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Abstract - In this study, a comparison between neat poly(vinylidene fluoride) (PVDF) membrane and 
composite (PVDF-Nanoclay and PVDF-PVP-Nanoclay) membranes is presented. All membranes were 
synthesized by the phase inversion process, using 18% PVDF, n-methylpyrrolidone as solvent and water as 
the non-solvent. Demineralized water cross-flow permeation tests were conducted to evaluate the membranes 
performance. Scanning electron microscopy (SEM) images of the membranes surface and cross-section and 
water contact angle measurements were used to estimate additives effects on membranes morphology. The 
results indicate that dopant addition affected membrane permeate flux and morphology. The 4% nanoclay 
composite membrane resulted in the highest ultrapure water permeability (0.9130 m3.m-2.h-1.MPa-1), lower 
hydraulic resistance (3.27×10+12.m-1), lower contact angle (87.1º) and highest surface porosity (0.95%). 
Furthermore, it was verified that the membrane surface porosity increased with increasing clay nanoparticles 
concentrations. It was observed that the morphology of the membranes with clay nanoparticle addition is 
characterized by a thin surface layer, with macro-pores, a thin bottom layer, which has a sponge-like structure 
with micro-pores and a thick intermediate layer, with finger-like pores and macro-pores. It was also verified 
that the introduction of PVP promotes a denser morphology compared with membranes without it. Based on 
the SEM surface and cross-sectional images and permeability tests, it became evident that the internal pore 
morphology plays an important role in membrane performance, because the higher the frequency and extent 
of the finger-like pores in the intermediate layer the higher is the membrane permeability. These preliminary 
results indicated that the use of nanoclay as an additive for membrane casting is a promising procedure for 
improving membrane performance for water and wastewater treatment. 
Keywords: Ultrafiltration; Clay Nanoparticles; Poly(vinylidene fluoride); Water Treatment; Performance; 
Morphology. 

 
 
 

INTRODUCTION 
 

Poly(vinylidene fluorine) (PVDF) is a semi-crys-
talline polymer. The main macromolecular straight 
chain of PVDF is surrounded by fluorine and hydro-
gen atoms (–CH2-CF2–). Its crystalline structure and 
spatial arrangement of CH2 and CF2 groups along the 

polymer chain result in excellent mechanical stability 
(Lui et al., 2011b). The high electronegativity of fluo-
rine atoms and the high dissociation energy of the  
C–F bond provide a better thermal stability compared 
with hydrocarbon polymers (Lovinger and Reed, 
1980). Furthermore, PVDF is chemically stable to a 
wide range of chemical products such as halogens, 
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oxidants, inorganic acids and aromatic, aliphatic   
and chlorinated solvents (Hashim et al., 2011). These 
PVDF properties associated with its low price, radia-
tion resistance, low surface energy and dielectric 
constant have made it one of the most popular and 
usual polymers for microfiltration (MF) and ultra-
filtration (UF) membranes (Lui et al., 2007; Zhao    
et al., 2008). 

However, despite the previously presented advan-
tages, PVDF has an intrinsic hydrophobicity. Thus, 
PVDF membranes have limitations for water, sew-
age and aqueous mixtures treatment (Lui et al., 2007; 
Zhao et al., 2008), which restricts the use of this kind 
of polymer. 

The PVDF membrane hydrophobicity results in 
low membrane wettability and higher resistance for 
water flow, because there are no hydrogen bonding 
interactions in the boundary layer between the mem-
brane interface and water. Moreover, hydrophobic 
membranes are more susceptible to fouling during 
treatment of aqueous solutions containing natural 
organic matter (NOM) (Lui et al., 2011b). As water 
molecules repulsion by hydrophobic surfaces is a 
spontaneous process with an increase in entropy, 
NOM molecules have a tendency to adsorb onto the 
membrane surface (Brant and Childress, 2004; Du et 
al., 2009). 

