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Abstract  -  In the present work, the impacts of effective parameters on the mixing of Stokes flows in a chaotic batch 
mixer are numerically and experimentally studied. The batch mixer consists of a container and two circular rotors 
where the rotors can rotate independently. To investigate the possibility of improving the mixing, the effect of non-
constant speeds, contra-rotating rotors, and varying rotor speeds are studied. The results showed that varying the 
rotor speed while rotating in the same direction does not significantly increase mixing. However, if the rotors rotate 
in opposite directions, 10-times more mixing is achieved compared to the mode of rotating in the same direction. 
Nevertheless, given the constant speed of rotors, the flow is steady since the fluid particles have periodic movements 
in secondary flows, but the flow becomes chaotic and mixing is considerably increased by applying sinusoidal 
perturbations to the rotor speed. Nevertheless, for both modes of rotations in the same and opposite directions, the 
chaotic flow leads to increased mixing index in the same amount of time. Based on results, the best mixing results 
are achieved when the rotors rotate with sinusoidal rotational speed in opposite directions.
Keywords: Stokes flow; Chaotic advection; Mixing; Laminar.

INTRODUCTION

The mixing process reduces heterogeneity in 
order to achieve the desired homogenous products. 
This heterogeneity can include concentration or 
temperature. The aim of the process is very important 
for successful production of a product. If the mixing 
is not appropriate, it can reduce the quality, physical 
properties and also increase the price. Although there 
are many industrial processes in mixing equipment, all 
these processes need to be evaluated as to whether the 
mixing amount is sufficient and the additional mixing 
results in yield and reduction of quality. It depends 
on the process and sensitivity of choice, physical 
properties, product stability and time. In the last few 
decades, effective methods for the mixing process in 
industrial laboratories have been obtained.

Homogenous laminar mixing is very difficult. In 
applications such as pharmaceuticals, food, polymers 
and biological processes, mixing of liquids is 
performed with low velocity or with high viscosity. In 
these cases, turbulence does not happen. Turbulence 
in highly viscous fluid is usually impossible and 
viscous energy dissipation results in unacceptable high 
temperatures in products. Laminar mixing needs to be 
used in highly viscous fluid such as pulp, soap, grease, 
and solid - made fluids.

One of the most important issues in flows with 
highly viscous fluids is the kinematic reversibility of 
these flows, i.e., if boundary conditions are inversed, 
the flow is inversed in all points. This property is only 
true for Stokes flows. The reversibility of Stokes flow 
leads to the non-homogenous mixing of two viscous 
fluids. In low viscosity fluids, turbulence will cause 
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fluid to be properly mixed and consequently heat 
transfer will be improved. However, it is difficult to 
improve heat transfer in the cases where turbulent 
flow cannot be readily achieved. On the other hand, in 
the Stokes flows, it is necessary to find an appropriate 
solution for mixing, since they have a high dissipation 
rate of energy in a turbulent flow. 

Chaotic advection has been considered as a useful 
solution to achieve a more effective mixing in high 
viscosity flows in the last two decades. Chaotic 
advection can be represented in two-dimensional time-
periodic flow and three - dimensional flows, which can 
be used as a useful tool to describe a simple flow under 
the influence of viscous forces. To analyze the mixing, 
the recognition of dynamical systems, particularly of 
chaos and its relation with flow kinematics is the most 
effective way. For this purpose, kinematic foundations 
of fluid mechanics can be combined with the concepts 
of dynamic systems, especially chaotic advection. 
In short, it can be stated that a system is chaotic that 
satisfies one of the following conditions: (Ottino and 
Ottino, 1989)

- The system is sensitive to initial conditions.
- The system creates a horseshoe mapping.
Two general approaches are used to describe 

problems in fluid mechanics: Lagrangian and 
Eulerian. The advection equations certainly belong to 
the Lagrangian perspective of fluid motion. From the 
standpoint of systems dynamics theory, any ordinary 
differential equation such as advection equations (1-2) 
is sufficient to generate the non-integrable and chaotic 
dynamics. There is no need to be dependent on time in 
3D flow to make chaotic behavior and steady flow is 
sufficient, but to create chaotic motion of fluid particles 
in 2D flows, the flow must be time dependent, because 
the steady two dimensional advection equations of the 
particles are integrable (Aref, 2002).

movement of particles in two-dimensional (2D) flows, 
the flow should be time-dependent. By creating a 
chaotic flow inside a highly viscous fluid mixer, the 
fluid is mixed homogenously.

