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Abstract - The freezing process is considered as a propagation problem and mathematically classified as an 
“initial value problem.” The mathematical formulation involves a complex situation of heat transfer with 
simultaneous changes of phase and abrupt variation in thermal properties. The objective of the present work 
is to solve the non-linear heat transfer equation for food freezing processes using orthogonal collocation on 
finite elements. This technique has not yet been applied to freezing processes and represents an alternative 
numerical approach in this area. The results obtained confirmed the good capability of the numerical 
method, which allows the simulation of the freezing process in approximately one minute of computer time, 
qualifying its application in a mathematical optimising procedure. The influence of the latent heat released 
during the crystallisation phenomena was identified by the significant increase in heat load in the early 
stages of the freezing process.    
Keywords: Freezing process; Modelling; Heat load; Numerical method. 

 
 
 

INTRODUCTION 
 

Freezing is a well-known preservation method 
widely used in the food industry. Realistic 
mathematical approaches to freezing process 
predictions, however, were developed only a few 
decades ago. The freezing process may be 
considered as a propagation problem, also called a 
“march problem,” and mathematically known as an 
“initial value problem.” The mathematical 
formulation comprises a complex condition of heat 

transfer simultaneously with phase change (Stefan 
problem), variation in thermal properties and 
sometimes anisotropy due to the food structure 
(Delgado and Sun, 2001). The models used to predict 
freezing time vary from analytical simple equations 
to numerical methods. The most realistic physical 
model for freezing is that of non-linear unsteady heat 
conduction with variable thermal properties and 
surface convective cooling (Cleland et al., 1987). 

Food engineers are interested in the prediction of 
cooling and freezing time in order to estimate 
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refrigeration requirements for freezing systems and 
to design the equipment necessary for effective and 
rational processing. Minimisation of the energy 
requirement, reliability, safety and quality of the 
product must also be considered. In the quality 
enhancement process, maximisation of consumer 
acceptability can be used to optimise process 
parameters such as rate of freezing or storage 
conditions (Shewfelt et al., 1997).  

It is recognised that the quality of frozen products 
is largely dependent on the rate of freezing. Slow 
freezing generally causes undesirable higher ice 
crystals to form exclusively in extracellular areas, 
while high freezing rates produce small crystals, 
evenly distributed throughout the tissues. As a result 
the equipment designer has to compromise between 
a freezing rate that minimises process cost and 
operating conditions that assure appropriate product 
quality (Delgado and Sun, 2001). 
 
Heat Transfer Models  
 

Numerical methods are regularly used to model 
heat transfer during food freezing processes. The 
advantage of numerical methods over simple 
equations is that the effects of phase change over a 
range of temperatures, changing thermal properties 
and heterogeneity of food products can be 
considered. If numerical methods are formulated and 
implemented correctly to reduce truncation and 
rounding errors, they are generally considered the 
most accurate, reliable and versatile freezing and 
thawing time prediction methods (Cleland et al., 
1987). 

In numerical methods the heat diffusion equation 
can be expressed in the following two ways (Pham, 
1985):  
 

( ) p
TT C (T) div [k(T) grad(T)]
t

∂
ρ =

∂
     (1a) 

 
and 
 

H div [k(H) grad(T(H))]
t

∂
=

∂
          (1b) 

 
The first equation uses temperature as the only 

dependent variable, while the second one represents 
the enthalpy methods, which have two dependent 
variables, enthalpy being the primary and 
temperature the secondary variable. In the first 
equation, the latent heat is represented by a large but 
finite wide peak of the curve Cp vs. T. If the time 

increments adopted are large, the temperature at the 
node may cross the range of temperatures at which 
freezing occurs in a single step. Thus, it bypasses the 
latent heat load and the total time calculated is 
shorter than the actual one. To avoid this error very 
small time increments must be used. The enthalpy 
method requires either an explicit technique with the 
consequent problem of convergence, or implicit 
procedures in which iteration at each time step is 
used, consuming more computational time.   

The techniques used in numerical methods are 
finite difference (FDM), finite element (FEM), and 
boundary element and finite control volume. The 
first two techniques are most frequently used. The 
potential contribution of the boundary element 
technique is significant, but until now it has only 
been applied to a limited number of food and 
agricultural engineering problems (Puri and 
Anantheswaran, 1993). 

