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Abstract - An experimental and theoretical study on the inhibition corrosion efficiencies of twenty three 
compounds in hydrochloric acid (15% w/v) on 13% Cr modified stainless steel (martensitic) has been carried 
out. This inhibitor set includes amines, thiourea derivatives and acetylenic alcohols. Experimental weight 
losses at 60oC were correlated with group and quantum AM1 descriptors obtained from QSPR analysis. Such 
data, for a large set of molecules, offer a unique opportunity for searching for correlations between inhibition 
corrosion efficiency and molecular properties. Calculations based on three different statistical methodologies 
were carried out. The first method, using calibration procedures, employs an ordinary least squares (OLS) 
methodology with a simple descriptor selection based on R2 values. From this procedure, we obtained a 
model, Y15, having a R2 value of 0,979 and a Q2 value of 0.786. The second method employs a descriptor 
selection based on the second-order cross-validation OLS procedure (SOCV-OLS). In this process, the 
variables are chosen according to their ability to predict molecular inhibition efficiencies. The best model 
obtained using this methodology, Q5, had R2 and Q2 values of 0.859 and 0.785, respectively. The third 
method, based on regular partial least squares (PLS), resulted in R2 and Q2 values of 0.859 and 0.754, 
respectively. All calculations were carried out for the weight isoesteric Langmuir adsorption function (WILA 
function), ln(θM/(1-θ)) or ln Kads. A careful comparison between the calibration and the cross-validation 
descriptor selection indicated that they had very few descriptors in common. This article presents some key 
equations and the most relevant descriptors. We are unaware of any similar QSPR study on super 13% Cr 
stainless steel in the literature.  
Keywords: Corrosion inhibitors; QSPR; Super-13 steel; Stainless steel; AM1. 

 
 
 

INTRODUCTION 
 

Corrosion inhibitors have been widely used in 
stimulation operations in petroleum wells. In these 
operations, hydrochloric acid solutions (15% w/v) at 
temperatures up to 60oC are employed to remove 
iron oxides and carbonated minerals [Mack, 1995]. 
In such an aggressive medium, the use of corrosion 

inhibitors (CIs), whether used singularly or as 
mixtures of different CI´s [Trabanelli, 1984; 
Santana, 2002; Mack, 1995] is mandatory. Among 
the well-known CIs employed in hydrochloric acid 
media are amines, amides, nitriles, imidazolines, 
triazoles, pyridine, quinoline derivatives, thiourea 
derivatives, thiosemicarbazide and thiocyanates, 
among others. 
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 Modified 13% Cr (martensitic) stainless steel, 
13Cr-5Ni-2Mo, hereafter referred simply as super 
13, and many other corrosion resistant alloys 
(CRAs) containing high chromium and 
molybdenium concentrations [Walker, 1994; 
Cassidy, 1995; Bergman, 1954] are intensively used 
in the petroleum industry. The use of super 13 steel 
offers superior corrosion resistance for mildly acidic 
environments, combined with high strength and 
good low-temperature toughness. It has particular 
advantages in HCl and HF media. Under extreme 
conditions, this alloy has an excellent corrosion 
resistance for oil/gas co-production fluids due to its 
extended pH range of passivation. Some authors 
have claimed that the super 13 stainless steel is more 
difficult to protect against localized attack than the 
22% Cr full-duplex alloy. However, the general 
corrosion and pitting of CRAs can be inhibited during 
the stimulation process. Extensive work is in progress 
to develop higher inhibition corrosion efficiencies 
(ICEs) and to find optimal IC mixtures for use with 
alloys having a high chromium concentration in 
hydrochloric acid solutions [Cassidy, 1995; Bergman, 
1954] at high temperatures.  

The use of chemometric analysis in inhibition 
corrosion studies is not new. Early attempts were 
made in the mid-1950s employing Huckel 
calculations. For a large number of molecules, 
Bergman [Bergman, 1954] obtained excellent 
correlations between standard reduction potentials 
with the lumo and homo energies. During the 1960s, 
Donahue [Donahue, 1966; Vosta, 1971] employed 
ab initio calculations to establish certain 
correlations. Vosta and collaborators studied the 
correlation of eight gamma-substituted pyridine N-
oxides with several ab initio quantum descriptors.   