In order to incorporate hydrophilic proprieties 
into conventional hydrophobic PVDF membranes for 
better performance, several membrane modification 
methods have been explored (Zhao et al., 2008). The 
blending modification method is ordinarily used to ob-
tain the desired functional properties during membrane 
synthesis. In this way, the synthesis and modification 
processes can be performed in only one step (Zhao et 
al., 2008). Until now, three main types of additives 
have been used for PVDF membrane modification: 
hydrophilic polymers or pore-forming (polyvinyl-
pyrrolidone - PVP and poly(methyl methacrylate) - 
PMMA), amphiphilic copolymers (P(MMA-r-POEM) 
or P(MMA-r-PEGMA); PVDF-g-POEM; PVDF-g-
PMAA; PVDF-g-PEGMA; PVDF-g-PAAc; PVDF-
g-PAAc-b-PNIPAAM; PVDF-g-PTMASPMA and 
HPE-g-MPEG) and inorganic particles (TiO2; SiO2; 
Al2O3 and ZrO2) (Liu et al., 2011b). 

According to the results summarized in Liu et al. 
(2011b), the introduction of additives improved the 
pure water flux, increased the water flux recovery 
and decreased the contact angle. In most cases, 
exception made for P(MMA-r-POEM), HPE-g-
MPEG and TiO2, an improvement in the rejection 
rate was also observed when using additives. 

In the past years, the addition of inorganic nano-
particles to polymer solutions has become an attrac-

tive method for polymeric membrane synthesis and 
has been extensively studied because of its simplicity 
(Yan et al., 2006). Research has focused on the 
preparation of composite or organic-inorganic hybrid 
membranes by the incorporation of inorganic nano-
particles. As explained previously, this blending 
modification is intended to improve porous mem-
brane performance, reducing the hydrophobicity and 
increasing fouling resistance and permeability, which 
result from a better control of membrane surface 
properties and pore morphology (Yan et al., 2006; 
Lui et al., 2011b). This is possible because nano-
particles have unique properties (electronic, magnetic, 
optical, thermal and mechanical stability) and also 
due to their small size, high activity and high surface 
area (Yan et al., 2006). 

Bottino et al. (2001, 2002) and Lin et al. (2003) 
have shown that PVDF- SiO2 membrane morphology 
and elasticity are influenced by the mass of inorganic 
material. According to Cao et al. (2006), PVDF-TiO2 
membrane permeability and hydrophilicity show 
better results than simple PVDF membranes and also 
decreased median pore size and surface roughness. 
Cao et al. (2006) also conclude that TiO2 nano-
particles had a strong effect on the PVDF molecule’s 
crystallization. 

Yan et al. (2006) have shown that the addition of 
Al2O3 nanoparticles did not affect pore size and 
numbers or the formation of crystals. The surface 
morphology was modified by increasing the surface 
roughness, but this did not affect the performance. 
According to the author, the contact angle decreased, 
as well as tensile strength, while rupture elongation 
improved. 

According to Ma et al. (2012) and Monticelli et 
al. (2007), the addition of nanoclay to a polysulfone 
(PSf) membrane can increase water permeate flux. 
Monticelli et al. (2007) demonstrated that modified 
membranes had a higher contaminant rejection rate 
when compared to pure polysulfone membranes. 
Also according to the cited authors, the modified 
(PSf)-clay showed a lower contact angle; the clay 
increased membrane wettability at the same time that 
the mechanical properties were improved. On the 
other hand, Ma et al. (2012) showed that the nano-
clay had little effect on the hydrophilicity of 
membranes and that it deteriorates to some extent the 
membrane mechanical properties. Ma et al. (2012) 
demonstrated that the addition of nanoclay to poly-
sulfone membranes can increase the ratio of large 
pores in the skin layer and also the pure water flow. 
This may be due to a difference in the membrane 
composition. The aforementioned studies utilized dif-
ferent solvents, polymers and nanoclay concentra-
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tions. Furthermore, MA et al. (2012) also used a pore 
forming additive PEG 400. 

Anadão et al. (2010) also studied the incorpora-
tion of nanoclay in PSf membranes. Although water 
permeation tests were not performed, their results 
showed that hydrophilicity, thermal stability and 
mechanical resistance of the composite membranes 
were improved. 

