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Abstract - A modification of Smith predictor for controlling higher order processes with integral action and 
long dead-time is proposed in this paper. The controller used in this Smith predictor is an Integral-
Proportional Derivative controller, where the Integrator is in the forward path and the Proportional and 
Derivative control are in the feedback, acting on the feedback signal. The main objective of this paper is to 
design a dead time compensator, which has minimum tuning parameters, simple controller tuning, and robust 
performance of tuning formulae, and to obtain a critically damped system that is as fast as possible in its set 
point and load disturbance rejection performance. The controller in this paper is tuned by an adaptive method. 
This paper also presents a survey of various dead time compensators and their performance analysis. 
Keywords: Dead time compensator; Controller; Auto tuning; Integrating process. 

 
 
 

INTRODUCTION 
 

Smith predictors are effective tools for 
compensating the dead-time associated with the 
processes. During the last 20 years, numerous 
extensions and modifications of the Smith predictors, 
also called dead-time compensators, DTC, 
(Saravanakumar et al., 2006) have been proposed. 
The design of the dead time compensators 
(Hagglund, 1992) requires the tuning of more 
parameters (primary controller and model 
parameters) than classical PID controllers. This has 
been a drawback for the application of DTC in 
industry, which required 5 parameters. To simplify 
the tuning of the DTC controller proposed by Smith, 
a four parameter controller was proposed 
(Coughanowr, 1991).  
 

NON-SELF REGULATING PROCESSES 
 
DTC by Watanabe and Ito (1981) 
 

To overcome the drawback of the DTC discussed 
previously, Watanabe and Ito (1981) proposed the 
dead time compensator presented in Figure 1.  

 
 

Figure 1: DTC proposed by  
Watanabe and Ito (1981) 

 

mailto:saravanakumar579@yahoo.com�
mailto:rsdwb@yahoo.com�


 
 
 
 

9 0                                                        G. Saravanakumar and R .S. D. Wahidabanu 
 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

Simulation studies have shown that, with a PI 
controller the set point and load disturbances were 
either very oscillatory or highly damped when the 
process had a large dead-time. The response of the 
system also tends to be slow. Much better 
performance was obtained when the main controller 
was of the PID type.  
 

sLY(s) G(s)e
u(s)

−

=              (1) 

 
1G(s)
s

=                 (2) 

 

1
G(s)G (s)

1 sL
=

+
              (3) 

 
Here G(s) is the plant and G1(s) is the model. This 

was the assumption made in this DTC. Here the 
drawback is that the set point response is rather slow. 
It too had three controller parameters to be 
determined, Kc, Ti and Td. 
 
DTC by Astrom et al. (1994) 
 

To overcome the drawback of the Watanabe 
method, Astrom et al. (1994) proposed a DTC for the 
integrating process that was considerably faster in set 
point response and had a better load disturbance 
rejection. A convenient property of the controller was 
that it decouples the set point response from the load 
response. However, the number of tuning parameters, if 
the velocity gain is unknown, equals six.    
 
DTC by Matausek and Micic (1996) 
 

The controller proposed by Matausek and Micic 
(1996), presented in Figure 2, is a simple and 
straightforward modification of the Smith predictor 
for the integrating process. The high closed loop 
system performances, i.e., fast set point response and 
satisfactory load disturbance rejection, can be 
obtained even in the presence of the unmodelled 
dynamics. There are only three adjustable parameters 
that have a clear physical interpretation and can 
easily be tuned manually.  
 

1Ko
2Kp

=
τ

               (4) 

 

r
p r

1K
K T

=                (5) 

 

The drawback is that it cannot perform better for 
load response for processes with longer dead-times.   
 

 
 

Figure 2: Modified DTC proposed by  
Matausek  and Micic (1996). 

