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Abstract - The aim of this work is to compare several of the commercial dynamic models for batch
distillation available worldwide. In this context, BATCHFRAC, CHEMCAD BATCH, and
HYSYS.Plant software performances are compared to experimental data. The software can be used as soft
sensors, playing the roll of ad-hoc observers or estimators for control objectives. Rigorous models were used
as an alternative to predict the concentration profile and to specify the optimal switching time from products
to slop cuts. The performance of a nonlinear model obtained using a novel identification algorithm was also
studied. In addition, the strategy for continuous separation was revised with residue curve map analysis using
Aspen SPLIT.
Keywords: batch distillation, residue curve map, soft sensor, inferential control, nonlinear identification.

INTRODUCTION

The increasing production of small-volume, high-
value-added products has attracted increasing
interest in batch production technologies. Although
batch distillation typically consumes more energy
than continuous distillation, operational flexibility is
improved, and low capital investments are involved
(Furlonge et al., 1999). Thus, since energy costs are
not significant in the separation of specialties, batch
distillation is often a cost-attractive alternative
(Sørensen and Skogestad, 1996).

The development of accurate models of batch
processes is a difficult problem for several reasons
(Boston et al., 1981). First, information on product

quality and process performance is often delayed
until a batch is completed. Second, key
measurements (e.g., concentration or flowrate) are
often scarce and have time lags, causing difficulties
in validating models with experimental data through
standard identification methods. In spite of these
difficulties, the literature on control of batch
processes has focused on the development of model-
based control design methods. These methodologies
rely on the assumption that accurate models of the
plant are available. The majority of nonlinear model-
based techniques use dynamic models of the process
in the control structure development phase, which is
performed off-line. Luyben (1992) developed the
first work regarding inferential control strategy with
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batch distillation. The work by Henson and Seborg
(1997) lists a number of simulation and experimental
cases in which feedback controllers were used.

In this work, a nonlinear model-based strategy
was developed with commercial software
specifically suitable for modeling batch distillation
operation. BATCHFRAC (Aspen Technology Inc,
Cambridge, MA, USA), HYSYS.Plant® (AEA
Technology, Calgary, Canada), and CHEMCAD
BATCH (Chemstations Inc., Houston, TX, USA)
performances were tested to evaluate whether their
potentialities in other applications such as inferential
control structure and/or soft sensor could be
attractive.

PROBLEM STATEMENT

The process considered in this paper corresponds
to a distillation column described in Nad and Spiegel
(1987), from which the experimental data have been
taken. The column has an internal diameter of 162
mm packed with Sulzer Mellapak 250Y. A packing
height of 8.0 m was used, and the number of
theoretical stages was measured with a standard
method (chlorobenzene + ethylbenzene at total
reflux). The column, including the reboiler and the
condenser, has 20 theoretical stages. The
volumetrically measured liquid hold ups of the
column and the condenser were 0.015 m3 and 0.005
m3, respectively. The system was tested with a
ternary mixture of n-heptane + cyclohexane +
toluene. The initial charge, on a molar basis, was
39.40% for n-heptane, 40.70% for cyclohexane, and
19.90% for toluene. After 2.78 hours of operation,
the steady state conditions of the column were
reached. Then, the reflux ratio sequence and the
switching time recommended by the authors were
followed in order to compare the performance of the
different software packages.

