cut q), as shown
in Figure 2. Thus, several groups of data are
generated and each of them is denominated a
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separation experiment. They are composed of the
control variables that define the operational condition;
the other process variables, which are the observed
answers response; and the respective separation
parameters, calculated with Egs. (1) to (6). These
experiments can be divided into groups of
experiments obtained under similar conditions.

Saven hundred and ninety-one experiments were
performed; however some were diminated due to
conditions insufficient for sample anaysis, resulting in a
group of 764 experiments. The test was programmed to
use the cascade design (this separation technology uses a
cascade system of ultracentrifuges), covering the whole
domain of interest for these variables, condgting of eight
values of feed flow F, seven vaues of cut q and five
values of pressure pp. These data were organized and
andyzed according to conventiond — datistical
procedures, teking into condideration the macroscopic
mass baance, cluster andysis and the statisticd analysis
of the errors in the experimenta results, as described
below. Then, aneura network technique was employed.

F
> Rp .
R GAS
CENTRIFUGE | Fw
- I

L 4

Eqs)

all

T
L

Figure 2: Scheme of isotope separation test in a gas centrifuge

M acr oscopic M ass Balance

During the isotope separation test, the
magcroscopic mass balance was constantly verified by
comparing the cut obtained through measurement of
flow product waste q = P/(P+W) and the cut obtained
(Re- Rw) (Rp+1)
(Re- Rw) (Re+1)’
resulting from Eq. (5). Experiments where the
difference between these two cut values was greater
than 0.03 were regarded and should be repeated. This
procedure is necessary due to the possibility of an
eror in the sampling procedure, which uses an
externa element (the sample vessel) and bypasses the
material flow coming from the ultracentrifuge to the

from the abundance ratio q=

sampling system, which may disturb the steady-state
ultracentrifuge condition.

Application of this procedure, to the complete
group of experiments, aimed to the experiments with
gross erors. Those 176 experiments from the original
data set were excluded, because they did not obey the
mass balance. Thus, the experimenta data set
remained with 588 experiments.

Statistical Analysis of theErrors
= Statistical Analysis by Hypothesis Test

The 588 remaining experiments were clustered by
process primary variables F and q; then Rp and Ry
averages were obtained. These experiments were
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divided into 158 groups. Thus, the eror of the
experimental data was calculated in relation to these
averages. For example, if a given group has three
samples (three experiments), one has an average for
Re of Reag and ey is the difference between Ry and
Repayg » such that:
Rei - Reag = &rpi , Where i =1,...n and n = data set
with 588 experimentsj = 1,...m and m = 158 groups
The same approach for Ry was followed.

The analysis was then conducted for the errors in
Re (&rp) and in Ry (€rw)-

The resulting errors were assumed to be a random
sample of normal random variables ez, and ery,
where ezpag and erwayg are the averages:

n n
) eRpi

— _ 8 Eryj
Croavg = Al 0 CRwag =a ~ : (8)
i=1 i=1

The datistical test, referred to as the extreme
deviate dtatistic, involves the difference between the
extreme value and the sample mean value, where Yg,
and Yry are defined as the residual:

YRpi = eRpi - eRpavgv YRwi = €Rwi - eI'-\’wavg ©)

Thus, the statistical analysis was performed based
on a hypothesis test for means, which involves a
confidence interval estimate with a confidence level of
98%, and Anscombe suggests the following rules,
giving ¢ implicitly in terms of t in Himmelblau
(1970):

& nc2(v+v0 -1 9% @Vorv-9 (10)

V(V+vg- ncZIV)B 1—%

and explicitly by the following approximate relation
in terms of the F distribution:

6&1#$ 3Fl—q iéé
C»o—a $—r - (11)
&no G1+g3m - 1)/(n+007

Using this procedure, 15 experiments were
suspected to contain gross errors in eg,, and nine
in erw.

Table 1 shows the coded number of the
experiments detected by the statistical analysis.

= Cluster Analysis

The original data set was submitted to a cluster
analysis. It was subdivided into groups where two of
the control variables were constant, and each
response was analyzed through graphical inspections
as a function of the third control variable. The
analysis evauated of the response obtained in terms
of the separation power dU for each experiment,
since this is the most significant variable in the
analysis of the separation performance of an
ultracentrifuge.