Cleland and Earle (1984) considered various 
finite difference schemes for phase change problems 
and concluded that Lee`s implicit, three-time-level 
scheme was the most accurate. Formulations of both 
FDM and FEM based on Lee`s scheme have been 
developed and implemented to predict freezing and 
thawing for a range of solid geometries (Cleland et 
al., 1987). In order to be able to include volumetric 
expansion during freezing, Sheen and Hayakawa 
(1990) developed a new FDM for irregular domains 
by applying the alternate direction implicit (ADI) 
central difference and finite volume methods. The 
model could be used for simulating different thermal 
processes of heat conduction in foods.  

Several authors have used the finite element 
method. For unidirectional and regular geometry 
problems, FEM does not confer a greater advantage 
than the finite difference technique (Ramaswamy 
and Tung, 1984; Chau and Gaffney, 1990). 
Moreover, by applying the numerical grid generation 
approach, the FDM can be used for irregular 
geometry as effectively as the more complicated 
FEM without sacrificing its simplicity (Ansari, 
1999). Both FDM and FEM are widely used as tools 
to develop simple predictive models.  

An alternative approach to the FEM is the 
boundary-fitted grid (BFG) method used by Califano 
and Zaritzky (1997). The technique was applied to 
simulate the freezing process in two-dimensional 
systems of arbitrary shape. The results indicate 
accuracy similar to that of finite element 
formulation, combined with a very short computer 
time and small memory requirements.   

Another technique involves the use of 
commercial heat transfer packages. Wang and Kolbe 
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(1994) analysed food freezing in a plate freezer by 
using a PC-based finite element package. The 
prediction agreed reasonably well with measured 
data, which validates the applicability of the 
computer program for simulating the freezing 
process.  

Although commercial packages are constantly 
being upgraded, simple and fast predictive methods 
are still preferred by the industry. This may be 
attributed to the difficulties in finding appropriate 
product properties and computational conditions. 
Thus, the development of simple and accessible 
software would be helpful (Delgado and Sun, 2001).    

The objective of the present work is to solve the 
non-linear heat transfer equation for food freezing 
processes using orthogonal collocation on finite 
elements (Finlayson, 1980). This technique has not 
yet been applied to food freezing processes and 
represents an alternative numerical approach in this 
area. The model considers the one-dimensional 
freezing problem as applicable, for instance, to a 
plate freezer.      
 

 
DELINEATION OF THE ONE-DIMENSIONAL 

FREEZING PROBLEM 
 

Most foods have high water content in the form 
of an aqueous solution embebbing a biopolymeric 
matrix. Throughout the freezing process, water is 
gradually transformed into ice crystals, increasing 
the solute concentration of the remaining solution 
and causing a continuous depression of the freezing 
point of the unfrozen matrix. Water and ice differ 
considerably in specific heat, thermal conductivity 
and density, and as a consequence, there is a strong 
dependence of the thermal properties upon the 
freezing temperature. Since food materials freeze 
over a range of temperatures, the associated latent 
heat can be added to the normal heat capacity, 
yielding an equivalent heat capacity. The variation in 
the thermal properties and the decreasing freezing 
temperature of the solution make the process a 
highly non-linear mathematical problem (Saad and 
Scott, 1997).  

Considering the one-dimensional freezing of an 
infinite slab of a food material, a mathematical 
description of the problem can be formulated using 
the one-dimensional transient heat conduction 
equation with variable coefficients and symmetric 
convective boundary conditions, as shown below: 
 

p
T T(T)C (T) k(T)
t x x

∂ ∂ ∂ ρ =  ∂ ∂ ∂ 
 0<x<L, t>0   (2a) 

 
 T(x,0) = Ti,    0<x<L,       t=0                            (2b) 
 

x 0

Tk(T) h(T(0, t) T )
x ∞

=

∂
− = −

∂
,   x=0,    t>0    (2c) 

 

0
x
Tk(T)

Lx
=

∂
∂

−
= ,  x=L,   t>0     (2d) 

 
where T is the temperature, x is the position, t is the 
time, k is the thermal conductivity, ρ is the density, 
Cp is the apparent specific heat, h is the heat transfer 
coefficient and L is the half-thickness of the slab. 
The subscripts i and ∞ indicate respectively the 
initial and freezing plate temperatures. The thermal 
properties are functions of temperature and the basic 
composition of the food.     
 