CLASSICAL APPROACH

Vapor-Liquid Equilibrium

A check of the accuracy of the estimation model
of the physical properties is the key factor in
succeeding in process simulation, and thus obtaining
realistic equipment behavior (Carlson, 1996;
Agarwall et al., 2001). The pure component vapor
pressures were derived from the Antoine equation
(Antoine, 1888). To avoid problems inherent in
group contribution methods like UNIFAC in process

simulation (the interactions are computed from
average values and do not consider the effect of
groups that are not directly linked), the UNIQUAC
(short for UNIversal QUAsi Chemical) method was
selected (Abrams and Prausnitz, 1975). In this
model, the liquid-phase activity coefficients can be
individually differentiated in the combinatorial part,
which includes the geometric significance for
combining molecules of different shapes and sizes,
and the residual part, which includes the energy
parameters (Equations 1-3).
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where γi is the liquid-phase activity coefficient, xi is
the liquid-phase molar fraction, and z is the
coordination number (usually 10). The molecular
volume fractions, Φi, and the molecular surface
fractions, θi, are computed based on Equations 4  and 5.
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The molecular size (ri) and the molecular shape
(qi) are computed from the group volume parameter
(Rk) and the group surface area (Qk), as stated in

Equations 6 and 7. ikυ  is the number of groups of

the kth type in the ith molecule

i
i kk

k

r R= υ∑    (6)
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τji  (Equation 3) is the UNIQUAC interaction
parameter that describes liquid-phase nonideality,
while binary parameters a (aij≠aji) and b (bij≠bji) are
determined from VLE and/or LLE data. The
temperature-dependent parameters (Equation 8) were
taken from the Aspen PLUS database. Ideal
behavior was assumed for the vapor phase. To
compare the results from different process
simulators, the parameters shown in Table 1 were
used.

ij
ij ij

b
exp a

T

 
τ = +   

   (8)

Residue Curve Map Analysis

Residue curve maps (RCM) provide an
understanding of the unit operations based on phase
equilibrium (i.e., distillation) in a different way than
process simulation. On the one hand, simulation
results are snapshots of the equipment’s performance
for selected conditions. On the other, these graphical
tools provide fundamentals for multicomponent
separations similar to the traditional McCabe-Thiele
plots for binary mixtures. RCM are built based solely
on the physical properties of the system: vapor-liquid
equilibrium, liquid-liquid equilibrium, and  solubility

data. In this context, RCM are applied to check,
without intensive computing, the separation
feasibility. The temperature always increases along a
residue curve line, and the roles of the singular
points (stable node, unstable node, or saddles) can be
assigned according to the Doherty and Perkins rules
(1979). The number and type of singular points (pure
components and azeotropes) is unknown a priori.
The singular points may be linked with distillation
boundaries, thus stating the topology for the whole
composition space. All calculations were performed
with Aspen SPLIT.

The binary system n-heptane + toluene has a high
purity binary azeotrope (0.99 mole fraction in n-
heptane). This azeotrope is nonsensitive to pressure
(0.975 molar at 10 atm.), and therefore pressure
swing distillation is not a promising alternative for
this separation. Applying the rules formulated by
Doherty and Perkins, no ternary azeotrope exists in
the system n-heptane + cyclohexane + toluene. The
RCM was computed and is shown in Figure 1. The
singular point detected acts as a saddle point, giving
rise to a distillation boundary running from the
azeotrope to the low-boiling component
(cyclohexane) and thus leading to two regions in the
ternary diagram. In the right region, where feed
concentration is located, all distillation lines begin at
cyclohexane and end at the high-boiling toluene,
indicating that removal of toluene as a bottom
product is feasible. In the small left region, all lines
go from cyclohexane to n-heptane.

Table 1: Interaction parameters for the
UNIQUAC model (Equation 7).

System

n-heptane n-heptane cyclohexaneParameter

cyclohexane toluene toluene

aij -0.8744 0.7788 -0.0238

aji 0.6985 -0.8597 0.1775

bij/K 90.41 -192.14 -30.49

bji/K -80.76 178.89 -54.66

Tlower/K 298.1 303.1 293.1

Tupper/K 371.6 383.9 383.7
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Figure 1: Residue curve map for n-heptane + cyclohexane + toluene at 101.3 kPa.