The following variables are used: the feed flow F
a eight levels, cut g a seven levels and the pressure
in the product extraction pP at five levels. When a
different result of the separation power dU is
observed in ablock of similar data, the corresponding
experiment may be rejected. Points that are dispersed
in relation to the tendency lines were detected in each
cluster anaysis performed. Figure 3 shows one of
these analyses.

The generd behavior of the separation power dU
as a function of the feed flow F, cut g or pressure in
the product line pe, keeping constant two of these
variables, is known and has been presented by
Migliavacca et. a. (1999 and 2002).

The five suspect experiments detected by cluster
analysisare shownin Table 1.
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Figure 3: Behavior of the separation power dU as afunction of the feed flow F
with cut g and product pressure kept constant (hormalized values)
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Table 1: The coded numbers of the experiments considered
suspect by the gatistical and cluster analysis

eRp eRw Cluster
347 248 415
415 251 423
423 252 537
424 253 689
537 260 732
746 423 -
768 459

- 756

732

NEURAL NETWORKS

Neural networks are one of the fastest growing
areas of artificia intelligence in chemical and nuclear
engineering. Their main applications are in fault
diagnoss, dynamic modeling and control of chemical
processes (Bhat and McAvoy, 1990; Hoskins and
Himmelblau, 1988) and in solving nonlinear
optimization problems (Nascimento & Giudici, 1998;
Nascimento et al., 2000), among others.

Artificia neura networks are made up of highly
interconnected layers of smple neuron like nodes. The
neurons act as nonlinear processing eements within the
network. Of the many exigting artificid neurd network
paradigms, the three-layer feed-forward neural network
congsting of an input layer, a hidden layer and an output
layer, is the most widely used in process modedling. The
input layer conggs of ni+1 neurons, where ni is the
number of input variables, and there is no processing in
this layer. Beddes the inputs, a bias is given to the
network. The number of neurons in the hidden layer is
defined by the user. According to Pollard et a. (1992),
the precision is only dightly sendtive to the number of
neurons in the hidden layer after a minimum vaue. The
output layer conssts of a number of neurons equivalent
to the number of outputs of the process. The
interconnections between a set of atificia neurons are
cdled the weghts of the neurd modd, which are
cdculated iteratively usng a backpropagation
dgorithm, i.e, the steepest descent based optimization
routine in order to minimize a given objective function
(Rumdhart & McCleland, 1986). The computations are
caried out over the entire network, except the input
layer. The mapping of each unit is in terms of the
combination of dl itsinputs, followed by the application
of anonlinear function, called the activation function.

The application of neural networks in the
simulation of chemical and nuclear processes,
gpecifically in isotope separation with the gas
ultracentrifuge, is of great interest due to the
nonlinearity of these processes (Migliavacca et. al.,
1999 and 2002; Migliavacca, 1999). The success of

this kind of modeling depends heavily on knowledge
of the main variables affecting the process and the
availability of a good data base with the necessary
information on the desired domain. This work uses
this technique of data trestment to identify the outliers
based on the scheme of modeling by neura network
defined by Migliavacca (1999) for data sets. The
software for training the neura network was
developed in FORTRAN by the Laboratory of
Process Simulation and Control of the Departament
of Chemical Engineering a the University of S&o
Paulo (Nascimento, 1996). All data were included in
the training data set and during the training process
several thousand iteration were performed.

Conduction of the experiments took severa
months, and a worsening of the cdibration of some
instruments (the flow meters) occurred. Around the
experiments coded 294 to 308, a severe error was
detected through verification of the mass balance, and
thus, the instruments were recalibrated. The same
problem occurred after experiment number 604.
These problems were found in using the neura
network. Figures 4 and 5 show the error between the
experimental and calculated values, in sequentia
order. These graphics show three different regions of
experiments. Thus, the data set was divided into three
groups of experiments, for the three different bias
observed in the sequentia experimental residues:
= First group: from experiment number 1 to 294
= Second group: from experiment number 308 to 604
= Third group: from experiment number 605 to 788

The points where errors between the experimentd and
cdculaed data gppear to be scattered far from the mgority
of the vadues are probably outliers (Bllau et d., 1999).