In an earlier series of papers, Growcock et al. 
[Growcock, 1989, 1989], elaborated a general 
multivariate analysis for chemisorption and 
corrosion inhibition. They employed such physico 
chemical descriptors as homo and lumo energies, 
logP and the Hammett and Taft constants, in an 
investigation of the inhibition of corrosion of mild 
steel by derivatives of cinnamaldehyde. 
Interestingly, this was the first work to recognise the 
importance of the Langmuir constant for obtaining 
the best linear relationships.  

Using the CNDO/2 methodology, Abdul-Ahad 
[Abdul-Ahad, 1989], extended this work to aniline 
derivatives. Dupin et al. [Dupin, 1980] carried out an 
important study with a large set of corrosion 
inhibitors. The corrosion inhibition by forty-two 

compounds, including aliphatic amines, imidazolines 
and related compounds was correlated with some 
Hansch and Free-Willson parameters. In this study, 
many non-linear descriptors were tested. This is the 
only work, besides ours, in which more than ten 
molecules were involved.  

In a set of univariate experiments Sastri et al. 
[Sastri, 1997], correlated the ICEs of several methyl 
substituted pyridines and substituted ethane 
derivatives with MNDO descriptors. Studying 
dibenzyl sulfoxide adsorption on iron in the mid-
1990s, Kutej et al. [Kutej, 1995], studying dibenzyl 
sulfoxide adsorption on iron in the mid-1990s, 
employed ab initio calculations to recognise the 
attachment points of CIs on the iron surface. Öğretir et 
al. [Ogretir, 1999] employed several AM1, PM3, 
MINDO/3 and MNDO descriptors in attempts to 
correlate the efficiency of pyridine-based inhibitors for 
mild steel. Several descriptors showed excellent 
univariate correlations. However, Sastri et al.[Sastri, 
1997], did not use multivariate methods. A related 
article [Bereket, 2002], published recently, was 
concerned with the corrosion inhibition of imidazole 
derivatives for iron exposed to acidic media. 

Lukovits et al. [Lukovits, 1998] employed a 
polynomial regression analysis for the Langmuir 
adsorption constant for a set of seven thiourea 
derivatives and obtained good correlation values. 
Bentiss et al. [Bentiss, 2003] successfully correlated 
ICEs, determined through charge transfer resistance, 
of six triazole and oxadiazole derivatives, with AM1 
quantum descriptors: R-values of 0.91-0.96 were 
obtained. Recently Khalil [Khalil, 2003] extended 
this study and correlated the inhibition by twelve 
thiosemicarbazone and thiosemicarbazide derivatives 
with five quantum MNDO/PM3 descriptors. All 
these previous studies were merely concerned with 
carbon steel. The lack of data on other types of steel 
in the literature is apparent and needs to be 
addressed. Furthermore, the ability to use and 
transfer data between various steel types would be a 
most useful and significant advance.  

Recently, the field has experienced a 
revolutionary change with several molecular 
modeling techniques being used to design new CIs. 
Articles by Wang et al. [Wang, 1999] and Pradip et 
al. [Pradip, 2002] are among the early contributions 
to this revolution. Wang calibrated the ICEs of three 
imidazole derivatives and used these values to 
correctly predict the ICEs of another three imidazole 
derivatives. Pradip et al. elaborated a procedure for 
the evaluation of the interaction energies of 



 
 
 
 

Predictive QSPR Analysis of Corrosion Inhibitors for Super 13% Cr Steel                                                            549 
 

 
Brazilian Journal of Chemical Engineering Vol. 24,  No. 04,  pp. 547 - 559,  October - December,  2007 

 
 
 
 

surfactants used in industrial cleaning. The 
advantage of their proposal is that experimental data 
are not necessary. Affrosman et al. [Affrosman, 
2001] predicted, on the basis of experimental and 
computational experience, that the inhibition time 
would be maximal around C10 for physical 
adsorption on titanium surfaces. 

Despite the intense empirical work searching for 
new commercial inhibitors, very few articles address 
ICE analysis. For the quantum statistical property 
relationship (QSPR) studies, no more than fifteen CI 
molecular systems and descriptors were usually 
employed. Two major exceptions are the Dupin et al. 
[Dupin, 1980] work with forty-two CIs and our 
previous study [Cardoso, 2006].  

In the work we describe herein, a detailed 
experimental and theoretical investigation was carried 
out on the twenty three different CI compounds, namely 
amines, thiourea derivatives and acetylenic alcohols, in 
order to correlate experimental weight loss and the ICE 
for super 13 steel in hydrochloric acid (15% w/v) 
solutions at 60oC using quantum and group contribution 
molecular parameters.  