So far, many attempts have been made to design a 
mixer with chaotic performance. The performance of 
the mixer is such that, by creating a perturbation in the 
flow, the flow path was changed and caused chaotic 
trajectories of fluid particles. Chaotic mixers can be 
categorized based on the type of perturbations caused 
by the flow into two main categories: (1) passive mixer 
(Aguirre et al., 2018, Grosso et al., 2018, Jung et al., 
2018, Luan et al., 2018, Mizuno and Funakoshi, 2002, 
Mizuno and Funakoshi, 2004, Pacheco et al., 2006, Xu 
et al., 2016), which creates chaotic flow with a simple 
geometric perturbation and without input of energy, 
and (2) the active mixer (Jegatheeswaran et al., 2018, 
Tohidi et al., 2014, Tohidi et al., 2015, Tohidi et al., 
2013, Wünsch and Böhme, 2000), which requires 
input energy to cause chaos in the flow.

Mixing enhancement by chaotic advection in an 
annulus flow between eccentric cylinders is an active 
mixer and of great interest for researchers. Jeffery 
(1922) and Ballal and Rivlin (1976) have obtained 
somewhat similar analytical solutions for this 
geometry. In such a 2D geometry, streamlines are more 
complicated compared to those of the flow between 
two concentric cylinders. In an experimental and 
numerical study, Swanson and Ottino (1990) showed 
that, in the flow between two eccentric cylinders, 
the temperature of the fluid inside the rotating area 
becomes uniform due to mixing in that area when 
one or both eccentric cylinders rotate with a constant 
speed. This factor can increase the Nusselt number by 
50%, indicating the ratio of convective heat transfer to 
conductive heat transfer.

The study conducted by Lefevre et al. (2003) 
consisted of two cylinders which the outer cylinder 
rotated with a constant speed while the rotation speed 
of the inner cylinder varied in a sinusoidal manner. 
The authors showed that mixing and heat transfer are 
improved due to chaotic advection when the cylinders 
rotate in a sinusoidal manner. Moreover, Niederkorn 
and Ottino (1994) numerically and experimentally 
investigated the mixing improvement in the annulus 
flow between two eccentric cylinders for non-
Newtonian shear-thinning and viscoelastic fluids. 
They reported that the elasticity of the fluid in creeping 
flows increases or decreases the surface in which 
chaotic advection occurs. Furthermore, Galaktionov et 
al. (1999) analytically solved the 2D and steady Stokes 
flow inside a rectangular cavity with a cylinder inside 
it. They concluded that the resulting flow is chaotic 
due to the movement of the upper and lower walls of 
the rectangular cavity and the rotation of the cylinder 
and the mixing in this model is superior and more 
rapid compared to the cavity without a cylinder.

dx u(x, y)
dt

=

dy v(x, y)
dt

=

where x and y are positions. t is time and u and v are 
velocity components.