Thermal Physical Properties 
 

Partially frozen meat products are basically 
constituted of ice, water and dry fibers. The thermal 
physical properties of the product can be calculated 
as a function of frozen water fraction (w), according 
to the cryoscopic depression model obtained by 
Mascheroni and Calvelo (1978): 
  

o

Tw E F
T T

 
= −  − 

              (3a) 

 
where  
 

bX
E 1

X
= − ; 0

0

DRT
F

1000 X
=

λ
 

 
Density 
 

o

o o a

a h

(w)
Y

1 w ( 1)

ρ
ρ =

ρ ρ
+ −

ρ ρ

         (3b) 

 
Apparent Specific Heat 
 

pp po o

po o o

C (w) C wY C

dwY [ C (T T )]
dT

= − ∆ −

λ + ∆ −

            (3c) 
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Thermal Conductivity 
  
The model proposed by Mascheroni et al. (1977) is a 
function of temperature and also consider the 
direction of the fibers inside the meat. Thus, during 
freezing in the radial and parallel directions to the 
fibers, the thermal conductivity is given by  
      

2
h h

2
t

t h

k(w) k (1 )[k

4 (1 )k (1 ) ]
1/k 1/k

= λ + − λ λ +

λ − λ
− λ +

+

       (3d) 

 

where 
 

o h1 1 wY /λ = − − ρ ρ ; 
 

a c
t c

1 (1 k /k )
k k

1 ( 1)
− − α β

=
+ α − β

; 

 
c c a3k /(2k k )α = + ; 

 
o o a

o o a

(1 w)(Y / )
1 w(Y / )

− ρ ρ
β =

− ρ ρ
 

 
Table 1: Fundamental parameters of meat (Yo = 0.7336)  

based on Mascheroni and Calvelo (1980) 
 

Bound water = 0.1965 kg water/kg total solids 
Solute content in the dry matter (D) = 1.455 moles/kg  
Thermal conductivity of unfrozen meat = 0.5057 W/mK 
Thermal conductivity of the fibers = 0.3539 W/mK 
Density of unfrozen meat = 1053 kg/m3 
Specific heat of unfrozen meat = 3.475 kJ/kgK 

 
 
The equations derived by Mascheroni and 

Calvelo (1980) were used to model the thermal 
physical properties of meat as a function of 
temperature. The values of the fundamental 
parameters used are those determined experimentally 
by the authors for a 73.36% total initial moisture 
content and are given in Table 1. The calculated ice 
fraction is given in Table 2 and indicates that the 
freezing starts at -1.1oC and that even at -40oC a 

fraction of the water that corresponds to the bound 
water remains unfrozen.  

The calculated values for the thermal conductivity, 
apparent specific heat and specific gravity of the meat 
under freezing conditions are given in Figure 1a, 1b 
and 1c, respectively. The strong non-linearity at the 
initial freezing temperature of the meat is quite evident 
due to the high ice formation rate, which levels off at 
temperatures lower than -5oC.   

 
Table 2: Equilibrium fraction of ice at different freezing temperatures 

 
Temperature, oC w (kg ice/kg initial water) wi (kg ice/kg meat) 

-1.1 0.040 0.029 
-2.0 0.442 0.324 
-3.0 0.605 0.444 
-4.0 0.687 0.504 
-5.0 0.736 0.540 
-6.0 0.769 0.564 
-7.0 0.792 0.581 
-8.0 0.810 0.594 
-10.0 0.834 0.612 
-20.0 0.883 0.648 
-40.0 0.908 0.666 
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Figure 1: Thermal physical properties of the meat as a function of temperature:  

apparent specific heat (a), thermal conductivity (b), density (c) 
 
 
Numerical Approach 
 
 The heat transfer equations (Equation 2a to 2d) 
can be written in dimensionless form taking the non-
linearity of the thermal physical properties into 
account (Mascheroni and Calvelo, 1980).   
 