A previous study [Cardoso, 2006] by our group 
analysed the same set and their ICEs for the 22% Cr 
stainless steel surface. Principal component analysis 
(PCA), second-order cross-validation ordinary least-
squares analysis (SOCV-OLS) and partial least-
squares analysis (PLS) were carried out with 
excellent results. Correlations obtained for OLS 
were typically in the range of 0.99-0.92 for R2, while 
a simple PLS with three components produced 
values of 0.86-0.88 R2. The SOCV-OLS results 
showed that the best descriptors employed to predict 
WILA functions were rather different from the best 
descriptor set selected to describe ICE through the 
OLS models. All molecular systems showed 
acceptable fits for these models and usually less than 
ten descriptors were actually required to obtain good 
results in the calibration and validation steps. We 
believe that this is the first study employing the 
same CI set with different types of steel. 

Since the descriptors used here are the same as 
the ones employed in our previous study, no 
discussion will be presented for the principal 
component analysis (PCA). In this study, we shall 
present experimental details, followed by ordinary 
least-squares analysis (OLS), the predictive second-
order cross-validation (SOCV-OLS) and our partial 
least squares (PLS) results. It must be pointed that 
the systematic analysis of data for large set of 

molecules offers a unique opportunity for 
determining predictability of ICEs based on intrinsic  
molecular properties.  
 
 

EXPERIMENTAL 
 

All corrosion inhibition data were obtained 
through weight loss experiments based on 
rectangular steel specimens with 2 × 0.5 × 0.5 cm 
dimensions and a central hole. The experiments were 
carried out in cylindrical autoclaves internally 
coated with teflon. The autoclaves were placed in a 
rolling oven at 60oC for 3 h. All solutions employed 
300 mL of HCl (15% w/v), 2% w/v of the chemical 
inhibitor and 0.6% w/v of formaldehyde. The 
experimental conditions were designed to avoid 
complete dissolution of the metal plates and to 
strictly adhere to industrial recommendations, by 
which no more than 2% w/v of active components 
are allowed for matrix acidification operations. 
Formaldehyde was employed to minimise hydrogen 
penetration. These conditions strictly followed those 
previously reported. The steel specimens were 
cleaned with acetone, washed with water, dried and 
weighed with a 0.0001 g precision. Two results were 
averaged for each inhibitor. 

Table 1 lists the twenty three inhibitors employed 
in our study and their ICE for super 13. Since all 
experiments were carried out with the same inhibitor 
weights, a different procedure was more adequate 
for the QSPR studies. Since ∆Gads is a 
thermodynamic property, which shows a strong 
correlation with the energy, volume and with the 
inhibition polarisability, we used the weight 
isoesteric Langmuir adsorption function, the WILA 
function, defined as ln(θM/(1-θ)) = ln Kads, as the 
response property in the QSPR calculations.  

Tributylamine, aniline and such thiourea derivatives 
as 3-dibutylthiourea, 1,3 diethylthiourea and 1,3-
dimethylthiourea are among the most efficient 
inhibitors are followed by propargylic alcohol, 
diphenylamine, thiourea and some amines. On the other 
hand, the aliphatic amines, isopropylamine, sec-
butylamine, propylamine, diethylamine and n-
butylamine, are among the less efficient inhibitors 
tested for super 13. It is important to point out that the 
greater corrosion rates for 22% Cr are higher than these 
for 13% Cr steel in hydrochloric acid media should be 
credited to the reaction of the chloride ions at the 
molecular interface. 
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Table 1: The twenty-three inhibitors employed, the ICE (θ) values,  
and the WILA function, ln(θM/(1-θ)), values. 