Mierzwa et al. (2013) and Ghaemi et al. (2001) 
argued that clay nanoparticles increased polyether-
sulfone membrane permeability and induced changes 
in the membrane surface and morphology. Ghaemi  
et al. (2001) indicated that, at all nanoclay concentra-
tions added, higher membrane hydrophilicity, poros-
ity and a thinner skin layer were obtained. According 
to Mierzwa et al. (2013), nanoclay addition in-
creased the contact angle, reduced the negative 
surface charge density and had no effect on mem-
brane porosity and thickness. However, there was an 
optimum clay nanoparticle concentration above 
which membrane performance was significantly 
reduced. 

Considering the promising results obtained in the 
cited studies, the main objective of this work is to 
evaluate the effect of inorganic clay nanoparticles 
(hydrophilic montmorillonite) on the morphology 
and performance of poly(vinylidene fluoride) (PVDF) 
ultrafiltration membranes synthesized by the phase 
inversion process, compared to the neat PVDF 
membrane. 
 
 

MATERIALS AND METHODS 
 
Materials 
 

Studies were conducted with commercial poly 
(vinylidene fluoride) (PVDF) Kynar Flex® 2821 (co-
polymer of poly(vinylidene fluorine) and hexafluoro-
propylene) kindly donated by Arkema Química Ltda.  

N-methyl-2-pyrrolidone (NMP) with molecular 
weight of 99.1 g mol-1 was acquired from Labsynth 
produtos para laboratórios Ltda and was used as 
solvent.  

The poly(vinylpyrrolidone) (PVP) with an aver-
age molecular weight of 10,000 g mol-1, from Sigma 
Aldrich, was used as pore former.  

The clay nanoparticles (Montmorillinite - Nanomer® 

PGV), pellets approximately 1 nm thick and with an 
aspect ratio (length/width) ranging from 200-400 and 
molecular weight of 180.1 g mol-1, also from Sigma 
Aldrich, were used as additive. 

 All this chemicals were used as received. Demi-
neralized water was prepared in the laboratory by 

double step reverse osmosis and used for membrane 
casting and membrane performance evaluation. 
 
Solution Preparation and Membrane Casting 
Procedure 
 

The reference solution was prepared with (PVDF) 
polymer at a fixed concentration (18% by weight) 
dissolved in N-methyl-2-pyrrolidone (NMP) solvent, 
at 50 ºC and stirred for 24 hours or until a homoge-
nous polymeric solution was obtained using a 
mechanical stirrers (Fisaton 713D model).  

For solutions with PVP, the final solution was 
obtained by the addition of 1% PVP (based on PVDF 
mass) together with PVDF. The PVP pore former 
addition was used to evaluate its combined effect on 
modified nanoclay membrane performance. For 
solutions containing clay nanoparticles (2% and 4% 
based on PVDF mass) specific amounts of clay were 
added and dispersed in the previously prepared 
solutions. The range of clay nanoparticle concentra-
tion chosen was based on previous results obtained 
by Mierzwa et al. (2013) and Ghaemi et al. (2011). 
This solution was stirred for 24 hours at 50 ºC for 
complete clay nanoparticle dispersion. Table 1 shows 
the composition of each solution prepared. 
 
Table 1: Different composite PVDF membranes. 
 

Membrane PVDF
(wt%)

NMP 
(wt%) 

PVP 
(wt%)1 

Clay nanoparticles
(wt%)1 

Control 18 82 0 0 
0% PVP + 2% clay 18 82 0 2 
0% PVP + 4% clay 18 82 0 4 
1% PVP + 0% clay 18 82 1 0 
1% PVP + 2% clay 18 82 1 2 
1% PVP + 4% clay 18 82 1 4 

1 wt% is based on PVDF mass 
 

Membranes were synthesized by the phase inver-
sion process. Each final solution was spread onto      
a glass plate to produce a flat sheet membrane. The 
spreading itself was done using an automatic film 
applicator (ELCOMETER K4340 M10 model 
Automatic Film Applicator) coupled with bar coaters 
(ELCOMETER model 3700). 