 
DTC by Normey-Rico and Camacho (1999) 
 

This structure, presented in Figure 3, was the 
modification of the Watanabe structure for the 
integrating process by including the filter.  The 
tuning criterion was based on the definition of the 
closed loop performances and considers that the 
model of the process is not precisely known. Using 
the estimation of the dead-time and the velocity gain 
of the plant, the proposed control law has three 
parameters (To, Kg, L) that can be tuned manually 
like a PID Controller. This method, Normey-Rico 
and Camacho (1999) was better in both set point and 
load disturbance performance when compared with 
Matusek and Micic’s method for longer dead-times. 
The method presented is applicable to PID Control 
algorithms in both the Interacting and non-
interacting derivative forms. 

 
 

Figure 3: DTC proposed by Normey-Rico  
and Camacho (1999). 

 
DTC by Rice and Cooper (2002) 
 

Here the work was based on the IMC structure, to 
derive tuning correlations for integrating processes. 
One novel contribution of this work (Rice and 
Cooper, 2002) was the extension of tuning 
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correlations to include the PID with derivative filter 
forms. This work is applicable where a compromise 
is sought between settling time and overshoot, while 
minimizing the “chatter” in the controller output due 
to noise. This method also requires five parameters 
to be determined, two model parameters and three 
controller parameters.  
 
DTC by Wang et al. (2006) 
 

The scheme of this controller is presented in 
Figure 4. Here the region of the control parameters to 
guarantee the system stability was characterized. The 
control parameters to achieve the given gain and 
phase margins were determined. Furthermore, the 
constraint on achievable GPM was derived. These 
results were obtained on the basis of the normalized 
system that involves only two free parameters and 
one filter parameter for a total of three parameters. 
Here (Wang et al., 2006) the set point response was 
fast and the load response was rather slow for the 
integrating process.    
 

 
 

Figure 4: DTC proposed by Wang et al. (2006). 
 

So in all the DTCs discussed above, it was 
possible to achieve a perfect response, either with set 
point or load response. Hence it is necessary to 
design a method that will be able to achieve a 
critically damped system and is as fast as possible in 
both set point and load disturbance. 
 
 

PERFORMANCE ANALYSIS OF MODIFIED 
DTC FOR NON-REGULATING PROCESSES 

 
Non-Self Regulating Processes 
 

It is not uncommon for some temperature, level, 
pressure and other measured process variables to 
move in an unbounded manner when perturbed in

open loop by a manipulated or disturbance variable. 
Such behaviour is characteristic of non-self 
regulating processes. If the DTC’s used for the self-
regulating processes are applied for the non-self-
regulating processes, these predictors exhibit a 
steady-state error in their load response. 
Consequently, there is a need for the modified design 
of DTC’s to give satisfactory response for the 
integrating processes.  

Several new Smith predictors proposed by 
various authors were considered and their responses 
were analyzed. In Watanabe’s method (Watanabe 
and Ito, 1981), the response for the set point and load 
disturbance rejection were better for the PID 
controller than the PI controller. The set point 
response was rather slow. In Matusek and Micic’s 
method, a new DTC method was proposed, which 
had a very good set point and load response 
compared with the previous ones, but the drawback 
was it cannot produce a better result with a longer 
dead time. In Rice and Cooper’s method, an IMC 
based DTC was proposed particularly to reject the 
chatter in the controller for integrating processes. 
When affected by noise disturbances, the results 
proved that this method was better than the tuning 
formulas proposed by Ziegler-Nichols (1942) (ZN) 
and Tyreus and Luyben (1992). Wang et al. (2006) 
proposed a modified DTC with two degrees of 
freedom, a filter and a controller. This method gave a 
good set point response and satisfactory load 
response. In all the above methods, none of the 
modified DTC’s gave a satisfactory performance for 
both set point and load disturbance. A compromise is 
obtained between the set point and load disturbance 
response with the proposed method in this paper. 
 
Proposed Alternate Method 
 

The proposed method is presented in Figure 5. 
 