Distillation Design Methods

In general, it is not possible to cross boundaries
with distillation and recycle streams. It may be
possible to cross distillation boundaries if unit
operations other than distillation (i.e., liquid-liquid
extraction, reactor, membrane, etc.) are considered or
if the boundary is strongly curved. For all practical
purposes it can be stated that, for homogeneous
distillation, the whole separation sequence lies in the
same distillation region. Computing a distillation
column on a RCM is not difficult because the feed
and the top and bottom products must lie in a straight
line to satisfy the mass balance. The exact position of
each point depends on its relative flowrate. In
addition, both products must be on the same residue
curve line.

Two preliminary design methods were used. The
boundary value procedure (BV) was computed to
assess the separation feasibility and to calculate the
minimum reflux/reboil ratio for a fixed component
recovery (99 mol %). BV performs calculations by
starting at both ends of the column and computing
towards the middle; a separation is feasible if the
lines that illustrate the rectifying and the stripping
concentration profiles intersect. The omega design
procedure (Ω) optimizes the feed stage location by

studying the effect on the number of rectifying and
stripping stages. The last method is only applicable
for separations in which one of the products is a node
(stable or unstable).

The results from BV and Ω methods for both
approaches (remove first the light or the heavy
component) are very similar, recovering pure
cyclohexane, pure toluene, and the azeotrope. Figure
2 shows the concentration profiles for the second
strategy, in which the second column is very close to
the n-heptane + toluene axis.

PROCESS MODELING

A model for the system described by Nad and
Spiegel (1987) was developed. HYSYS.Plant® and
BATCHFRAC use rigorous calculations, with
several methods available to integrate the differential
equations, while CHEMCAD BATCH uses a
pseudostationary model.

Initialization with HYSYS.Plant 

Two feeds are introduced into the reboiler and
condenser at the same temperature and
concentration. Once the condenser is filled, the
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reflux valve is opened until the stages have the
experimental holdup; hence, the initial conditions
can be reproduced. To model the start-up period, the
reflux ratio is set to infinity, the heat duty is fixed,
and the feed and product flowrates are set to zero.
The predicted start-up period is 2.66 hours, a value
with only a 4.3% deviation.

Initialization using BATCHFRAC 

Initial conditions were fixed as the total reflux
stationary values. Due to software limitations, no
time considerations were implemented for the start-
up period, and therefore it was reached
instantaneously. To model the whole production
period in a single run, the accumulator type, the
feed-loading time, and the operational procedure
(sequence of operational steps linked by the so-
called stop criteria) were fixed. In this case, the
reflux ratio was modified according to time
considerations. Dump action for the different

fractions was continuous, and cut time switches were
introduced between two operational steps.

The Pseudostationary Model of CHEMCAD
BATCH

CHEMCAD BATCH models the discontinuous
operation with the CC-BATCH module. The
simulation of batch unit operations is performed as a
sequence of pseudostationary states, in which each
step begins with the final conditions of the previous
one, and the calculations are performed linking a
series of steady states. The option of having the same
concentration in the still pot, plates, and condenser is
adopted for the initialization period. During start-up,
the conditions were set to total reflux. To calculate
the production period, a set of thirty independent
operating steps were necessary. Batch distillation
was integrated with continuous operation with the
use of tanks and time switches between certain
operational steps.

Tol

nC7

Cyclohexane

Toluenen-heptane

2nd column profile

1st column profile

Feed

Cyclohexane

n-heptane

Toluene

cC6

Figure 2: Column profiles with removal of the light component in the first column.
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SIMULATION RESULTS

The results for top and bottom concentrations
(Figures 3a and 3b) for the three models agree very

well with the experimental data (x∆  = 0.01-0.04,
∆xmax = 0.084, average percentage deviation = 2.5%,
and maximum percentage deviation = 9.8%),
especially CHEMCAD, which yields more
accurate predictions. Thus, they are good candidates
for acting as soft sensors either on- or off-line. This
strategy is extremely useful for replacing on-line

analyzers, which are very expensive, and high
maintenance and have significant time lags.