 
 Compound θ ln(θM/1-θ) 

1 Tributylamine 0.9776 8.99 
2 Aniline 0.9776 8.31 
3 n-octylamine 0.8862 6.91 
4 Diphenylamine 0.9208 7.58 
5 Dodecylamine 0.8841 7.25 
6 di-n-butylamine 0.8679 6.74 
7 Cyclohexylamine 0.7819 5.87 
8 n-butylamine 0.6912 5.09 
9 Triethylamine 0.7467 5.69 

10 Hexylamine 0.8314 6.06 
11 Sec-butylamine 0.6754 5.02 
12 Diethylamine 0.6876 5.08 
13 Propylamine 0.6818 4.84 
14 Isopropylamine 0.6361 4.64 
15 1,3-Dibutyl-2-thiourea 0.9730 8.82 
16 1,3-Diethyl-2-thiourea 0.9636 8.16 
17 1,3-Dimethyl-2-thiourea 0.9596 7.81 
18 Thiourea 0.9004 6.53 
19 Propargyl alcohol 0.9580 7.15 
20 2-pentyn-1-ol 0.8767 6.39 
21 3-butyn-1-ol 0.8963 6.41 
22 2-butyn-1-ol 0.7407 5.29 
23 2-butyne-1,4-diol 0.6859 5.23 

 
 
Theoretical Calculations  
 

All calculations employed the Austin Model 1 
(AM1) methodology as coded in Mopac 6.025 for 
most of the descriptors, Pcmodel [Serena Software, 
2005] for the volume calculations, and the QSPR 
programme, coded by Fedders and co-workers, and 
obtained from the internet [Fedders, 2005]. This last 
programme, has been adapted in our laboratory for 
SOCV-OLS analysis [Fedders, 2005]. In this work, 
we employed the same descriptor set as that used in 
our previous study [Cardoso, 2006], and this 
includes the following group contribution 
descriptors: A1 is the number of RNH2 groups; A2 is 
the number of R1R2NH groups; A3 is the number of 
R1R2R3N groups; NB is the number of phenyl groups 
(structurally isolated); NC is the number of cyclic 
carbon rings; NCS is the number of CS bonds; NT is 
the number of triple CC bonds; NOH is the number 
of OH groups; NCR is the average number of carbon 
atoms and NR is the branching number, while N is 
the number of moles of inhibitor present in the 
vessel.  

For the quantum descriptors, we employed the 
same descriptors as those used in our previous study 
[Cardoso, 2006]: ED is the dimerisation energy; M 
is the CI molecular mass; P is the polarisability 

given in atomic units; C is the charge of the polar 
group; C1 is the charge of the S, N and triple CC 
adsorption site; C2 is the charge of the aromatic ring 
(or its absence the polar group charge); C12 is the 
charge of two atoms of the polar group; C13 is the 
charge of the three atoms of the polar group; C14 is 
the charge of the four adjacent atoms to the polar 
group; EH is the homo energy; EL is the lumo 
energy; Dif is the difference EL-EH; DP is the 
dipole and V is the calculated volume. The quantum 
descriptors add up to fourteen descriptors, while the 
whole set employs twenty five molecular 
descriptors. The values for the overall quantum and 
group contribution descriptors have been already 
published [Cardoso, 2006] and will not be reported 
here. 
 The choice of this descriptor set was based on 
several articles found in the literature, which 
indicate the most usual descriptors (dipole, 
polarisability, lumo and homo energy, etc). We 
added several others based on common sense and 
evaluation ease of in order to explore new 
possibilities. 
 
Ordinary Regression Analysis (OLS) 
 

In order to assess the relevant physico-chemical 
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relevant descriptors of the adsorption and corrosion 
inhibition process, we shall present results for a 
naive, although informative, ordinary least-squares 
analysis coupled to a simple descriptor selection 
procedure. All OLS calculations were carried out 
with centered and self-scaled descriptors and the 
response function as the isoesteric weight Langmuir 
adsorption function, ln(Mθ/(1-θ)), the WILA 
function. All twenty three molecules were employed.  

In order to describe the elimination descriptor 
algorithm, calculations started with simple OLS and 
all the twenty five descriptors previously described. 
In order to identify the most representative 
descriptors, we carried out an elimination algorithm 
by which the descriptor with the least absolute 
contribution to the response functions is eliminated 
from the descriptor set. Then a new OLS carried out 
with the remaining ones and the new descriptor was 
successively eliminated until a minimum number of 
descriptors was achieved.  

The difference between homo and lumo energies 
(Dif), number of cycles (NC), lumo energy (EL), 
branching number (NR), number of benzyl groups 
(NB), dimerisation energy (ED) and charge of the 
four polar atoms (C14) are the early eliminated 

descriptors. By the major contribution criteria, in 
descending order, the most important contributing 
descriptors were polarisability (P), volume (V), ring 
charge (C2), total charge (C), number of CS bonds 
(NCS), charge between two atoms (C12), homo 
energy (EH), number of alchool groups (NOH), 
number of secondary (A2) and primary (A1) amines 
and molecular dipole (DP).  