The motion of a passive particle in a given velocity 
field can be considered from the viewpoint of dynamic 
systems theory (Zaslavsky, 1991). In chaotic advection, 
adjacent particles move away exponentially. This 
exponential divergence leads to stretching, which 
exponentially increases the contact surfaces of the 
fluid element, leading to a more efficient mixing. To 
obtain a three-dimensional chaotic flow, the flow does 
not have to be time-dependent and the steadiness of 
the flow is sufficient. However, to create the chaotic 
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Leprevost et al. (1997) introduced the area between 
two confocal ovals as a new geometry for mixing. 
They showed that, by selecting proper periodic 
speeds for the walls of the two ovals, the streamlines 
of the Stokes flow become chaotic and the particles 
can be diffused throughout the domain with a series 
of periodic oscillations. Due to a rapid mixing, the 
heat transfer rate is high in this model. In addition, 
El Omari and Le Guer (2010) studied the effect of 
chaotic mixing on heat transfer in a two-rotor mixer. 
They reported that discontinuous rotor speeds improve 
the mixing and heat transfer. They also showed that a 
better mixing is achieved with the rotation of the outer 
cylinder. Furthermore, Hosseinalipour et al. (2014, 
2013) examined the mixing of a non-Newtonian flow 
inside a continuous chaotic mixer which consists of 
an eccentric helical rotor inside a cylindrical stator. 
They concluded that the eccentricity of the helical 
rotor and the stator leads to the formation of chaotic 
flow and, consequently, a better mixing. Msaad et al. 
(2017) studied the effect of the number of rotating 
rods on mixing and heat transfer. Their numerical 
results revealed that more rotating rods lead to more 
uniform mixing. They showed that non-continuous 
wall rotation is one of essential factors to generate a 
chaotic mixing. 

The literature contains a number of devices 
designed to enhance mixing, but there is not a 
parametric study to maximize homogeneous laminar 
mixing in a batch mixer. This paper aims to fill this 
gap in the literature. The purpose of this paper was to 
numerically and experimentally examine the effect of 
chaotic flow on the mixing of a highly viscous fluid and 
reducing the time and energy necessary for achieving 
the required homogeneous mixing. In our previous 
study (Shirmohammadi and Tohidi, 2018), the effect 
of chaotic flow was studied on the mixing of highly 
viscous fluids. It was shown that mixing will be very 
poor if the rotors rotate with the same and constant 
speed. Therefore, the rotors are varied in the form of 
a sinusoidal function of time. With the perturbation 
generated in the rotational speed of the rotors, the 
secondary flow leading to the entrapment of fluid 
particles is eliminated and mixing is improved. In the 
present study, the effects of other effective parameters 
on the mixing of highly viscous fluids are numerically 
and experimentally examined. In this study, the effects 
of: (i) constant rotor speeds, (ii) unequal rotor speeds, 
(iii) rotations in the same and opposite direction, and 
(4) rotations of rotors with varying speeds are studied 
on mixing. The flow inside the mixer is simulated in 
two dimensions and in experiments, the mixing inside 
the mixer is studied as well and, by defining an index, 
the mixing inside the mixer is quantitatively compared 
for different modes.

GEOMETRY OF THE STUDIED MIXER

The geometry of the chaotic mixer is illustrated 
in Figure 1. The system consisted of a cylindrical 
reservoir with the internal diameter of 110 mm and 
two cylindrical rotors, each with the diameter of 30 
mm. The rotors were placed non-concentrically along 
the reservoir at the distance of d = 27 mm. Each of 
them was capable of independent rotation.

Figure 1. (a) Geometry of the batch mixer. (b) The 
design for the batch mixer created in Solidworks.

BOUNDARY CONDITIONS

Rotors can rotate with a rotational speed as 
expressed in Equations (3) and (4).

( )( )1 1 1U 1 sin tΩ = + ε ω

( )( )2 2 2U 1 sin tΩ = + ε ω

In these equations, ω = 2π/T where T shows the 
value of temporal oscillations, which is considered to 
be 12 s; U1 and U2 are the mean rotational speeds of 
the rotors; and ε1 and ε2 are the perturbation applied to 
the rotor speeds, whose values are in the ranges of 0 ≤ 
ε1 and ε2 ≤ 1. The performance of the mixer is studied 
in six modes:

- Mode 1: The rotational speeds of the rotors 
are assumed to be constant, equal, and in the same 
direction (U1 = 20 rpm, U2 = 20 rpm, ε1 = 0, ε2 = 0).