 
 

Figure 5: Modified Smith predictor approach. 
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Consider the plant with transfer function 
Ls

p
1G (s) e
s

−= , where Lse− represents the time delay 

of L seconds. Assume that the time delay L is known 

and the process is 1
s

. Here p
0

G (s)
G (s)

1 sL
=

+
 

(Coughanowr, 1991) and L(process) = L(model). 
The modification (Saravanakumar et al., 2006) 
consists of the additional feedback path (K0≠0), from 
the difference of the plant output Y and the model 
output Ym to the control input u. When K0 = 0, the 
Smith predictor is used. When K0≠0, then the 
modified Smith predictor is obtained. The controller 
used in this Smith predictor is an I-PD controller 
where the Integrator is in the forward path and the 
proportional and derivative control are in the 
feedback acting on the feedback signal. The 
controller is tuned by both the Ziegler –Nichols (ZN) 
method and the relay method. Since the relay method 
gives the immediate value of ultimate gain and 
ultimate period, it is preferable to the ZN method. 

The set point and the load disturbance response is 
given by  
 

r dY(s) H (s)R(s) H (s)D(s)= +           (6) 
 
where 
 

 
( )

( )

p i
Ls

i pd 0
r

i pd
Ls

i pd o

G (s)G (s)

1 (1 e ) G (s)G (s) G (s)
H (s) G (s) G (s)

1
1 (1 e ) G (s) G (s) G (s)

−

−

+ −
=

+
+

+ − +

   (7) 

 

( )

p

p o
d

i pd
pLs

i pd o

G (s)
1 G (s)K

H (s) G (s)G (s)
1 G (s)

1 (1 e ) G (s) G (s) G (s)−

+
=

+
+ − +

  (8) 

 
where,  
 

i
i

KG (s)
s

= ,  pd p dG (s) K sK= +  and  0G (s)   

 
represents the estimated transfer function of the 
plant. From (7) and (8) we have  
 

( )
Ls

0 i
r

i pd 0

G (s)G (s)eH (s)
1 G (s) G (s) G (s)

−
=

+ +
                        (9) 

( )
( )

p
d

p o

Ls
i pd o

i pd o

G (s)
H (s)

1 G (s)K

1 (1 e ) G (s) G (s) G (s)

1 G (s) G (s) G (s)

−

=
+

+ − +

+ +

                    (10) 

 
for the perfect model of the plant and perfect dead 
time of the process. If the closed loop system is 
stable, the set point and the disturbance response for 
step inputs are as follows: 
 

r rs 0 s 0

1lim s H (s) lim H (s) 1
s→ →

  = = 
 

              (11) 

 

d ds 0 s 0

1lim s H (s) lim H (s) 0
s→ →

  = = 
 

          (12) 

 
for K0 ≠0.  
 

This shows that there will be no steady-state error 
for a constant load disturbance. 
 

3s

0
1eG (s)

s(1 3s)

−
=

+
,               L=3         (13)  

 
The responses for the set point and load 

disturbances are shown in the simulation results. 
 
Validation of the Time Constant and Dead Time 
Relationship 
 

In this paper it is assumed that the model of the 

process is p
0

G (s)
G (s)

1 sL
=

+
  and L (process) = L 

(model). That is, the process dead time is equal to the 
time constant of the model. A method is required to 
validate this assumption. 

Thus, simulation studies were undertaken to 
validate this assumption. In this paper, the time 
constant was assumed to be 3 sec as that of the dead-
time. Simulation studies are carried out for time 
constants varying from 0.75 to 6 seconds and various 
responses are obtained in time domain specifications 
such as overshoot, rise time, peak time, delay time 
and settling time, etc. 

From the detailed study of these specifications, it 
is validated that the time constant of the model 
should be equal to the dead-time of the process. For 
other time constants a small steady state error is 
obtained for constant load disturbance. Table 1 
shows the various time constant and dead-time 
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relationships with values of rise time, peak time, 
delay time and settling time. In these simulations: 
1) Dead-time is considered to be constant for all the 
simulation study. 
2) The time constant is varied from one fourth of the 
dead-time to double the dead time.  
3) Rise time is the time taken by the process to reach 
90% of the final value. Here the observation shows 
that the rise is slow in the initial stages, then fast 
with time constant of 3 sec and again slowing down 
at double the time constant.  

