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Abstract  -  Artificial neural networks (ANNs) were built to predict coagulant (Model I) and alkalizer (Model 
II) dosages given raw and treated water parameters from a water clarifying process. Different ANN architectures 
were tested and optimal results were obtained with [10-10-10-01] and [08-12-12-01] nodes of input, hidden and 
output layers for Models I and II, respectively. Two algorithms based on GUM-S1weredevelopedto evaluate the 
artificial neural network parameter uncertainty and the coverage interval of model outputs. The results show 
that these algorithms can provide a better set of parameters for the ANN compared with the traditional training 
method. The present research provides a unique unifying view that considers neural networks and uncertainty 
analysis in a well-documented industrial case study.
Keywords: Artificial intelligence; Parameter uncertainty; Coverage interval; Aluminum sulfate; Sodium 
hydroxide.

INTRODUCTION

For the past twenty years many authors have 
published results of coagulation process modeling 
aiming to predict the optimal coagulant dosage. 
This process is considered complex and not fully 
understood since the interactions between transfer 
mechanisms and chemical and biological kinetics 
happen in a poorly misunderstood environment (Maier 
et al., 2004; Dobias and Stechemesser, 2005);therefore, 
deterministic models are extremely difficult to develop 
(Wu and Lo, 2008). 

Empirical models based on artificial neural networks 
(ANNs) have been developed to estimate hard-to-
measure process variables.ANN has proven to be able 
to empirically describe the nonlinear relationships 
between water characteristics and optimal coagulant 
dosages in coagulation processes. Table 1 highlights 

some papers where coagulant dosage was successfully 
estimated by ANN or other empirical technique. 

Although estimation of uncertainty in the 
identification parameter is important in order to obtain 
a more representative model, uncertainty analysis of 
ANN parameters is not common in the literature. For 
instance, none of the works listed in Table 1 considered 
the uncertainty associated with the data nor with the 
model parameters. The only papers of ANN uncertainty 
analysis found in the literature were Shrestha et al. 
(2009) and Srivastav (2007). The former proposed 
an alternative way to evaluate the measurement 
uncertainty for ANN by using sensitivity analysis 
and the Monte Carlo method. The second evaluates 
the uncertainty of an ANN-based hydrological model 
using the bootstrap method. Methods to evaluate the 
uncertainty of measurements are well described in the 
guides BIPM et al. (2008a), BIPM et al. (2008b) and 
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Table 1. Papers related to the prediction of coagulant dosage by using artificial neural networks.

BIPM et al. (2011). Furthermore, Lira (2011) proposes 
a method to evaluate the uncertainty in the estimation 
of the parameters of a model.

In this paper, ANN inverse models were developed 
for aluminum sulfate dosage (coagulant) prediction 
based on raw and treated water parameters (Model 
I).Then, inverse models were developed for sodium 
hydroxide (alkalizer) dosage prediction given the 
coagulant dosage; raw and treated water parameters 
(Model II). The relation of both models is based on the 
importance of pH adjustments when sodium hydroxide 
is applied to obtain the optimal dosage for coagulation 
of surface water with wide quality variation. The 
evaluation of the ANN parameter uncertainty, prediction 
of the coverage interval and estimate of the ANN 
output were carried out by uncertainty analysis based 
on the GUM-S2 approach (BIPM et al., 2011), which 
consists of the uncertainty propagation in multivariate 
systems based on the concept of covariance matrix 
and joint probability distribution function, extending 
the rules presented in GUM (BIPM et al. 2008a)and 
GUM-S1 (BIPM et al. 2008b).Models I and II with 
uncertainty analysis may be used together to represent 
the coagulation process of a water treatment plant. The 
present research provides a unique unifying view that 
considers neural networks and uncertainty analysis in 
a well-documented industrial case study.