In Figure 1 is shown the variation of R2 and Q2 
during the variable elimination process. In the Figure, it 
is clear, that with a large number of descriptors there is 
an overfit pattern with R2 and Q2 values very close to 
unity. Due to the successive eliminations, R2 decreases 
slowly while Q2 shows an irregular behaviour. 
Therefore our choice for the best model should have 
not less than fifteen descriptors in order to obtain 
reproducible validation coefficients. The final equation 
for lnKads with fifteen descriptors, hereafter referred to 
Y15; show the OLS descriptors and its loadings below. 
For the sake of simplicity, the variables and regression 
coefficients are related to centered and self-scaled 
values. This model had a regression coefficient of R2 = 
0.979 and Q2 = 0.786, an excellent result for the 
correlation of twenty three response inhibition 
corrosion efficiencies.  

 

 
Figure 1:  Variations of R2 (-■-) and Q2 (-○-) with the number of descriptors employed. 

 
15Y -0.93 N - 7.64 P  6.74 C - 2.27 C12+

 
  0.94 C13 - 1.06 C1 - 7.22 C2 - 2.17 EH - 

-1.17 DP  7.45 V - 1.15 A1 - 1.81 A2 7.12 NCS-

- 1.869 NROH - 1.085 NCR 

= +

+

+ +
  (1) 

 
Figure 2 shows the measured-predicted plot for 

the calibration procedure while in Figure 3 is shown 
the measured-predicted plot for the validation 
procedure. An analysis of Figure 2 shows excellent 

calibration behaviour, with most of the molecular 
systems showing acceptable deviations. In Figure 3, 
however, are shown some outliers: 3-butyn-1-ol, 
thiourea and propargyl alcohol are underestimated, 
while 2-butyne-1,4-diol, 2-butyn-1-ol, dodecylamine, 
isopropylamine and n-butylamine are overestimated in 
this model. In conclusion, alcohols showed erratic 
behaviour with large errors. It is important to point out 
that the identification of related inhibitors showing 
erratic behaviour has not been reported previously due 
to the small number of molecules employed in previous 
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calculations. At this point many possible causes can be 
suggested like a different adsorption mechanism or a 
descriptor inadequacy, however, due to the scarcity data 
on this particular steel surface, no conclusions can be 
drawn at this point.  

A similar analysis on protonated amines has been 
carried out. The results invariably showed poorer 
regression coefficients, R2, and validation coefficients, 
Q2. Concerning our space limitations, we shall not 
present the numerical descriptor table or any 
graphical results in this article.  

An analysis of the descriptor elimination order 
indicates significant differences from the previously 
reported analysis for 22% Cr stainless steel 
[Cardoso, 2006]. Volume and polarisability, are 
reported here as important descriptors, whereas they 
were of little importance in the inhibition of 22% Cr 
stainless steel corrosion. On the contrary, the lumo 
energy, which indicates the ease of reduction of the 
inhibitor, was a very important descriptor in duplex 

stainless steel, but was one of the early eliminated 
descriptors for super 13 steel. As there are 
significant differences between these results for the 
two types of steel, it follows that different 
corrosion protection mechanisms could arise. For 
duplex steel, the dimerisation energy was 
considered an important descriptor, while for super 
13 it was eliminated for being a non-representative 
descriptor. The presence of polarisability and 
volume among the major contribution descriptors 
suggests that physical adsorption should be an 
important physical process taking place on the 
super 13 steel surface. That was expected and had 
been reported by several authors in the field. We 
should always remember that adsorption energies 
for commertial inhibitors usually have values 
placed between physical and chemical typical 
adsorptions energies and, therefore, most of these 
processes have been classified as strong physical 
adsorption.   

 

 
Figure 2:  Predicted-measured calibration plot for the Y15 OLS model. 