(4) Peak magnitude represents the overshoot of the 
process and is high at the initial and final values of 
time constant, but low when the time constant 
matches the dead time.  
(5) Settling time is the time taken by the process to 
settle with its set point value, which is also fast when 
the time constant matches the dead time, and is slow 
in all other cases. 

So these studies show that when time constant 
matches the dead time, it is possible to achieve a 
critically damped system.   

 
Table 1: Validation through time domain specifications 

 
Dead 
Time 

Time 
 constant 

Rise Time A 
(sec) 

Peak overshoot 
magnitude A 

Settling time A 
(sec) 

Peak undershoot 
Magnitude B 

Settling Time 
B(sec) 

3 sec 0.75 16 1.1 60 0.5 150 
 1.5 15.5 1.09 58 0.45 148 
 2.25 15 1.08 55 0.4 145 
 3 14 1.05 45 0.3 140 
 3.75 14 1.05 58 0.44 145 
 4.5 15 1.055 65 0.47 150 
 5.25 15 1.06 70 0.52 155 
 6 16 1.07 80 0.55 190 

A- Represents the time domain specifications of the set point response. 
B-Represents the time domain specifications of the load response. 

 
Simulation Results for Validation of Time 
Constant and Dead Time Relationship  
 

In Figure 6 for a dead time of 3 sec and time 
constant of 3 sec, the error is of only one polarity 
(i.e., it never oscillates about the set point). Here the 
measure of quality is the duration (starting point of 
disturbance to return of the process variable) of the 
excursion, for a load change and a maximum error 
for transient change.   
  The duration is the time for exceeding the allowable 
error and to regain the allowable error. The 
overshoot magnitude is 1.1 and, for the transient 
change, the process returns to set point at 60 sec. For 
a load change of 1 unit at 100 sec, the process

variable returns at 150 sec. 
In Figure 7 the settling time for the set point 

response is 58 sec, and settling time for the load 
response is 148 sec, which is comparatively higher 
than the 45 and 140 sec of the time constant=dead 
time case.  

In Figure 8, when the time constant is 3/4 of the 
dead time, the settling time of the set point response 
and the load response are 55 sec and 145 sec, 
respectively. 

In Figure 9 for a dead time of 3 sec and a time 
constant of 6 sec (double the dead time), the settling 
time for transient change is about 80 sec. For a load 
change of 1 unit at 100sec, the settling time is around 
190 sec.  
 

  
Figure 6: Time constant=1/4 of Dead time Figure 7: Time constant=1/2 of Dead time 
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Figure 8: Time constant=3/4 of Dead time Figure 9: Time constant=2 times Dead time. 

 
Adaptive Controller Gains by Auto-Tuning  
 

This modified Smith predictor (Figure 5) with I-
PD controller, designed for integrator process with 
long dead time, can be used for auto-tuning the 
controller gains whenever the plant parameters 
changes due to uncertainties. There are many auto-
tuning concepts, which were formulated earlier 
(Santacesaria and Scattolini, 1993). The auto-tuning 
concept in this paper first determines the FFT of the 
plant input for 64 samples and then the FFT of the 
plant output for 64 samples. Now, the output divided 
by input of the plant gives the actual frequency 
response of the plant. Then the frequency response 
of the model is obtained by giving an impulse input 
to the model. This model is derived by considering 
the plant output, plant input and the plant 
disturbance. Once the least square algorithm is 
implemented in MATLAB, then the theta values (see 
equation 22) give the adaptive controller gains, 
which are the auto-tuned values of the I-PD 
controller. Now, the determination of I-PD controller 
gains for auto-tuning in the frequency domain 
(Saravanakumar et al., 2006) is summarized as 

follows. Let Ls
p

1G (s) e
s

−= . The frequency response 

of this system is jwL
p

1G ( jw) e
jw

−= . Let mG ( j )ω  

denote a desired open-loop frequency response of the 
reference. Then the I-PD controller gains are 
determined so as to minimize the cost function J, 
which is defined by the square error between the 
open loop frequency response of the reference model 
and that of the actual system as  
 