- Mode 2: The rotational speeds of the rotors are 
assumed to be constant and in the same direction, but 
not equal (U1 = 10 rpm, U2 = 30 rpm, ε1 = 0, ε2 = 0).

- Mode 3: The rotors rotate in the same direction, 
but their speed changes with time (U1 = 20 rpm, U2 = 
20 rpm, ε1 = 0, ε2 = 0.5).

- Mode 4: The rotational speeds of the rotors are 
constant, equal, and in opposite directions (U1 = 20 
rpm, U2 = - 20 rpm, ε1 = 0, ε2 = 0).

(3)

(4)
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- Mode 5: The rotational speeds of the rotors are 
constant, unequal, and in opposite directions (U1 = 10 
rpm, U2 = - 30 rpm, ε1 = 0, ε2 = 0).

- Mode 6: The rotors rotate in opposite directions 
and their speed varies with time (U1 = 20 rpm, U2 = - 
20 rpm, ε1 = 0, ε2 = 0.5).

Equation 5 is defined to calculate the Reynolds 
number in the mixer geometry which contains the 
rotational speed of the cylinders (Jana et al., 1994):

is performed with the help of AVR studio. Figure 2 
shows the assembly model of the chaotic mixer.

Supplying the studied dye and fluid
Glycerin 99.7% (Merc) with the density of 1200 

kg/m3 and viscosity of 0.81 Pa.s is used as the studied 
fluid. To study the performance of the mixer, fluorescent 
powder (Fluorescent powder - Ukseung Chemical Co., 
Ltd) was completely ground using a planetary mill, 
combined with water, and mixed for 2 hours using a 
mechanical mixer such that the fluorescent powder 
(with the ratio of 30 g of glycerin, 1 gram of water and 1 
gram of fluorescent powder) was uniformly distributed 
in the water. The studied glycerin fluid was mixed with 
water with the proportion of 38 to 1 and the prepared 
dye was injected into the glycerin. The results of the 
experiment were satisfactory and the prepared dye was 
entrapped in the middle of the glycerin for 10 min.

Experimental test of mixing
Using a syringe, 2 cc of dye was injected in the 

middle depth, 10 cm away from the center of the mixer, 
and pictures were taken every 4 s. The picture of the 
samples was recorded using a Canon PowerShot G10 
camera with 14.7 mega-pixels’ resolution. Figure 3 
shows the preparation and lighting of the chaotic mixer 
to perform the experimental tests. UV lamps (Noor 
Lamp Company) were used to illuminate the prepared 
dyes with fluorescent powder during photography. 
Figure 4 shows the initial position of the dye injected 
inside the mixer.

Experimental results
Figure 5 presents the dye mixing variations with 

time for the three Modes of rotational speeds in the 
same direction in 600 s. As observed in Figure 5, in 
Modes 1 and 2, the dye injected did not distribute in 
the mixer area. The fluid elements existing in this area 

( ) ( )2 2 2
1 2 i o iRe R R R /= Ω +Ω − υ

where Ri is the rotor radius, Ro is the stator radius, Ω1  
and Ω2 are the rotational speeds of the rotors, and υ 
is the kinematic viscosity of the fluid. The Strouhal 
number which contains the rotational speed of the 
cylinder, is defined as follows (Jana et al., 1994):

( ) 2 2 2
o i A B iSt  R R / ( )R T= − Ω +Ω

Given the applied boundary conditions, the 
Reynolds and Strouhal numbers vary from 13.2 to 
16.7 and from 0.012 to 0.09, respectively.

EXPERIMENTAL TEST

Design and construction of the apparatus
The mixer consists of two cylindrical rotors 

with different cross-sections and a stator. The motor 
specifications are SPG rs34-24v with a gearbox, 24-
volt DC, and torque of 7.1 Nm. To constrain each axis, 
two UCF 204 bearings are used. A rotating cylinder 
made out of Teflon is employed. The distance of the 
center of the cylinder in this design is assumed to be 
150 mm.