 
Figure 3:  Predicted-measured validation plot for the Y15 OLS model. 
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Second-Order Cross-Validation Analysis (SOCV-
OLS) 

 
The selection procedure employed in the previous 

section, although successful in achieving of valid 
correlations, is based on calibration procedures. In 
this section, we investigate which of the descriptors 
are the most appropriate to predict ICE based on 
chemometric methods. To search for the most 
representative set of all descriptors for inhibition 
prediction, we shall introduce the average error 
function, defined as the sum of the squared 
deviations of the L WILA functions fitted result to 
the result as shown below: 
 

L N
2

i j ij all
i 1 j 1

0

(y [ a x ] )

L
= =

−

ε =
∑ ∑

                 (2) 

 
where the aj coefficient was obtained through an 
OLS calculation employing all molecular CI 
available as the calibration ensemble. Such a model 
is well-suited to reproduce the calibration data, 
especially when using a large molecular set, but is 
not adequate in predicting or validating molecular 
ICEs. In order to improve the predictability of our 
model, we devised a model based on the 
minimization of the cross-validation error of a large 
molecular ensemble. In this procedure a single, or a 
pair of molecules, is excluded from the OLS 
procedure defining the model, and then the ICE and 
its squared deviation is summed for the excluded 
molecules. In the case of pairs, the model considers 
the existence of L(L-1)/2 different pairs of possible 
exclusions and the error is summed over all 
possibilities. 

The first order cross-validation error, shown in 
Equation 3 below, is defined by the calculation of a 
single molecule through an OLS model calibrated 
with all but this particular inhibitor. The overall 
error is divided by L, the number of CI molecules. 
 

L N
2

i j ij not(i)
i 1 j 1

1

(y [ a x ] )

q
L

= =

−

=
∑ ∑

                     (3) 

 
Our results rely on a model based on the second-

order cross-validation, Equation 3, which is summed 
for all pairs of molecules, which are excluded from 
the original molecular set in each calculation. In our 
case, considering the original twenty three 

molecules, there exist 253 different molecular pairs 
and the second-order cross-validation error sums up 
all these 253 bootstraps. The average second order 
cross-validation error is shown below 
 

L N
2

i j ij not(i, j)
i 1 j 1

2

2 (y [ a x ] )

q
L(L 1)

= =

−

=
−

∑ ∑
                (4) 

 
The effect of successive variable additions to the 

descriptor set of an OLS calculation is well known. 
Usually the calibration error decreases together with 
the first order cross-validation error, while the 
second order cross-validation error shows an 
irregular behaviour with an initial decrease followed 
by a clear divergence for a large descriptor number. 

In order to determine the most representative set 
of descriptors we developed a simple model based 
on single descriptor addition to a previous set. In this 
procedure, we start with the best correlated 
descriptor with the response function, and then a 
single descriptor is added, each iteration, to the 
previous descriptor list. In a particular iteration, the 
second order cross-validation error is calculated for 
each descriptor addition, and the model employs the 
one which shows the smallest second order cross-
validation error. For each variable selection, the 
model carries out 253 × 25 OLS calculations, i.e. 
6325 bootstrap calculations, choosing the set with 
the smallest predictive error. The procedure is then 
continued with successive single additions of several 
descriptors until the whole set of twenty five 
descriptors is obtained. Figure 4 shows the variation 
of calibration, the first and second order cross-
validation errors plotted against the number of 
descriptors.  

In Figure 4 the behaviour of the calibration, the 
first and second order cross-validation errors are 
shown. The result is expected. The calibration error 
ε0 decreases with the increasing number of 
descriptors. Similarly, but somehow irregularly, the 
first order cross-validation shows a slight decrease 
with the increase in the number of descriptors. 
Alternatively the second-order cross-validation error 
tends to show a large increase with the number of 
descriptor. This result is due to the great flexibility 
of functions with large number of descriptors 
provides to fit the calibration ensemble. Usually this 
pattern presents optimal results for the correlation 
with the lack of sensitivity to average values, as in 
the predictive procedure.  
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Figure 4:  The evolution of the calibration, first and second-order cross-validation error. 
 
 

The difference from the calibration descriptor set 
determined in the previous section is noticeable. Of 
the five most important descriptors associated with 
the second-order cross-validation procedure, we find 
only a single common descriptor. Of the ten best 
predictive and correlation descriptors, are only three 
common descriptors. Therefore we might conclude 
that the best predictive descriptors should be 
obtained in specific procedures with an emphasis on 
variable selection based on prediction evaluations.  