The residues of the first training run were
analyzed by application of the datistica test
described above, according to Himmelblau (1970).

The procedure was repeated severa times until the
scattered data showed no more abnorma points.
Table 2 shows the results of this methodology and
Table 3 shows the coded number of points eliminated
from each run for the three groups in the data set.
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Table 2: Hypothesistest for means
Groups 1 2 3
N°of points 239 236 113
c 3.100919 3.100468 3.061339
Variable EnRP EnRW EnRP ENRW enrpP Enrw
Minimum -0.0143 -0.01022 -0.02127 -0.01051 -0.01102 -0.01463
Maximum 0.01175 0.00871 0.02701 0.0089 0.01534 0.01132
Mean -0.001195 -0.00656 0.000581 0.000354 0.000643 0.000192
Stddev S 0.004680 0.003247 0.005261 0.002743 0.004835 0.004235
Mean + c*S 0.013325 0.009412 0.015731 0.008857 0.015444 0.013155
Mean - ¢*S -0.015715 -0.010724 -0.016893 -0.008149 -0.014158 -0.012771

Table 3: The coded number of experiments eliminated from each run for the three groups

Run 1% group 2" group 39 group
312 423 -
377 459 -
1 0 414 537 -
415 641
2 - 376 428 0
3 - 311 418 -
4 - 309 416 -
5 - 0 -
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Applying the neural network to the first group in
the data set, corrected previoudy to include a bias, no
suspect experiment (with gross error) was detected,
as shown in Figures 6a and 6b. Using the same
methodology for the second group, seven experiments
with gross error in the first run were detected, as
shown in Figures 7a and 7b. These seven points were
excluded from the data set and then the neurd
network was applied again. In the second run, two
additional experiments with gross error were
identified and eiminated from the data set. Figures 8a
and 8b show this. The same procedure was followed
until no experiment with gross error was detected. A
total of 13 experiments were eliminated. The third
group of experiments was carried out under extreme

experimental conditions. Under these conditions, the
experimental process error was higher than it was for
the two previous groups. Only one experiment was
eliminated, as shown in Figures 9a and 9b.

Thus, after the neural network anaysis for the
three groups, a new, unique data set was formed with
574 experiments. This means that 14 suspect
experiments were diminated. Four of them are
justified by cluster and datistical analysis. Four
others experiments, that were identified in the first
run, can be judtified by small deviation in the steady
dstate conditions defined. The neurd network
approach showed the capability to identify two
different classes of errors. instrument bias and
outliers.

0.0500 1
0.0400 -

group 1

0.0300

0.0200

-0.0200

5 ST N —
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Figure 6a: Residual Yg, of the experimental datain sequential
order for thefirst group in the first run
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Figure 6b: Residual Yr,, of the experimental datain sequentia
order for thefirst group in the first run
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CONCLUSIONS

The neural network model has been shown to be a
very attractive tool for identifying systematic and
gross eror. The datisticd methods employed
identified some experiments suspected of being
outliers. A direct comparison between the satistical
analysis employed in this work and neura network
analysis was not possible, since only the NN was able
to identify groups with different bias. Statistical
analysis of the points with biasis not reliable.

The process operation of an ultracentrifuge is very
complex. Under many conditions high variability may
occur. Some abnormal results may appear and can be
misleading with gross error. In this case, al the
results from any technique employed must be verified
by of the research staff.

NOMENCLATURE

€rp error in abundance ratio of the product

w error in abundance ratio of the waste

F feed mass flow

n size of the sample

P product mass flow

Pr pressure in the feed line

Pe pressure in the product line

Pw pressure in the waste line

Rp abundance ratio of the product

Rw abundance ratio of the waste

% degrees of freedom

W waste mass flow

XF light isotope concentration in the feed
flow

Xp light isotope concentration in the
product flow

Xp light isotope concentration in the waste
flow

Yro residual in abundance ratio of the
product

Y rw residual in abundance ratio of the
waste

Subscripts
avg pertain to average

[ pertain to the indices of the sample
] pertain to the indices of the group of
samples

Greek Symbols

q g cut(=PF)

a separation factor (= Rp/Rw)

b head separation factor (= Ry/Rg)

g tail separation factor (= Re/Rw)

du Separation power
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