Motor speed controller
The circuit used in this research uses the PID method 

to control the speed of the motors. This circuit can be 
divided into four main sections with specific tasks: The 
first section generates the sinusoidal wave; the second 
section is the controller; the third section is the motor 
starter; and the fourth section is the circuit feedback. 
To generate the desired waveform, an ATmega16A 
microcontroller is utilized. This microcontroller is 
able to generate PWM waves using built-in timers 
which contain the defined waveform. Then, this signal 
is passed through a low-pass filter such that the output 
is the desired waveform. The communication with the 
microcontroller and its programming are performed 
using a computer and a programmer. In this study, the 
AVRISP mkII communication protocol is connected to 
the computer using a USB cable. The programming 
language for the microcontroller is C and it is written 
using the CodeVisionAVR software. Programming 

Figure 2. Mixer assembly for experimental tests.

(5)

(6)



Experimental and Numerical Analysis of Chaotic Advection as an Efficient Approach to Maximize Homogeneous Laminar...

Brazilian Journal of Chemical Engineering, Vol. 36, No. 04,  pp. 1463 - 1473,  October - December,  2019

1467

Figure 3. The schematic image of the chaotic mixer in 
the experimental test.

Figure 4. Dye injection position.

Figure 5. The mixing of the injected dye in terms of 
time for the modes in which rotors moved in the same 
direction. Mode 1 (U1 = 20 rpm, U2 = 20 rpm, ε1 = 0, 
ε2 = 0), Mode 2 (U1 = 10 rpm, U2 = 30 rpm, ε1 = 0, ε2 = 
0), Mode 3 (U1 = 20 rpm, U2 = 20 rpm, ε1 = 0, ε2 = 0.5).

do not have any contact with other fluid elements and 
mixing is not performed well. The sinusoidal varying 
rotational speed is such that the rotor speed changes 
in the opposite direction, i.e., when the speed of one 
rotor increases, the speed of the other one decreases. 
The perturbations applied to the speed of the rotors 
lead to the generation of a chaotic advection and 
homogeneous mixing.

Figure 6 demonstrates the dye mixing in terms of 
time for the second three modes with the rotation of the 
rotor in the opposite direction for 600 s. In the fourth 
mode where the rotors rotate with an equal rotational 
speed of 20 rpm, dye mixing is improved compared to 
that of the mode with rotations in the same direction. 
However, areas with a poor mixing are still observed. 
In the fifth mode, the rotational speeds in the left and 
right rotors with the values of 10 rpm and 30 rpm, 
respectively, improve fluid particle mixing due to 
smaller dead zones. However, given the constant rotor 
speeds and steady flow, there is no possibility for the 
particles to move out of the secondary flows. In the 
sixth mode, the variations of the rotational speeds of 
the rotors in terms of time make the flow transient. This 
causes the small variations in this flow to grow, leading 
to chaotic flows. As observed in Figure 6, the dye is 
spread on all surfaces of the mixer in 600 s, implying 
the elimination of the dead mixing zones and uniform 
advection of the fluid particles in the chaotic state.