The polymeric film thickness adopted was 100 µm 
with a casting velocity of 4 cm/s. The polymeric film 
was immediately immersed into the coagulation bath 
(demineralized water) at 25 ºC, for 2 minutes or until 
the membrane was considered to be set. From the 
coagulation bath the cast membranes were trans-
ferred to another water bath (demineralized water at 
ambient temperature) for at least 24 hours to remove 
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any residual solvent. Table 2 shows the casting process 
parameters. 
 
Table 2: Casting parameters for flat sheet mem-
branes. 
 

Casting Temperature ambient 
Casting knife 100 µm 
Casting Speed 0.04 m/s 
Coagulation Bath demineralized water 
Coagulation Bath Temperature 25 ºC 
Coagulation Bath Time 2 minutes 

 
Membrane Performance Evaluation 
 

For performance evaluation, demineralized water 
flow tests were conducted using a cross flow test 
cell. Membranes used for these tests were removed 
from water and immersed in isopropyl alcohol for 24 
hours; they were then dried naturally to prevent pore 
collapse (Porter, 1990). At least three different 
rectangular membrane samples (0.13 meters x 0.09 
meters) were cut from different membranes. The 
system was pressurized at 0.3 MPa. Each test was 
run for one hour and permeate flow was obtained 
using a graduated cylinder and a stop watch. 
Measurements were recorded each five minutes. 

Based on the series resistance model, the perme-
ate flux (J; [m3/m2.h]) was calculated using Equation 
(1). The clean membrane hydraulic resistance (RM 
[m-1]) was calculated using Equation (2). 
 

VJ
A.t

=                 (1) 

 
where V = permeate volume (m3); A = membrane 
effective surface area (m2); t=permeation time (s) 
 

M
PR
J

Δ
=
μ×

               (2) 

 
where J = flux (m3/m2.s); ΔP = transmembrane pres-
sure (Pa); μ = dynamic water viscosity (Pa.s) 
 
Membrane Hydrophilicity 
 

The membrane hydrophilicity was estimated by 
measuring the water contact angle (θ; [º]) of a sessile 
drop. Contact angle measurements were carried out 
according to the ISO-15989 standard method 
(International Standard, 2004). 

The membranes used for these tests were re-
moved from water and immersed in isopropyl 
alcohol for 24 hours and then dried naturally to 
prevent pore collapse. Two different rectangular 
membrane samples were cut from different mem-

branes. At least fifteen tests for each type of mem-
brane were made. Results were analyzed by the 
Median Test and Mann-Whitney Test. 
 
Membrane Morphology Evaluation 
 

Based on the Scanning Electron Microscopy (SEM) 
images, it was possible to determine the membrane 
pore sizes and distribution, using the ImageJ soft-
ware. Membrane surface and cross-sectional images 
were obtained using a Quanta 600FEG Environmental 
Scanning Electron Microscope (ESEM), operated in 
the secondary electrons detection mode with a 10 kV 
accelerating voltage. All membrane samples were 
coated with a platinum layer. 
 
 

RESULTS AND DISCUSSION 
 
Membrane Performance Evaluation 
 

Demineralized water flow tests were performed 
as a preliminary procedure to investigate the effect of 
clay nanoparticles and PVP addition on the PVDF 
membranes performance. 

From Table 3 and Figure 1 it is possible to verify 
that the use of additives affects membrane permeability. 
The highest permeate flux (0.9130m3.m-2.h-1.MPa-1) 
was obtained for membranes cast with 0% PVP and 
4% clay, showing an increase of 732% compared 
with the control membrane. The second highest 
(0.7473 m3.m-2.h-1MPa-1) was obtained for mem-
branes cast with 0% PVP and 2% clay, with is 581% 
higher than the control membrane. However, the 
variance test, for a 5% significance level, between 
these two permeate flows, did not demonstrate that 
the variances are different. These results were ex-
pected because an improvement of pure water flux 
upon clay nanoparticle addition was also observed in 
previous studies (Mierzwa et al., 2013; Ma et al., 
2012, Ghaemi et al., 2011; Monticelli et al., 2007). 