The five best predictive descriptors are molecular 
mass (M), charge between two neighbouring groups 
(C12), total number of triple bonds (NT), 
polarisability (P) and the number of hydroxyl groups 
(NOH). Surprisingly the charge C12 and the number 
of hydroxyl groups were irrelevant descriptors in 
previous studies. The lumo and homo energies and 
the energy difference, although recognised as very 
important in many previous studies in the literature, 
were not of any special value when applied to super 
13 steel. Actually this information was confirmed 
when the selection criteria employed calibration in 
the OLS previous study. Are insignificant variables 
the average size of each branch (NCR), charge of the 
adsorption site (C1), volume (V) and the number of 
fused aromatic rings (NB). The lumo and homo 
energies and the energy difference are the next 
lowest relevant descriptors.  

At this point it is important to compare the 
differences between super 13 steel and duplex 
stainless steel [Cardoso, 2006]. For the SOCV-OLS 
descriptor selection the lumo energy, the lumo-homo 
difference, and the homo energies were significant 
descriptors for duplex steel but were of little 
importance for super 13 steel. Similarly, the 

dimerisation energy was found to be very important 
for full-duplex steel, but not for super 13 steel. 
Further differences were found for amines: the 
number of secondary amine groups was the most 
important descriptor for super 13 steel, while all 
amines (A1, A2 and A3) had been considered 
irrelevant in the previous study. This information 
shows that similar molecules can provide 
correlations that are dependent on steel type. 
However, similar factors can play important roles for 
both steel types, e.g. the number of alcohol groups 
and the number of CS bonds are among the most 
important descriptors for both duplex and super 13 
stainless steel. These results suggest that the CS and 
alcohol groups form strong attachment to the super 
13 steel surface. We are not aware of any other study 
reporting a similar conclusion. 

The model with the smallest second order cross-
validation error, Q5, was obtained using five 
descriptors and is shown below. 
 

m
m i i

Y Xi

 (Y-Y )  (X -X )
1,52M 0,79P

0,53C12 0,80N 0, 66NOH

= = − +
σ σ

+ −

∑
               (5) 

 
In this formula, the symbols M, C12, N, P, and 

NOH stand for the standard deviation values of these 
molecular properties. This particular model showed 
values of R2 =0.859 and Q2 =0.785 with a good 
regression for all twenty three molecules. Figure 5 
contains the calibration results, while Figure 6 
presents the cross-validation predicted-measured 
plots.  

Although the R2 and Q2 values are acceptable for 
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corrosion studies, these are somewhat lower than the 
results usually observed in traditional biological 
studies. However, since our ICE approach is entirely 
based on predictive procedures and biological 
studies rely on calibration procedures, they are 
strictly not comparable.  

The results of the cross-validation for model Q5 

show several outlying molecules, all previously 
reported in the analysis of the calibration plot. 
Inhibitors such as hexylamine, propargyl alcohol, 
1,3-dimethyl-2-thiourea, 1,3-diethyl-2-thiourea, are 
undervalued, in contrast to the overestimation of 2-
butyn-1-ol, isopropylamine, sec-butylamine and 
dodecylamine in model Q5..  

     
Figure 5: Predicted-measured calibration plot for the Q5 prediction OLS model. 

 
Figure 6: Predicted-measured first-order validation plot for the Q5 prediction OLS model. 

 
Partial Least-Squares (PLS) 
 

In order to assess the most relevant 
physical/chemical descriptors, we present the results 
of a partial least-squares analysis. Choosing the two 
main components and carrying out a PLS for the two 
sets of response properties, the ICE and the WILA 
function, ln(Mθ/(1-θ)), we obtained 0.759 and 0.854 
for the regression coefficient (R), respectively. 
Clearly the results are better for the WILA function. 
For the predictive correlation (Q), values of 0.608 
and 0.754 respectively for the ICE and the WILA 
function were obtained.  

The contributions of the descriptors to the WILA 
function are, in descending order of importance: M, 
P, C1, C2, V, EH, A2, ED, while NCR, Dif, C14, 
A1, NT and A3 were insignificant. Remarkably, 
primary and tertiary amines were among the least 
significant descriptors, while the secondary amine 
A2 showed up as one of the main descriptors. This 
strongly suggests that the most significant 
attachment occured via secondary amines, and not 
with primary or tertiary amines. There is a three 
orders of magnitude difference between the major 
and the minor contributors. This implies that no 
descriptor group can be indicated a priori. Actually, 
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the difference between the homo and lumo energies, 
Dif, made only a minor contribution for super 13 
steel, while from many other studies, it is one of 
the most important descriptors. In Figure 7 is 
shown in the measured-predicted correlation plot, 
while Figure 8 contains the measured-predicted 
validation results. 