The predicted temperature is in good agreement

with the experimental temperature (T∆  = 1.5-2.5oC,
∆Tmax = 4.6oC, average percentage deviation = 1.4%,
and maximum percentage deviation = 4.7%), as
shown in Figures 4a and 4b. However, if the models
are to be used as ad-hoc observers or estimators for
control purposes, the temperature is the best variable
for estimating the concentration in both top and
bottom stages.
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Figures 3a and 3b: Dynamic behavior of top and bottom concentrations.
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Figure 4a and 4b: Dynamic behavior of top and bottom temperatures.
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Figure 5: Schematic representation of a Hammerstein model.
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NONLINEAR IDENTIFICATION METHODS

A Brief Review

In contrast to linear models that approximate the
system around a given operating point, nonlinear
models are able to describe the global behavior of
the system over the entire operating range. One of
the most frequently studied classes of nonlinear
models is the Hammerstein models, which consists
of the cascade connection of a static (zero-memory)
nonlinearity and a linear time invariant (LTI) system
(Ljung, 1999; Eskinat et al., 1991).

In this section, a noniterative algorithm for the
estimation of Hammerstein models, which is based
only on least square estimation, and singular value
decomposition, is presented. The algorithm is then
used to estimate a nonlinear model of the process.
The data used for the identification are generated via
simulation of a rigorous model of the column based
on first principles, implemented with the commercial
package HYSYS.Plant®, tuned to match the
experimental data. As a result of the identification
process, a reduced-order nonlinear model that is
suitable for control design is obtained. For the
purposes of comparison, the same data are used to
estimate a state-space (linear) model of the column,
using a subspace identification method (Viberg, 1995).

Hammerstein Model Identification

A Hammerstein model is schematically depicted
in Figure 5. The model can be described by the
following nonlinear equation:

( )
( ) ( )

( )
( ) ( )

1

k k k1

1 r

i i k k1
i 1

B q
y  u  =

A q

B q
= c g u

A q

−

−

−

−
=

= + υ

+ υ∑

N

   (9)

where yk, uk, and υk are the system output, input, and
disturbance at time k, respectively, gi(*) are
nonlinear functions used to describe the nonlinear
zero-memory subsystem N(*), and

( )
( )

1 1 n
1 n

1 1 m
1 m

A q 1 a q a q

B q b q b q

− − −

− − −

= + + +

= + +

�

�

 (10)

with q-1 denoting the unit time-delay operator.
It is assumed that the orders n, m, and s and the

nonlinear functions gi(*) are known and that the goal
is to estimate the parameters of the linear (a1,···, an,
b1,···, bm) and nonlinear (c1,···, cr) subsystems from
input-output data. A typical choice is to represent the
nonlinear subsystem by a polynomial expansion.
Equation (9) can be written as a (nonlinear)
difference equation of the form

n r m
i

k j k j j i k j k
j 1 i 1 j 1

y a y b c u− −
= = =

= − + + υ∑ ∑∑  (11)

Now defining the vectors

( )T1 n 1 1 m 1 1 r m ra , ,a ,b c , ,b c , ,b c , ,b cθ = � � � �  (12)

k k 1 k n k 1 k m

2 2 r r T
k 1 k m k 1 k m

( y , , y ,u , ,u ,

u , ,u ,   , u , ,u )

− − − −

− − − −

φ = − −� �

� � �

  (13)

equation (11) can be written in linear regressor form
as

T
k k ky = φ θ + υ   (14)

Finally, considering that an N-point input-output

data set { }N
k k k 1y ,u =  is available for the

identification, equation (14) can be written in matrix
form as

T
N N NY V= Φ θ +  (15)

where

YN=(y1,···, yN)T, VN=(υ1,···, υN)T,

and ΦN=(φ1,···, φN)T.