Mixing index
Using the image processing method, it was attempted 

to quantify the mixing inside the mixer. To this end, 
a combination of a computer, a digital camera, and a 
processing code was used to measure the advection of 
the injected dye. The image generated this way was 
then taken into MATLAB software. In this software, 
the circular image was enclosed in a square frame. The 
images taken in the MATLAB environment are in the 
RGB space which should be converted to black and 
white images with a threshold to define a mixing index 
as the ratio of the number of white pixels to number of 
total pixels. In this mode, 0 indicates absolute black 
and 1 indicates absolute white. Figure 7 illustrates 
the processed image of six mixing modes at t=180 s. 
By determining the number of black and white pixels 
in each image, one can introduce a criterion of the 
mixing index that can quantify the mixing inside the 
mixer. Thus, the mixing index (MI) (Hosseinalipour et 
al., 2014) was used as a criterion for the quantification 
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mode compared to the first mode where the rotors 
have unequal speeds. In the second mode, the rotating 
flow has become smaller compared to that of the first 
mode. Therefore, the area in which the dye is spread is 
smaller. As a result, the mixing index shows a smaller 
value for the second mode compared to the first mode. 
In the third mode with sinusoidal rotor speeds, the 
flow has become chaotic and mixing is considerably 
increased such that the mixing index in the third mode 
has increased almost 10 times compared to the first 
and second modes. Rotations in opposite directions in 
the fourth mode increased the mixing compared to the 
first mode with rotors rotating in the same direction. 
However, it is still less than the mixing in the third 
mode in which the chaotic flow is due to the sinusoidal 
but unidirectional rotation of rotors. The mixing in 
the fifth mode in which the rotors rotate with unequal 
speeds in opposite directions is the highest compared 
to the other modes in which the rotors have a constant 
speed. The mixing index in the fifth mode is almost 
the same as that of the third mode with a chaotic flow. 
This shows that mixing can be considerably increased 
with constant rotor speed. However, to maximize the 
mixing, the steady flow is not efficient enough since 
the flow becomes chaotic in the sixth mode where 
rotors rotate with sinusoidal speeds and in opposite 
directions, and this causes the mixing to reach its 
maximum value in the same duration compared to 
the other modes. One can conclude that, with similar 

Figure 6. The mixing of the injected dye in terms 
of time for the modes in which the rotors rotate in 
opposite directions. Mode 4 (U1 = 20 rpm, U2 = - 20 
rpm, ε1 = 0, ε2 = 0), Mode 5 (U1 = 10 rpm, U2 = - 30 
rpm, ε1 = 0, ε2 = 0), Mode 6 (U1 = 20 rpm, U2 = - 20 
rpm, ε1 = 0, ε2 = 0.5).

Figure 7. The processed images in six mixing modes at t=180 s.

of the mixing. Mixing index requires the total number 
of pixels and their size in comparison with the size of 
the mixer.

Number of white pixelsMI
Total number of pixels

=

The variations of the mixing index in terms 
of time are depicted in Figure 8. It is clear that the 
mixing is not significantly different in the second 

Figure 8. The variations of mixing index in terms of 
time for six mixing modes.

(7)
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boundary conditions, chaotic flows are more efficient 
compared to non-chaotic modes since one of the 
most important mixing parameters in highly viscous 
fluids is the time it takes for the fluid to be mixed 
homogeneously. In this regard, the chaotic flow is 
deemed a proper approach for resolving the issue of 
mixing in highly viscous flows.

NUMERICAL SOLUTION

Numerical method
Due to the low Reynolds number and the small 

value of the ratio of rotor and stator radius to the 
batch mixer depth, the mixing in the third dimension 
is neglected and the simulation is performed in two 
dimensions. The main governing equations of the 
viscous flow are as follows:

the previous (k-1)th iterations which is normalized 
by dividing it by its current value. The convergence 
criterion is applied to all N finite-element nodes. The 
set of governing equations was solved using ANSYS 
(FLOTRAN) software. 

Grid independence check 
Four meshes (833, 1088, 1377, and 1700 elements) 

were used to solve the flow field and investigate the 
grid independence test. The results of comparison of 
velocities at the 8 nodes numbered in Figure (9) are 
presented in Figure (10). Simulations were carried 
out with 1377 elements since the difference in speed 
between the meshes of 1377 and 1700 elements had an 
error of less than 1%. 

( )div V 0
t

∂ρ
+ ρ =

∂

2DV P V
Dt

ρ = −∇ +µ∇

where ρ denotes the density of the fluid, V indicates 
the velocity of the fluid, P represents the pressure, and 
µ shows the viscosity of the fluid.

The non-dimensional form of equation (9) is:

( )
*

* * * 2 *
*

DV 1St V . V Eu P V
ReDt

+ ∇ = − ∇ + ∇

where Eu is the Euler number, Re is the Reynolds 
number and St is the Strouhal number. Since the 
Strouhal number in Equation (4) is in the range of 0.09 
to 0.012, the problem can be solved as a quasi-steady 
flow problem. 

