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Abstract - Hydrotalcite-like compounds are anionic clays of scientific and technological interest for their use 
as ion exchange materials, catalysts and modified electrodes. Surface phenomenon are important for all these 
applications. Although conventional analytical methods have enabled progress in understanding the behavior 
of anionic clays in solution, an evaluation at the atomic scale of the dynamics of their ionic interactions has 
never been performed. Molecular simulation has become an extremely useful tool to provide this perspective. 
Our purpose is to validate a simplified model for the adsorption of 5-benzoyl-4-hydroxy-2-methoxy-
benzenesulfonic acid (MBSA), a prototype molecule of anionic dyes, onto a hydrotalcite surface. Monte Carlo 
simulations were performed in the canonical ensemble with MBSA ions and a pore model of hydrotalcite 
using UFF and ClayFF force fields. The proposed molecular model has allowed us to reproduce experimental 
data of atomic force microscopy. Influences of protonation during the adsorption process are also presented. 
Keywords: Adsorption; Hydrotalcite; Dye; Molecular simulation. 

 
 
 

INTRODUCTION 
 

Layered double hydroxides (LDH) are an im-
portant class of natural compounds and also easily 
obtained by synthesis. They have a permanent posi-
tive charge on their surface. In addition, LDHs can 
exchange anions that lie between the layers. For 
these characteristics, these compounds are of great 
scientific and technological interest and are used as 
ion exchange materials (Dutta et al., 1991), catalysts 
(Reichle et al., 1986) and modified electrodes (Itaya 
et al., 1987). LDHs with magnesium and aluminum 
atoms on their layers are known as hydrotalcite and 
the framework of the layers are similar to brucite 
(Mg(OH)2). We can imagine a starting structure, 
electrically neutral, being composed by one brucite 
layer (Figure 1a).  

As magnesium is isomorphically replaced by 

Al3+, a permanent positive charge is created that is 
balanced by intercalation species (Figure 1b). In 
hydrotalcite, CO3

2- and water molecules are the inter-
calation species in the interlayer space. 

The permanent positive charge is responsible for 
the extraordinary LDH performance in the adsorp-
tion of anionic dyes (Zhu et al., 2005; Abdelkader et 
al. 2011; Boudiaf et al. 2012; Aguiar et al., 2013). To 
be able to understand and predict the behavior of 
LDH’s for anionic dyes adsorption, it is important to 
analyze on an atomic-scale, the surface phenomena 
that result in the macroscopic properties. Experi-
mental techniques are limited for clarifying these 
phenomena.  

Molecular simulation has been used successfully 
in the study of LDH. Wang et al. (2001) used mo-
lecular dynamics to establish the two most stable 
hydration states of hydrotalcite (Mg:Al = 2:1) with 
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Forcefield 
 

The system LDH/dye was described using the LJ 
potential for repulsion-dispersion forces plus Cou-
lombic contributions between point charges: 
 

 
12 6

4. .

                   

i j
ij

ij

σ σ q qij ij
U r εij r r rij ij

      (2) 

 
where εij (kcal/mol) represents the depth of the po-
tential well, σij (Å) is the finite distance at which the 
energy of interaction is zero and rij (Å) is the dis-
tance between the molecular centers i and j. In the 
second term, qi and qj are point charges separated by 
the distance rij. The cross LJ terms were obtained 
using the usual arithmetic and geometric combina-
tion rules (Lorentz-Berthelot). 

For the interactions between MBSA molecules 
and the LDH framework, we used the ClayFF force 
field (Cygan et al., 2004). This force field has been 
developed especially for clay minerals.  

The interaction between MBSA molecules are 
computed based in the UFF force field (Rappe et al., 
1992).  Table 2 presents the parameter’s values for 
each atomic species (r0 = σ / 1.1224). 
 

Table 2: Forcefield parameters. 
 

Atom r0 (Å) εij (kcal/mol) Charges (C) 
Magnesiuma 5.909 1.3298.10-6 1.36 
Aluminiuma 4.7943 9.0298.10-7 1.575 
Hydrogena - - 0.425 
Oxygena 3.5532 0.1554 -0.95 
Nitrogenb 3.660 0.069 c

Carbonb 3.851 0.105 c

Oxygenb 3.500 0.060 c 
Sulfurb 4.035 0.274 c 
Hydrogenb 2.886 0.044 c 

aCygan et al., 2004 (LDH); bUFF-Rappe et al., 1992 (MBSA); cSee 
Table 1 and Figure 4 

 
Computational Details 
 

The electrostatic potential was calculated by 
Ewald method. The Ewald method accuracy was set 
for an energy tolerance of 0.001 kcal/mol within a 
cut-off of 15.2 Å. This means that larger cut-offs will 
give energy variation in the third decimal place as 
done in a similar study (Lima et al, 2015). All LJ 
potential had also a 15.2 Å truncation. We also did 
tests with increasing LJ cut-offs and obtained similar 
results. After 1.5 x 106 equilibration steps, more 1.0 
x 106 steps were used to obtain the average values of 

the thermodynamic properties and the most stable 
configuration. 

The simulations in the canonical ensemble (NVT) 
were performed with a variable number of MBSA 
anions until the surface was saturated. The number 
of molecules at saturation will be compared with that 
obtained experimentally by Cai et al. (1994) for 
MBSA1-. The molecular simulation algorithm of 
Cerius2 (Accelrys) was used to obtain the NVT equi-
librium configurations. During the Monte Carlo simu-
lations, the MBSA molecules and LDH framework 
were considered rigid. While this approach is ac-
ceptable for LDH, it is not suitable for dye mole-
cules. However, MBSA is a special case because its 
structure consists basically of two aromatic rings 
with reduced mobility. Furthermore, the molecule 
has previously been minimized and we did not ex-
pect significant conformation changes.  
 
 

RESULTS AND DISCUSSION 
 
Model Validation  
 

In order to compare simulated and experimental 
data (Cai et al., 1994), an increased number of MBSA 
molecules were introduced in the simulation cell 
until saturation. During simulation, MBSA1- mole-
cules are translated and rotated inside the simulation 
cell until equilibrium is reached (Figure 5). 
 

 
 

Figure 5: The evolution of the energy in the system 
LDH/MBSA-1 at 298 K. The most stable configura-
tion occurred after about 30,000 steps.  
 

At equilibrium, the molecules of MBSA1- as-
sumed a perpendicular position with the LDH sur-
face. This same orientation of the anions with respect 
to the hydrotalcite surface was verified experimen-
tally by Cai et al. (1994) for MBSA1- adsorption onto 
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