The PVP addition also improved the pure water 
permeate flux. Comparing the (1% PVP + 0% clay) 
membrane permeability with the control membrane 
permeability the improvement was around 230%. 
This result agrees with previous reports that discuss 
the PVP influence on membrane morphology. 
According to Liu et al. (2011b), PVP acts more like 
a pore former in the modification of the PVDF 
membrane than as a hydrophilic additive because it 
is water soluble and can be removed during mem-
brane preparation and operation. Furthermore, PVP 
addition affects the thermodynamics and kinetics of 
the casting process, changing membrane morphology, 
pore size and pore size distribution. 
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Table 3: Effect of additives on PVDF membrane performance. 
 

Average permeability Membrane Average permeate flow
(m3.m-2.h-1) (m3.m-2.h-1.MPa-1) (L.m-2h-1.bar-1) 

Median hydraulic resistance
(10+12m-1) 

Control 0.032 0.1098 10.98 21.75 
0% PVP + 2% clay 0.224 0.7473 74.73 3.47 
0% PVP + 4% clay 0.274 0.9130 91.30 3.27 
1% PVP + 0% clay 0.109 0.3623 36.23 7.94 
1% PVP + 2% clay 0.180 0.6007 60.07 6.29 
1% PVP + 4% clay 0.165 0.5494 54.94 8.25 

 
 

Average Permeate Flux Median Permeate Flux 

 
Figure 1: Additive effect on PVDF membrane permeability. 

 
 

According to the results presented in Table 3 and 
Figure 1, the combination of clay nanoparticles and 
PVP can improved the pure water permeate flux 
around 447% and 400%, respectively, for (1% PVP 
+ 2% clay) and (1% PVP + 4% clay) membranes, 
compared to the control membrane. Nevertheless, 
membranes made with the combination of clay 
nanoparticles and PVP presented lower permeability 
compared with the membranes in which only clay 
nanoparticles were used. This behavior is related to 
the small PVP average molecular weight (10,000 
g.mol-1), which can lead to membranes with tight 
pores and reduced permeability. In order to confirm 
this hypothesis it is necessary to analyze and com-
pare the membrane internal structure and also its 
separation capacity. 

Table 3 also presents the results for membrane 
hydraulic resistance. The introduction of additives 
resulted in a lower hydraulic resistance. The 
hydraulic resistances for (0% PVP + 2% clay) and 
(0% PVP + 4% clay) membranes were about 6 to 7 
times lower, respectively, when compared with control 
membrane. The other membranes had their hydraulic 
resistance reduced 3-fold relative to the control 
membrane. The variance test between the hydraulic 

resistances of (0% PVP + 2% clay) and (0% PVP + 
4% clay) membranes indicated that they were not 
different at the 5% significance level. 

The median hydraulic resistance results agrees 
with the water permeate flux results; membranes 
that had the highest flux showed lower hydraulic 
resistance. 
 
Membrane Hydrophilicity 
 

Results for the contact angle measurements are 
presented in Table 4 and Figure 2. Because the contact 
angle measurements were very similar, the Median 
Test and Mann-Whitney Test were performed to 
better understand these results. Table 5 and Table 6 
present the test results. 

Table 5 shows that, in most cases (except for 
pairs control/0% PVP + 4% clay; 0% PVP + 2% clay 
/1% PVP + 0% clay; 0% PVP + 2% clay /1% PVP + 
4% clay and 1% PVP + 0% clay /1% PVP + 4% clay) 
the contact angle results do not have the same median 
at the 95% confidence level. Table 6 indicates that 
the contact angle measurements do not come from 
populations with the same average at the 95% confi-
dence level. 
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Table 4: Results of membrane hydrophilicity. 
 