2 *
* * *

2
kf k k ∂η ∂ ∂η ∂ η ∂ ∂η

= = + ∂τ ∂ξ ∂ξ ∂ξ ∂ξ∂ξ 
    (4a) 

 
1τ =     1η =      0 1≤ ξ ≤                  (4b) 

 

1ξ =       *k Bi( 1)∂η
= η −

∂ξ
 0τ >                       (4c) 

 

0ξ =   0∂η
=

∂ξ
     0τ >                         (4d)  

 
The related dimensionless variables are   
 

i

i

T T
T T∞

−
η =

−
;  x

L
ξ = ;  o

2
o po

k t
C L

τ =
ρ

                (5) 

*

o

kk
k

= ;   
o

hLBi
k

=   

 
and f*, derived by Mascheroni and Calvelo (1980), 
accommodates the non-linearity of the thermal 
physical properties as a strong function of the local 
temperature and therefore depends on the 
progression of the freezing process:  
 

2
i f i*

i f i

a b/ ( + )-
f

d g/ | ( + )- |
+ η η η η

=
− η η η η

                           (6) 

 
where  
 

p o po o o po o

o o a

a h

o o a

a h

i i o o f i o

a 1 C Y (E F)/C ; b Y F/C T ;

Y
d 1 ( 1)(E F);

Y
g F ( 1);

(T T )/T ; (T T )/T∞

= − ∆ + = λ

ρ ρ
= + − +

ρ ρ

ρ ρ
= −

ρ ρ

η = − η = −

   (7)  
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The heat transfer equation was discretised along 

the spatial position using the numerical method of 
orthogonal collocation on finite elements (Finlayson, 
1980). Initially the orthogonal collocation matrixes, 
Ai,K,l and Bi,K,l, representing the roots of the 
orthogonal polynomial of Jacobi are calculated. 
These matrixes are used as coefficients of the partial 
differential equations describing the freezing 
process, allowing specification of the grid of the 
collocation roots, i, inside each finite element, l, 
indexed by k nodes in the element. Thus it is 
possible to use a flexible number of finite elements 
and collocation roots more compatible with solution 
of the equation system.  

The temperature historic inside the product can be 
expressed according to the following model: 
 

+

=

 η
 η +
 η∂η  =
 ∂τ

η η 
η   

∑

*
i,l

i, k, l k,l*CR 2 i,li,l

* 2k 1
i, k, l k,l i, k, l k, l*

i,l

k ( )
B

f ( )

1 A k ( )(A )
f ( )

     (8) 

 
where 
 
i = 2, CR+2  (CR = number of collocation roots) 
l = 1, FE   (FE = number of finite elements) 
 
The boundary conditions can be described as 
follows:   
 

0ξ =      ( )
CR 2

l,k ,1 k, l 1,1
k 1

A Bi 1
+

=

η = η −∑    0τ >     (9) 

 

1ξ =      
CR 2

FE,k,FE k,FE
k 1

A 0
+

=

η =∑      0τ >   (10) 

 
The heat flow balance and the temperature between 
finite elements are considered as:  
 

+ +

+ + +
= =

η = η∑ ∑
CR 2 CR 2

CR 2,k,l k,l 1,k,l 1 k,l 1
k 1 k 1

A A          (11) 

 
The numerical set-up (Equation 8 to 11) is 

integrated over time applying a numerical solver 
(DASSL) that allows variable step integration, useful 
and necessary in the numerical approach to food 
freezing systems due to the steep change in thermal 

properties. This software also permits the integration 
of the coupled system, simultaneously composed of 
algebraic and of differential equations, enabling 
calculation of the temperature grid as a function of 
time, η(τ)i,l.   

The dimensionless instantaneous heat load (φ) as 
a function of time is evaluated by summation of the 
instantaneous heat load over all the spatial positions 
(xi), using the temperature grid calculated after each 
time step as well as the respective thermal properties 
of the mass element, as shown in Equation (12).   
 

+

= =

 ϕ τ = η τ η τ ∑ ∑
FE CR 2

*
k,l k,l

l 1 k 1

( ) f ( ( ) ) ( )          (12) 

 
Thus, the instantaneous heat load for one 

kilogram of meat can be calculated as follows:  
 

*
k, o po

FE CR 2

1 k 1

[(f ( ( ) ) C ) /

(t) [Temp(k, , t)]](A x)

Temp(k, , t) [Temp(k, , t)]

+

= =

 η τ ρ
 
 φ = ρ δ 
 

ρ 
 

∑ ∑
l

l

l

l l

  (13) 

 
where δx = Lδξ, Temp(k,l,t) = Ti – (Ti – T∞) (η(τ)k,l), 
A = 1.0 / Lρo and ρo and Cpo are the density and 
specific heat of unfrozen meat, respectively.    