Equations (8-9) are discretized using the SUPG 
method with the assumption of laminar flow and the 
momentum equation system is discretized using the 
TDMA method, while the pressure equations are 
calculated using PCG. The Cartesian coordinate system 
is used for the simulation based on the finite-element 
method. The convergence criterion is calculated as 
follows for each degree of freedom at each iteration:

N k k 1
i i 8i 1

N k
ii 1

M 10
−

−=
∅

=

∅ −∅
= ≤

∅

∑
∑

where ∅ is the degree of freedom for the pressure and 
velocity of the flow, N is the total number of finite-
element nodes, and k is the number of the current 
iteration. The convergence criterion M∅ indicates 
the variations of the variable from the current kth and 

(8)

(9)

(10)

(11)
Figure 10. Mesh independence study.

Figure 9. Mesh of mixer geometry.

Particle tracing and validation
The fourth-order Runge-Kutta method was utilized 

for integrating the system of advection equations (1-
2) in order to perform the Lagrangian particle tracing, 
and the particle position was determined over time 
after the Eulerian solution of the flow.
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To validate the numerical results, the flow inside 
the mixer was simulated for different conditions. 
Then, 400 fluid particles with the initial arrangement 
of the circle and the same position as the injected color 
were traced in the experimental test as Lagrangian. 
Figure 11 shows the comparison of numerical and 
experimental results at the same time for modes 5-6. As 
can be seen, the results were in very good agreement, 
which indicated the high accuracy of the numerical 
calculations.

Figure 11. Comparing the experimental and numerical 
results of mixing for Mode 5 (U1 = 10 rpm, U2 = - 30 
rpm, ε1 = 0, ε2 = 0), Mode 6 (U1 = 20 rpm, U2 = - 20 
rpm, ε1 = 0, ε2 = 0.5).

Numerical results
Figure 12 illustrates the streamlines in Mode 1. In this 

mode, there are one hyperbolic point and four elliptic 
points. The elliptic points are the points of the flow 
around which the flow rotates as a fixed point and does 
not leave. The fact that fluid particles do not leave these 
areas leads to the modifications of chaotic flows and the 
formation of islands that the fluid particles do not enter or 
leave and are considered as dead mixing zones.

In order to improve mixing, a geometrical or 
velocity perturbation should be applied in the 
boundary conditions to displace the elliptic and 
hyperbolic points. In Mode 2, rotor speeds become 
unequal but still in the same direction. In Modes 4 and 
5, rotor speeds are similar to those of Modes 1 and 2 
but with opposing rotating directions. Figure 13 shows 
the streamlines inside the mixer for these modes. 
Although the different rotating directions of rotors 
lead to increased mixing, the location of the flow fixed 
points such as hyperbolic and saddle points does not 
change with time, given that the flow inside the mixer 
is steady. The flow’s independence of time leads to a 

Figure 12. Streamlines in Mode 1 (U1 = 20 rpm, U2 = 
20 rpm, ε1 = 0, ε2 = 0).

Figure 13. The numerical results for the streamlines of 
equal speeds and unequal rotor speeds. Mode 4 (U1 = 
20 rpm, U2 = - 20 rpm, ε1 = 0, ε2 = 0), Mode 5 (U1 = 10 
rpm, U2 = - 30 rpm, ε1 = 0, ε2 = 0).

non-chaotic flow since, in 2D flows, the flow should 
be a function of time in order to create chaotic particle 
movements as the 2D steady advection is integrable. 
In these modes, the fluid particles move in periodic 
paths and optimal mixing does not happen.

Figure 14 illustrates the streamlines inside the 
mixer for Modes 3 and 6 (sinusoidal varying rotational 
speed). Upon applying a perturbation in the streamline 
by making the rotational speeds of the rotors sinusoidal, 
the location of the fixed points changes with time and 
inclines to the left or right which, in turn, causes the 
particles to move away from the secondary flow. The 
hyperbolic point is displaced due to oscillating speeds 
of the two rotors. The existence of hyperbolic points 
and the behavior of their manifolds is one of the 
conditions for the beginning of mixing because, when 
the location of the fixed point is changed, the previous 
stable or unstable manifolds intersect the current 
unstable or stable manifolds and this intersection leads 
to frequent stretching and folding.