Membrane 
Average  

Contact Angle 
(º) 

Median  
Contact Angle 

(º) 
Control 86.6 87.0 
0% PVP + 2% clay 98.9 98.5 
0% PVP + 4% clay 88.1 87.1 
1% PVP + 0% clay 100.2 99.7 
1% PVP + 2% clay 92.2 92.8 
1% PVP + 4% clay 99.0 97.2 

 

 
Figure 2: Median contact angles. 

 
Table 5: Results of Median Test. 

 
 0% PVP + 2% clay 0% PVP + 4% clay 1% PVP + 0% clay 1% PVP + 2% clay 1% PVP + 4% clay

Control Non Homogeneous Homogeneous Non Homogeneous Non Homogeneous Non Homogeneous 
0% PVP + 2% clay  Non Homogeneous Homogeneous Non Homogeneous Homogeneous 
0% PVP + 4% clay   Non Homogeneous Non Homogeneous Non Homogeneous 
1% PVP + 0% clay    Non Homogeneous Homogeneous 
1% PVP + 2% clay     Non Homogeneous 

 
Table 6: Results of Mann-Whitney Test. 

 
 0% PVP + 2% clay 0% PVP + 4% clay 1% PVP + 0% clay 1% PVP + 2% clay 1% PVP + 4% clay

Control Non Homogeneous Non Homogeneous Non Homogeneous Non Homogeneous Non Homogeneous 
0% PVP + 2% clay  Non Homogeneous Non Homogeneous Non Homogeneous Non Homogeneous 
0% PVP + 4% clay   Non Homogeneous Non Homogeneous Non Homogeneous 
1% PVP + 0% clay    Non Homogeneous Non Homogeneous 
1% PVP + 2% clay     Non Homogeneous 

 
 

The contact angle results showed that clay nano-
particles and PVP addition affected membrane 
hydrophilicity. According to previous studies (Ghaemi 
et al., 2011; Anadão et al., 2010; Monticelli et al., 
2007), it was expected that additives would decrease 
the contact angle and increase hydrophilicity, but the 
results have shown the opposite, since the control 
membrane had the lowest contact angle. Mierzwa    
et al. (2013) and Ma et al. (2012) demonstrated that 

the nanoclay had little effect on the hydrophilicity of 
membranes. 

Khulbe et al. (2003) concluded that the contact 
angle is related to the membrane surface roughness. 
The smaller membrane surface roughness, the smaller 
the contact angle. Therefore, the change in mem-
brane contact angle using additives can be better 
explained by the changes in membrane roughness, as 
was pointed out by Mierzwa et al. (2013). 
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The permeability results and median contact 
angle results show that although additive introduc-
tion did not improve membrane hydrophilicity, it 
improved membrane permeability for pure water. 
These results are counter intuitive since higher 
permeability is associated with a more hydrophilic 
membrane. According to Mierzwa et al. (2012), 
contact angle is not a good indicator to predict 
permeability. Moreover, their studies suggest that 
membrane structure and pore size analysis provide 
better insights to understand the effects of additives 
on membrane performance. 
 

Membrane Surface Morphology Evaluation 
 

Membrane surface morphology can be analyzed 
in terms of pore size, pore distribution and porosity. 
These characteristics can be evaluated by surface 
SEM image analysis, as presented in Figure 3. 

In order to understand the effect of additives on 
membrane morphological characteristics, the surface 
pore distributions and surface porosity were deter-
mined with SEM image analysis using the ImageJ 
software, as show in Figure 4. The surface pore size 
distributions are shown in Figure 5. 

 
(a)(a) (d)(d)

 
(b)(b) (e)(e)

 
(c)(c) (f)(f)

 
Figure 3: Membrane SEM surface images: (a) Control; (b) 0% PVP + 2%
clay; (c) 0% PVP + 4% clay; (d) 1% PVP + 0% clay; (e) 1% PVP + 2% clay;
(f) 1% PVP + 4% clay. 
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(a) (b)(a) (b)

 
Figure 4: (0% PVP + 4% clay) membrane SEM surface image: (a) before 
manipulation; (b) after manipulation. 

 

 
Figure 5: Membrane surface pore size distributions. 