The total heat load that evolved in the freezing 
process is evaluated by integration of the 
instantaneous heat load, as indicated in Equation 
(14), making it possible to evaluate the energy spent 
in the freezing operation.   
 

t

0
(t) (t) dtΦ = φ∫                           (14)      

 
 

MODEL VALIDATION 
 
 The model was validated by comparing the 
results with experimental data for meat freezing 
obtained in a plate freezer, as described by 
Mascheroni and Calvelo (1980). Simulations were 
conducted on a Pentium III Processor computer with 
1.1GHz clock and RAM memory of 254Mb. The 
results were expressed as characteristic time of 
freezing, which is defined as the time necessary for 
any internal position to decrease the temperature 
from -1.1oC (the initial freezing temperature) to -7oC 
(the temperature at which 80% total water is frozen) 
and are given in Figures 2 and 3. 
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Figure 2: Characteristic time calculated for different configuration grids of collocation roots (CR) applied to 

one finite element (FE) [Operating conditions: Ti = 8.6 oC, T∞ = -44.3 oC,   Bi = 18.489] 
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Figure 3: Characteristic time calculated for different configuration grids of finite elements (FE) fixing two 

collocation roots (CR) [Operating conditions: Ti = 8.6oC, T∞ = -44.3oC, Bi = 18.489] 
 
 

The position of the curves in Figure 2 indicates 
that a small number of collocation roots applied 
within one finite element induces an upper 
estimation of the characteristic time of freezing. 
Increasing the number of collocation roots provokes 
an underestimation of the experimental data. For a 
number of collocation roots higher than 50, there is a 
sharp increase in computation time and the 
calculated results tend to converge towards the same 
characteristic time curve, except for the inner 
position points. A similar behaviour can be observed 
when the number of finite elements is increased, as 
shown in Figure 3. In both cases the increase in the 
number of collocation roots or finite elements 
converges to the same values of characteristic time. 
Computational time is less dependent on the number 
of finite elements than on the highest configuration 
of collocation roots. A comparison of the orthogonal 

collocation with the results obtained using the 
finite difference method suggests that a better 
agreement with experimental data can be achieved 
using 6 to 20 nodes of either kind of configuration 
(CR or FE), although a higher level of oscillatory 
behaviour in the calculations was detected. The 
inflection of the characteristic time curve at the 
inner points was first noted by Mascheroni and 
Calvelo (1980) and has physical meanings. This 
behaviour could only be detected with the higher 
configuration grids.  

The historic of characteristic time of freezing in 
Figure 3 show low level of oscillatory behaviour and 
fast convergence as well as good agreement with the 
experimental data when a configuration grid of 100 
finite elements and two collocation roots on each 
element is used. Therefore this set-up was applied in 
further simulations.   
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NUMERICAL SIMULATION OF THE MEAT 
FREEZING PROCESS 

 
Numerical simulations of the temperature historic 

at positions inside the meat during a freezing process 
under the same conditions as those used in Figures 2 
and 3 are shown in Figure 4. At the very beginning 
of the process a sharp decrease in temperature at 
positions near the meat surface is noticeable. No 
phase change temperature platform is visible. The 
temperature lowering at the intermediate positions is 
smoother and the onset of freezing at -1.1oC is 
perceptible. Only the central point in the meat has a 
well-defined phase change platform at the initial 
freezing point temperature. After freezing in the 
central region is completed, a sharp decrease in 
temperature occurs in all positions and the 
refrigerant temperature is rapidly approached. The 
same behaviour was described in the work of 
Mascheroni and Calvelo (1980).            

Discrete heat load release historic for the internal 
points of the product was calculated, taking the 
enthalpy of each mass element corresponding to 
discrete points in the spatial coordinate into account, 
and is given in Figure 5. Since the surface points show 
a sharp decrease in temperature at the beginning of the 
process, the latent heat released from the tissues during 
crystallisation is rapidly removed and the local heat 
load peak is very small. The smoother time-variation of 
temperature in the internal elements induces a 
significant freezing front at these positions. Therefore, 
as the temperature reaches the freezing point, a sharp 
increase in the heat load develops within each mass 
element, dissipating slowly as time progresses. The 
inner points have wider heat load peaks due to the 
higher resistance to heat transfer of the meat matrix. 
The heat load historic of the two inner positions is the 
same since the collocation roots are not symmetrical 
within the finite elements, resulting in differences in 
mass between the internal elements.   
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Figure 4: Temperature historic of internal positions during the freezing process at  
Ti = 8.6oC, T∞ = -44.3oC, Bi = 18.489 (Configuration used: 2 CR and 100 FE) 
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Figure 5: Heat load historic of discrete positions in the grid during the process of freezing  