The analysis of the calibration and validation plots 
shows that the molecules: aniline, tri-butylamine, 1,3- 

dibutyl-2-thiourea, propargylic alcohol, 2-buthyl-1-
ol and  2-butyne-1,4-diol were poorly represented 
by the treatment. Interestingly in our previous study 
on 22% Cr stainless steel [Cardoso, 2006], tri-
butylamine, triethylamine and 1,3-dibutyl-2-thiourea 
were well describded, while the other molecules 
were also found to be outliers. In Table 2 are shown 
the regression coefficients obtained with the best 
PLS model.  

 
Table 2: The regression coefficient for the WILA function. 

 
Descriptor Regression coefficient 

A1 -2.688 × 10-2 

A2 0.115 
A3 4.530 × 10-2 
NB 8.762 × 10-2 
NC -1.305 × 10-2 

NCS 0.102 
NT -4.518 × 10-2 

NOH -5.172 × 10-2 
NCR -1.099 × 10-3 

NR 4.996 × 10-2 
N -6.338 × 10-2 

ED -0.114 
M 0.184 
P 0.180 
C -6.838 × 10-2 

C12 8.092 × 10-2 
C13 -4.783 × 10-2 
C14 -1.130 × 10-2 

C1 -0.167 
C2 -0.152 
EH -0.122 
EL -7.838 × 10-2 

DIF -7.004 × 10-3 
DP 0.109 

V 0.141 
 
 

 
Figure 7: PLS calibration correlation graph. 
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Figure 8:  PLS validation correlation graph. 
 
 

CONCLUSIONS 
 

Many chemometric studies on inhibition 
corrosion have been reported in the literature. In this 
particular study we present correlation of a medium 
size number of molecules (twenty-three) with group 
contribution and quantum descriptors. Different 
response were compared for corrosion purposes 
based on ICE and the WILA functions, with 
advantages overall work favouring the WILA 
function.  

Four different models were tested based on OLS, 
descriptor selection based on regular OLS, 
descriptor selection based on second order cross-
validation OLS and the traditional PLS 
methodology. Two different algorithms regarding 
descriptor selection were used as well. The first 
based on the magnitude of the weight coefficients 
and the second based on the smallest error in the 
second order cross-validation OLS. Expectations 
exists for the optimal adequacy of the first method 
toward the calibration and for the second method 
toward the model predictability. 

 Two particular models were selected. The best 
calibration model showed the best result as Y15, 
using fifteen descriptors. The R2 and Q2 values, 
respectively of 0.979 and 0.786, compare well with 
results previously reported in the literature. The 
second model, which variables was selected by 
SOCV-OLS, was the Q5 and showed R2 and Q2 
values of 0.859 and 0.785, respectively. Finally the 
PLS method generated R2 and Q2 values of 0.854 
and 0.754. The PLS results, although using all 

twenty five descriptors, show similar results to the 
SOCV-OLS results. 

An interesting exercise was the selection of the 
best descriptors, employing the minimization of the 
second-order cross-validation error. The selected 
descriptor set had little similarity with the 
descriptors selected by OLS, based on calibration 
procedures. This is an important result and points 
that an specific search for descriptors, depends on 
whether the study is focused on calibration or 
validation. Quantum and group contribution 
descriptors were used, and the results show that the 
use of mixed-character descriptors offer a well-
balanced descriptor set. Among the descriptors with 
the greatest contributions, we point out 
polarisability, molecular dipole, molecular mass, 
volume, charges, secondary amines which showed 
relevance in both models employed (OLS and PLS). 
The descriptors showing unimportant contributions 
were NCR, surprisingly the homo/lumo difference, 
charge C14, branching number (NR), number of 
primary and the number of tertiary amines. 
Noticeably, the difference between the homo and 
lumo energies and the number of primary and 
tertiary amine group descriptors were indicated in 
some previous corrosion studies as being very 
important, while they were found here to be only of 
secondary importance.  

 Finally, we point out that no previous application 
of the QSPR methodology has been reported for 
super 13 steel. Further work is imperative to gain a 
better general understanding of structure-property 
correlation in corrosion inhibition. With this in 
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mind, we are now carrying out studies on carbon-
steel. We are including the same descriptor set and 
we shall be searching for a fundamental corrosion 
inhibition equation, which would systematise all the 
collected data.  
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