M M
2 2

k k
k 1 k 1

J ( j ) ( j )
= =

= ε ω + ε − ω∑ ∑      (14) 

where  
 

k
k

s

2
NT
π

ω =                (15) 

 
N is the number of samples, Ts is the sampling 
time, kG( j )ω  is the discretized frequency 
response of the actual system, and m kG ( j )ω  is 
the discretized frequency model 
 

p i

pd p

G ( jwk)G ( jwk)
G( jwk)

1 G ( jwk)G ( jwk)
=

+
     (16) 

 
p k d p k m kk

i p k

1 (K jw k )G ( jw )G ( jw )jw( jwk) 1
k G ( jw )

+ +
ε = −  

(17) 
T

k1 ( j )= − φ ω θ  
 
where Ki, Kp, Kd are the integral, proportional 
and derivative gains, respectively. 
 

k p k k p k k( jw ) [1,G ( jw ), jw G ( jw )]A( jw )φ =   (18) 
 

T
p D

i i i

K K1 , ,
K K K
 

θ =  
 

                         (19) 

 
m k

k k
p k

G ( jw )A( jw ) jw
G ( jw )

=          (20) 

 
Then the cost function J can be rewritten as 
 

TJ ( ) ( )= ϕ− φθ ϕ− φθ          (21) 
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where 
 

T
1 2 m

1 2 m

( j ), ( j )........... ( j ),

( j ) ( j )......... ( j )

φ ω φ ω φ ω 
φ =  

 φ − ω φ − ω φ − ω 
 

 
T[1,1,.......1]ϕ =  

 
Using the least square algorithm, a real valued 

solution of θ  that minimizes J is given by 
 

1T T−
 θ = φ φ φ ϕ                    (22) 

 
where T denotes the complex conjugate 
transpose. 
 
3.6 Simulation Results for Non-Self Regulating 
Processes  

 

The transfer functions considered is 3s1G(s) e
s

−=  

and 
3s

0
1eG (s)

s(1 3s)

−
=

+
 for all the methods discussed 

above. The model is derived as per the above 
discussion in each method.  

In the responses shown in Figure 10 it is clear 
that the alternate method proposed in this paper gives 
a fast response for both set point and load 
disturbance, with fast settling time.  

In Figure 11 the response of the proposed method 
acts as a compromise between both the set point and 
load disturbances by providing fast rise time and fast 
settling time with minimum overshoots and 
undershoots, whereas the other methods were able to 
produce only either a satisfactory set point response 
or a load response for disturbances. Hence, it is 
clearly proved that the proposed method has a good 
disturbance rejection property.  

This method is also verified for the robustness of 
the controller with unmodeled dynamics (with 
changes in the dead-time). 

In Figure 12 the set point response and load 
response of the system with a PID controller using 
the auto-tuning approach is shown. First, the 
response of analytical PID values is obtained by 
Ziegler-Nichols tuning. It is clear that the optimum 
tuning values give a good response with minimum 
overshoot and fast settling time. Next the adaptive 
PID values are obtained from the Matlab program, 
and those values too resulted in a compromise 
between minimum overshoot and fast settling time 
and the system is also under control. This was 
verified for both set point and load disturbances. 

Thus, the I-PD controller discussed in the 
proposed method gives better response for both set 
point and load disturbances than the PI and PID 
controllers considered in the introductory part. Here 
the number of tuning parameters is only three, Kp, Ti 
and Td, which is also an added advantage of this 
method when compared to the previous modes of 
Smith predictors. 