of 1 kg of meat. (Ti = 8.6oC, T∞ = -44.3oC, Bi = 18.489) 
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The instantaneous heat load historic was calculated 
by summation of the discrete heat loads of all internal 
positions and is given in Figure 6. As expected, at the 
beginning of the freezing process crystallisation occurs 
in the tissues near the surface with the internal points 
remaining unfrozen, smoothing out the increase in heat 
load. As the freezing front progresses a large increase 
in heat load takes place due to the latent heat released 
from most of the tissues. A steep decrease in heat load 
indicates that most of the freezable water fraction has 
changed phase. 

The curves drawn in Figure 6 were calculated 
with two different model configurations of the 
spatial variable in the heat transfer equation. An 
oscillatory behaviour in heat load historic of the meat 
until the instant at which the major crystallisation 

process had been completed was found. This 
oscillatory behaviour is more pronounced when a 
lower grid of discretisation of the model was applied 
since it reduces the number of mass elements, 
intensifying the effect of the latent heat released due 
to the larger dimensions of the mass elements and 
leading to an overestimation of the total heat load of 
freezing, as indicated in Figure 6. Lovatt et al. (1993) 
performed experimental measurements of the heat 
load of cartons packed with meat in a freezing tunnel 
and also observed an oscillatory behaviour. However 
they did not identify any increase in the heat load 
after the beginning of the process, probably due to 
limitations of the measurement technique used, 
which was based on the variation of enthalpy of the 
freezing air.  
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Figure 6: Effect of the configuration grid of the model on the heat load calculations during  

the process of freezing of 1 kg of meat at Ti = 8.6oC, T∞ = -44.3oC, Bi = 18.489 
 

 
CONCLUSIONS 

 
The present paper showed the good capability of 

the orthogonal collocation on finite elements method 
in modelling the heat transfer equation system 
applied to the food freezing process. The software 
developed in this work allows choosing the best 
configuration for the discretisation of the system 
considering the computational time and the fitting of 
the heat load calculation. The computational time 
was strongly reduced, with the same fitting 
precision, when a larger number of finite elements 
were used instead of the increase in number of 
collocation roots on one finite element. With 
standard computational resources, this numerical 

method was able to simulate the freezing process in 
approximately one minute, endorsing its use in the 
optimising procedures, in freezing processes.           

The simulations performed showed the contribution 
influence of the latent heat released during the 
crystallisation phenomena to the heat load during the 
freezing process.    
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NOMENCLATURE 
 
Bi  Biot number,  Bi = hL/Ko
Cp Apparent specific heat  (kJ/kgK)
h  Heat transfer coefficient  (W/mK)
k  Thermal conductivity of the 

partially frozen meat 
 (W/mK)

k*  Dimensionless thermal 
conductivity,  

k* = k/ko

L  Half-thickness of the meat slab  (m)
R Gas constant (-)
T  Temperature (K) 
To  Freezing temperature of 

pure water 
 (273.16K)

T∞ Temperature of the freezing 
plate  

(K)

Ti  Initial temperature of the 
meat slab 

(K) 

t  Time (-)
X  Initial content of water on a 

dry basis 
(-)

Xb Bound  water on a dry basis (-)
x  Spatial position (-)
Yo  Moisture content  (mass of 

water/mass of
meat)

w  Ice content  (mass of
ice/initial

mass of water)
wi  Ice fraction  (mass of 

ice/mass of
meat)

 
Greek Symbols 
 
ξ   Dimensionless position, ξ = x / L
ρ   Density of meat (kg/m3) 
φ    Dimensionless instantaneous

heat load 
(-)

φ    Instantaneous heat load for 1
kg of meat 

(kJ)

Ф   Total heat load for 1 kg of
meat 

(kJ)

τ   Fourier number, 
LC

tk
2

poo

o
ρ

τ =

η   Dimensionless temperature, 
TT
TT

i

i

∞−
−

=η

λo    Heat crystallisation of pure
water at To 

(kJ/kg)

∆Cp  Difference between specific 
heat of ice and of water 

(kJ/kgK)

 

Subscripts 
 
a  Water (-)
c  Continuous matrix  (-)
h  Ice (-)
o  Unfrozen meat (-)
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