 
 
As observed in Figure 5, the (0% PVP + 4% clay) 

membrane, (1% PVP + 0% clay) membrane, (1% 
PVP + 2% clay) membrane and (1% PVP + 4% clay) 
membrane had their distribution curve peaks shifted 
to larger pore diameters and showed a larger base 
distribution when compared to the control membrane 
and the (0% PVP + 2% clay) membrane. The most fre-
quent pore diameters found were: control membrane 
- 3.5 nm; (0% PVP + 2% clay) membrane - 3.5 nm; 
(0% PVP + 4% clay) membrane - 8nm; (1% PVP + 
0% clay) membrane - 4.5 nm; (1% PVP + 2% clay) 
membrane - 6.5 nm; (1% PVP + 4% clay) membrane 
- 9nm. 

It was observed that, in most cases, except for the 
(0% PVP + 2% clay) membrane, the addition of clay 
nanoparticles and PVP increased the pore diameter 
as well as broaden the pore size distribution. These 
results can justify the improvement in the composite 
membrane permeability, except for the (0% PVP + 2% 
clay) membrane, which presented a similar pore size 
distribution curve to the control membrane. This 
result indicates that the membrane internal morpho-

logy can significantly affect membrane performance, 
as was observed by Mierzwa et al. (2012). 

Table 7 presents the results for surface porosity. It 
can be noted that the addition of nanoclay changed 
surface porosity. Surface porosity increased with 
increasing nanoclay concentrations, but in most 
cases nanoclay addition failed to improve the surface 
porosity compared to the control membrane. The 
PVP and nanoclay combination presented the lowest 
surface porosity, probably because of the low PVP 
molecular weight. 
 

Table 7: Membrane surface porosity. 
 

Membrane Total Pore Area 
(nm2) 

Surface Porosity 
(%) 

Control 26.160 0.47 
0% PVP + 2% clay 25.357 0.45 
0% PVP + 4% clay 53.564 0.95 
1% PVP + 0% clay 36.290 0.65 
1% PVP + 2% clay 17.013 0.30 
1% PVP + 4% clay 20.514 0.37 

Total membrane area: 5,606.068 nm2  
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Despite the highest surface porosity and permeate 
flux presented by the (0% PVP + 4% clay) membrane, 
the surface porosity and surface pore size distribu-
tion results are not in such good agreement with the 
permeate test. This indicates that the internal pore 
morphology and structure have a major influence in 
the permeate flux performance. 
 
Membrane Internal Morphology Evaluation 
 

Membrane internal pore structure is an important 
morphology characteristic that can affect the mem-
brane performance. The influence of additives on 
membrane internal morphology was evaluated by 

analysis of membrane cross-sectional SEM images. 
The cross-sectional SEM images for all cast mem-
branes are presented in Figure 6. 

From Figure 6 it can be observed that the type 
and concentration of additive affected the membrane 
pore structure. Nanoclay cast membrane morphology 
is characterized by a superficial layer with macro-
pore, a bottom layer which has a sponge-like pore 
structure with micro-pores and an intermediate layer, 
with finger-like pores and micro-pores. This kind of 
structure was expected since previous studies (Hwang 
et al., 2011) showed similar structures of composite 
PVDF-Nanoclay membranes. 

On the other hand, membranes with PVP had a 
 

(a)(a) (d)(d)

 
(b)(b) (e)(e)

(c)(c) (f)(f)

 
Figure 6: Membrane SEM cross-sectional images: (a) Control; (b) 0% PVP 
+ 2% clay; (c) 0% PVP + 4% clay; (d) 1% PVP + 0% clay; (e) 1% PVP + 
2% clay; (f) 1% PVP + 4% clay. 
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denser structure and also showed an intermediate 
layer characterized by macro-pores and longer and 
narrower finger-like pore structures. However, it 
shows an increasing number of finger-like pores. 
Besides, it can be observed that PVP introduction 
decreases the average pore size. These changes are 
proportional to the added PVP concentration added. 

Membranes thickness characteristics are shown in 
Table 8. 