 

  
Figure 10:  Set point and load response for a non-self 
regulating process by the proposed alternate method.  

ZN Tuning: Kc=0.22, Ki=0.09, Ko=0.04 

Figure 11: Set point and load responses of the 
proposed method in this paper for a non-self 

regulating process with other methods. 
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Figure 12:   Set point response and load response of the system using IPD Controller with  

analytical and adaptive values using the auto-tuning approach. 
 

 
Robustness of the Proposed Method   

 
In this section the responses of the proposed 

method to changes in the set point for Benchmark 
process 1 are presented. 

 
a) Changes in the Set-Point Positive Mismatch Term 
 
For the benchmark 1 process with 
 

5s1G (s) e
s

−=  

 
the negative mismatch term  
 

4.5s0.8G (s) e
s

−=  

 
is introduced and observed for servo response of 
a unit step change at 0 sec. When compared with 
other modified Smith predictors, the proposed 
method gives minimum overshoot and fast 
settling time without oscillations, as shown in 
Figure 13.  
 
b) Changes in the Set-Point Positive Mismatch Term 
 

For the benchmark 1 process, the positive 
mismatch term  
 

5.2s1.2G (s) e
s

−=  

 

is introduced and observed for servo response of an 
unit step change at 0 sec. When compared with 
other modified Smith predictors, the proposed 
method gives minimum overshoot and fast settling 
time without oscillations, as shown in Figure 14.  
 
c)  Changes in the Load - Negative Mismatch Term 

 
For the benchmark 1 process the negative 

mismatch term  
 

4.5s0.8G (s) e
s

−=   

 
is introduced and observed for load response of -0.1 
unit at 100 sec. When compared with other modified 
Smith predictors, the proposed method gives 
minimum undershoot and fast settling time, as 
shown in Figure 15.  
 
d) Changes in the Load - Positive Mismatch Term 
 

For the benchmark 1 process, the positive 
mismatch term  
 

5.2s1.2G (s) e
s

−=
 

 
is introduced and observed for load response of -0.1 
unit at 100 sec. When compared with other modified 
Smith predictors, the proposed method gives 
minimum undershoot and fast settling time, as 
shown in Figure 16.  
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Figure 13: Servo response for negative mismatch  

term of BM processs 1 
Figure 14: Servo response for positive mismatch  

term of BM processs 1 

  
Figure 15: Load response for negative  

mismatch term of BM processs 1 
Figure 16: Load  response for positive   

mismatch term of BM processs 1 
 

CONCLUSION 
 

An I-PD based modified DTC is designed for 
Integrator processes with long dead time. It gives a 
satisfactory response for both set point and load 
changes. A critically damped system that is as fast as 
possible is obtained by this method. It is also proved 
that there is no steady-state error for constant load 
disturbances. This method is also verified for the 
robustness of the controller with unmodeled 
dynamics. It is proved that the response of the 
process variable is good when the time constant of 
the model is equal to the dead time of the process. 
Thus, a critically damped system with fast set point 
response and load response is obtained. 
 
 

NOMENCLATURE 
 
G(s)  Transfer function of the Plant  
G0(s)  Transfer function of the model  

K0  Disturbance gain  
Ki  Integral gain  
Kd  Derivative gain  
Kp  Process gain  
L Dead time  
T   Time constant  
Ti  Integral time  
Tr   Related time constant of 

Controller gain Kr 
 

Ts  Sampling time  
λ   Model uncertainty  
κ   Normalized gain  
θ   Adaptive controller gains  
φ   Unit matrix  
ε  Error  
 
Acronyms  
 
DTC Dead time compensators  
IMC Internal model controller  
PID Proportional, Integral,  
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Derivative  
PIP Predictive Proportional 

Integral 
 

GPM Gain phase margin  
ZN Ziegler Nichols  
FFT Fast Fourier transforms  
I-PD Integral, proportional, 

Derivative 
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