Least squares estimate θ̂  of parameter vector θ is
given by

( ) 1T
N N N N

ˆ Y
−

θ = Φ Φ Φ   (16)

provided the indicated inverse exists. Now defining
the vectors a=(a1,···, an)

T, b=(b1,···, bm)T, and c=(c1,···,
cr)

T and the matrix
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the parameter vector θ can then be written as

( )( )TTT
bca ,vecθ = Θ  (18)

where vec(Θbc) is the column vector obtained by
stacking the columns of Θbc on top of each other.
Estimates of vectors a and vec(Θbc) can then be

obtained from estimate ̂θ  in (16). Let â and

( )bcvec
∧

Θ  denote these estimates. The problem now

is how to compute estimates of vectors b and c from

estimate ( )bcvec
∧

Θ .

From equation (11), it is clear that the
parameterization in (9) is not unique, since any
parameters αbj and α-1ci, for some nonzero scalar α
will provide the same input-output equation (11). To
avoid this identifiability problem, additional
constraints must be imposed on the parameters. A
standard procedure is to impose RER2=1 (or
equivalently RFR2=1). Under this assumption the
parameterization (9) is unique.

It is clear that, in the two-norm sense, the closest

estimates ̂b and ĉ  are such that they minimize the
norm

( ) ( )
2

2T T
bc bc

F
2

ˆ ˆ ˆˆ ˆvec bc vec bc
∧

− Θ = − Θ   (19)

i.e.,

( ) 2T
bc

Fb,c

ˆ ˆˆb,c argmin bc= Θ −  (20)

where RRF stands for the matrix Frobenius norm.
The solution of this minimization problem is
provided by the singular value decomposition of

matrix bcΘ̂ . The mathematical details can be

consulted elsewhere (Gómez and Basualdo, 2000).

Identification Results

In this subsection the nonlinear identification
algorithm described is employed to estimate a

Hammerstein model of the distillation process
(Gómez and Basualdo, 2000). In this case, the input
(u) of the system is the reflux ratio and the outputs
(y1, y2, and y3) are the n-heptane, cyclohexane, and
toluene concentrations, respectively. Since the sum
of the three concentrations equals one, only two of
them (e.g., y1 and y2) need to be estimated.

For the identification, r=3 terms were considered
for the polynomial representation of the nonlinear
subsystem. To select the "optimal" (in the mean
square sense) order of polynomials A(q-1) and B(q-1),
simulations were performed for the different
combinations of n and m in the range from 2 to 5,
and the combination giving the minimum mean-
square error with the validation data was chosen as
the optimal one. In this case the optimal orders were
n=2 and m=3.

The rigorous HYSYS.Plant® model of the column
was used to generate the extra data required to
perform the identification properly. The
interoperability facilities to transfer data were used
to interface HYSYS-PI® and MATLAB® 5.1
(Mathworks Inc., Natick, MA, USA). The model was
perturbed with a pseudorandom multilevel sequence,
as shown in the top-left plot in Figure 6. The
remaining plots of that figure show the real (solid
lines) and the estimated (dotted lines) outputs using
the nonlinear identification algorithm proposed in the
paper.

For the purposes of comparison, the same data
were used to estimate a (linear) state-space model
using a subspace method. Subspace state-space
system identification (4SID) methods have their
origin in realization theory, developed in the sixties.
These methods are able to deliver reliable state-space
models of multivariable systems directly from input-
output data, and they require only a modest
computational complexity without the need for
iterative optimization procedures (Basualdo and
Gómez, 1999). The main computational tools are QR
factorization and singular value decomposition,
which can be implemented very efficiently from a
numerical point of view (see Viberg, 1995 and the
references therein).

The state-space model structure is given as

K 1 K K K

K K K K

x A·x B·u w

y C·x D·u v

+ = + +

= + +
 (21)

where xn
kx ∈ℜ  is the state vector, n

ku ∈ℜ  is the

input vector, m
ky ∈ℜ  is the output vector, and wk
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and vk are the process noise and the output
measurement noise vectors, respectively, and where
A, B, C, and D are the system matrices of
appropriate dimensions to be estimated.