To review the mixing quality and sensitivity of 
the initial flow conditions, a Poincare section can be 
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used. To create a Poincare section, 400 particles of 
fluid with a circular arrangement in the coordinates of 
the color injected into the experimental tests for the 
period of 600 sec were tracked and the position of the 
particle was recorded every 3 sec. Figure 15 shows 
the position of 400 particles over 600 sec for all the 
modes. As can be seen, in modes 1-2 and 3-4, in which 
the rotors had constant rotational velocity and the 
flow in the mixer was non-chaotic, the particles were 
trapped in vortex and island flows and only spread in 
a small part of the mixer. The poor distribution in the 

Poincare sections indicated the poor mixing of a non-
chaotic mixer.

The sinusoidal velocity perturbation in terms of 
time in the chaotic mixer enabled the fluid particles 
to be released from dead-flow traps. The path of the 
particles was exponentially distanced and, therefore, 
there was more uniform distribution than in the typical 
mixer. 

CONCLUSION

In this study, the effects of unequal speeds and 
rotations in opposite directions were numerically and 
experimentally studied on the mixing of highly viscous 
fluids and compared with chaotic flow. Six modes were 
tested for this purpose: In the first mode, the rotors 
rotated in the same direction with constant and equal 
speeds; in the second mode, the rotors rotated in the 
same direction with constant but different speeds; in 
the third mode, the rotors rotated in the same direction 
but in the form of a sinusoidal function of time; the 
other three modes, i.e. Modes 4, 5, and 6, were the 
same as the first three modes but with rotors rotating 
in opposite directions.

Results of numerical simulations showed that, 
in Modes 1, 2, 4, and 5 where the flow is not time-
dependent, fixed points exist in the flow which lead 
to secondary flows and less mixing. In order to 

Figure 14. The numerical results for the sinusoidal 
varying rotational speed for Mode 3 (U1 = 20 rpm, U2 
= 20 rpm, ε1 = 0, ε2 = 0.5) and Mode 6 (U1 = 20 rpm, 
U2 = - 20 rpm, ε1 = 0, ε2 = 0.5).

Figure 15. Poincare section of fluid particle trajectories for Mode 1 (U1 = 20 rpm, U2 = 20 rpm, ε1 = 0, ε2 = 0), Mode 
2 (U1 = 10 rpm, U2 = 30 rpm, ε1 = 0, ε2 = 0), Mode 3 (U1 = 20 rpm, U2 = 20 rpm, ε1 = 0, ε2 = 0.5), Mode 4 (U1 = 20 
rpm, U2 = - 20 rpm, ε1 = 0, ε2 = 0), Mode 5 (U1 = 10 rpm, U2 = - 30 rpm, ε1 = 0, ε2 = 0) and Mode 6 (U1 = 20 rpm, 
U2 = - 20 rpm, ε1 = 0, ε2 = 0.5).
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experimentally study the effect of unequal speeds 
and different rotating directions of the rotor, dye was 
injected into the glycerin fluid and the mixing was 
examined by taking pictures of the mixing of the 
fluid. The experimental results revealed that, in modes 
where the rotors rotate in the same direction, unequal 
rotor speeds do not significantly affect the mixing. 
However, when the direction of the rotors is opposite, 
mixing is improved, particularly when the rotors have 
unequal speeds in the opposite direction. On the other 
hand, the location of the fixed point does not change 
and the particles inside the generated secondary 
flows move in a periodic path, given that the flow is 
not transient. Nevertheless, varying the rotors’ speed 
leads to the generation of a chaotic flow, which makes 
the mixing more efficient compared to the other non-
chaotic modes where the rotors either rotate in the 
same or in opposite directions.
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