It was expected that the final membrane had a 
20% reduction in thickness. However, it can be ob-
served in Table 8, the thickness reduction varies from 
17% to 70%; the thicker membrane (1% PVP + 4% 
clay) had an estimated thickness of 82.87 μm and the 
thinner membrane (0% PVP + 2% clay) 30.31 μm. 
Membranes with only nanoclay (0% PVP + 2%   
clay membrane and 0% PVP + 4% clay membrane) 
showed the highest reduction in thickness compared 
to the membranes with nanoclay and PVP additions 
(1% PVP + 2% clay membrane and 1% PVP + 4% clay 
membrane). 
 

Table 8: Membrane thickness characteristics. 
 

Thickness (μm) 
Membrane 

Total Surface 
Layer 

Bottom 
Layer 

% reduction 
in thickness1

Control 42.39 6.42 20.35 57.61 
0% PVP + 2% clay 30.31 3.39 12.28 69.69 
0% PVP + 4% clay 51.64 3.55 17.53 48.36 
1% PVP + 0% clay 79.50 1.39 2.08 20.50 
1% PVP + 2% clay 42.44 2.56 5.31 57.56 
1% PVP + 4% clay 82.87 4.55 5.69 17.13 

1 Casting knife 100μm 

 
Furthermore, the additives had different effects 

on the membrane internal layer thickness. The addi-
tion of nanoclay decreased the surface and bottom 
layer thicknesses, increased the intermediate layer 
thickness and also the number of finger-like pores. 
These changes are proportional to nanoclay concen-
tration. The PVP and PVP-Nanoclay membranes had 
a reduction in bottom layer thickness compared to 
the nanoclay membranes. 

Comparing the differences in internal membranes 
pore morphology and membranes performance, it 
can be noted that increasing the finger-like pore 
profile in the intermediated membrane layer im-
proved permeability. Moreover, a less dense struc-
ture with a superficial layer with macro-pores, an 
intermediate layer with a finger-like pore structure 
and micro-pores and a bottom layer with sponge-like 

pore structure and micro-pores provides an improve-
ment in membrane permeability. 
 
 

CONCLUSIONS 
 

In this study, the influence of clay nanoparticles 
and PVP on the performance of PVDF membranes 
was evaluated. 

The results of the performance evaluation tests 
suggest that the addition of clay nanoparticles and 
pore former (PVP) can improve the pure water 
permeate flux compared with a neat PVDF mem-
brane. Moreover, the additions of only clay nano-
particles as an additive presented the best results for 
pure water permeate flux among all PVDF mem-
branes compared. The use of 4%wt nanoclay concen-
tration in the solution resulted in the membrane with 
the highest ultrapure water permeability. 

The contact angle results indicate that additives 
increased the contact angle and decreased hydro-
philicity, but, at the same time, the additives improved 
membrane permeability for pure water. This demon-
strated that hydrophilicity is not responsible for the 
performance improvement.  

Although the additives increased the distributions 
of pore diameter and the frequency of pores with 
higher diameter, composite membranes did not show 
better surface porosity results compared with the 
control membrane. 

Furthermore, it was verified that the membrane 
surface porosity increased with increasing clay nano-
particle concentration. It was also observed that the 
morphology of this kind of membrane is character-
ized by a thin surface layer, with macro-pores, a thin 
bottom layer, which has a sponge structure with 
micro-pores and a thick intermediate layer, with 
finger-like pores and macro-pores. It was also veri-
fied that the addition of PVP promotes a denser 
morphology compared to membranes without it. The 
effect of clay nanoparticle addition on membrane 
performance seems to be associated with the changes 
in membrane morphology, increasing surface poros-
ity and the extent of finger-like pores. 
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Laboratório de Caracterização Tecnológica (LCT), 
for the SEM analysis. 
 
 

NOMENCLATURE 
 
A Membrane effective surface 

area 
m2

J Permeate flux m3/m2.s
RM Hydraulic resistance m-1

t Permeation time s
V Permeate volume m3

ΔP Transmembrane pressure Pa
 
Greek Letters 
 
θ Contact angle [º]
μ Dynamic water viscosity Pa.s
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