In  this  case, the  N4SID algorithm by Van

Overschee and de Moor (1994) was used for the
estimation. The N4SID algorithm chooses
automatically the best (in the mean-square sense)
model order (default range is from 1 to 10). The
resulting system matrix estimates are

1 3 1 2

3 1 2 1

4 4 1 2

4 4 3 1

9.963·10 4.920·10 2.866·10 2.840·10

3.558·10 9.935·10 2.608·10 2.783·10
A

2.675·10 4.775·10 9.936·10 4.377·10

6.427·10 3.530·10 6.051·10 9.272·10

− − − −

− − − −

− − − −

− − − −

 − − 
 − − =
 −
 
  

                                             (22)
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0

D
0

 
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                                                                      (23)

2 1 2 1

1 2 1 2

4.350·10 2.953·10 3.121·10 5.100·10
C

2.910·10 4.520·10 4.622·10 6.618·10

− − − −

− − − −

 − − =
 − − − − 

                                         (24)

The simulation results are also shown in Figure 6
(as dash-dotted lines). For the purposes of validation,
a different data set was used to compute estimates of

the outputs of the identified system. Here again,
there was very good agreement between the
measured and the estimated outputs.
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Figure 6: Clockwise from top left: reflux ratio, experimental (solid line), nonlinear estimate (dotted line),
and 4SID estimate (dash-dotted line) of cyclohexane, toluene, and n-heptane concentrations.
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CONCLUSIONS

In this work, a case study was considered to test
the capabilities for modeling and interfacing
experimental plant data with estimated values from
three commercial software packages available
worldwide (BATCHFRAC, CHEMCAD BATCH,
and HYSYS.Plant). From the computational
efficiency point of view, HYSYS.Plant and
BATCHFRAC have the best performance. In
particular, the use of InfoPLUS.21 in conjunction with
its layered application (BATCHFRAC) has an
important synergic effect. However, from the user-
friendly point of view, CHEMCAD BATCH, and
BATCHFRAC offer a simple way to model for less
trained users.

In addition, by performing a simulation with a
model that has been validated with plant data and
implemented in the HYSYS.Plant® environment, it
was possible to get enough data for applying
identification techniques. Therefore, a methodology
for the identification of nonlinear models of
multicomponent batch distillation columns has been
applied. As a result a reduced-order model which is
especially suitable for control purposes, can be
obtained.

NOMENCLATURE

4SID subspace-based state-space system
identification

aij interaction parameter in the UNIQUAC
equation, dimensionless

A, B, C, D state-space matrices of coefficients,
defined in Eq. (19)

bij interaction parameter in the UNIQUAC
equation, K-1

BV boundary value design
gi(*)  nonlinear basis functions, defined in Eq.

(9)
n number of inputs
N(*) static nonlinearity, defined in Eq. (9)
m number of outputs
qi  molecular shape
Qk group surface area
RCM residue curve map
ri molecular size
Rk group volume parameter
T  temperature, K
uk input vector

vk process noise vector
wk output noise vector
xi liquid molar fraction
xk state vector or state stacked vector
yk output vector
z  coordination number

Subscripts and Superscripts

Comb combinatorial
i, j ith/jth component
k  state-space variation in time or group

type
max maximum
Res  residual
T transposed

average value

Greek Symbols

∆ increment

φk regressor matrix, defined in Eq. 14

Φi molecular volume fractions

γi liquid-phase activity coefficient

τij  interaction parameter in the UNIQUAC
equation, dimensionless

i
kυ  number of groups of the kth type in the ith

molecule

θ parameter matrix, defined in Eq. 12

θi molecular surface fractions

Θbc block matrix, defined in Eq. 17

Ω omega design procedure
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