WATER CLARIFYING PROCESS INSIGHTS

The clarifying process is an important step in 
water treatment. This process consists of coagulation, 
flocculation, sedimentation and filtration with the 
purpose of removing impurities such as suspended 
solids, colloidal material and microorganisms 
(including pathogens). Aluminum sulfate (the hydrated 
form is called alum: Al2(SO4)3.nH2O) is commonly 
used as a chemical agent for coagulation responsible 
for particle destabilization and aggregation.

pH is the main variable affecting the coagulation 
and flocculation performance of the water treatment 
process. The effect of the pH can be considered critical 
for coagulation due to the formation of hydrogen 
ions and hydrolyzed products which depend on the 
pH level (Yan et al. 2008) and better coagulation-
flocculation can be achieved if the pH level is 
adequate. Concerning aluminum sulfate, in a lower pH 
the charge neutralization and adsorption mechanisms 
are favored (allowing better color removal), whereas 
in a higher pH the enmeshment mechanism is favored 
(promoting better turbidity removal) (Di Bernardo and 
Sabogal Paz, 2008). In addition, inadequate adjustment 
of pH can produce aluminum residues (Dorea, 2009), 
which may represent a health risk associated with 
Alzheimer’s disease (Flaten, 2001).

The optimum pH remains almost constant, but the 
pH range becomes more restrictive as the coagulant 
dosage decreases. In other words, an optimal coagulant 
dosage can be obtained through optimal pH adjusting.

The coagulant dosage and pH adjusting depends 
on the quality of the water to be treated and can 
be obtained by jar testing. However, jar testing is 
relatively expensive and time-consuming (Joo et 
al., 2000; Maier et al., 2004; Wu and Lo, 2008), and 
consequently it can just be carried out periodically 
(Yu et al., 2000). Given this, water treatment plants 
are unable to respond quickly to changes in raw water 
quality (Joo et al., 2000) and it cannot be used for 
real-time control (Wu and Lo, 2008; Yu et al., 2000).
With regard to adjusting the pH, the operators infer 
the ideal range of pH to operate the clarifying process, 
but significant changes in the raw water quality also 
can hinder the pH control system. Hence, regulating 
the pH becomes a difficult task without jar testing, 
as well as for prediction models that do not take into 
consideration pH control.

Some water treatment plants that are supplied 
by surface water face serious problems of water 
quality variation. For example, during a heavy rain 



Application of Uncertainty Analysis of Artificial Neural Networksfor Predicting Coagulant and Alkalizer Dosages in a Water Treatment Process

Brazilian Journal of Chemical Engineering, Vol. 35, No. 04,  pp. 1369 - 1381,  October - December,  2018

1371

storm water carries sand, silt and organic particles/
compounds that increase suspended solids, color and 
turbidity, changing the raw water quality. Therefore, 
changes in surface water quality are relevant because 
water becomes more susceptible to pollution and 
contamination (Ouyang et al., 2006), requiring more 
robust plants (Di Bernardo and Sabogal Paz, 2008). 

CASE STUDY

Historical data of jar test results were obtained 
from a water treatment plant located in the Industrial 
Complex of Camaçari, the largest industrial complex 
in Latin American. This complex covers approximately 
5.700m3/h and produces more than 11.5 million 
tons of primary, intermediate and final chemical and 
petrochemical products per year. The water treatment 
plant is responsible for producing clarified, filtered, 
demineralized water as well as drinking water. The 
Joanes River provides the water supply to this plant 
(Oliveira-Esquerre et al., 2009).

Jar tests are carried out periodically in the water 
treatment plant. First, different dosages are added to 
jars with samples of raw water, adjusting the amount 
of treatment chemicals (coagulant and alkalizer). 
Second, the samples are stirred until flocks are formed, 
developed and settled. The operator then performs a 
series of tests (in total eight) and observes the effects 
of the different dosages applied. 

The dosage of chemical agents (a coagulant and 
a pH adjuster), quality parameters of raw water and 
treated water measures from jar tests carried out over a 
six-year period were used to develop and validate ANN 
models (enabling seasonal and operational patterns of 
this period to be captured by ANNs).Raw and treated 
water parameters were chosen based on their expected 
relation with coagulant and alkalizer dosages, as 
reported in the literature (see papers in Table 1). Some 
basic statistics of the variables of 1940sample-size are 
shown in Table 2. 

The raw water quality parameters were: pH 
(pH_r), color (col_r), turbidity (turb_r), suspended 

solids (ss_r) and alkalinity (alka_r). The dosages of 
chemical agents are coagulant (aluminum sulphate - 
Sulf_in) and alkalizer (sodium hydroxide - NaOH_in). 
The quality parameters of the treated water were pH 
(pH_t), color (col_t), turbidity (turb_t), suspended 
solids (ss_t) and residual aluminium (alum_t), in and 
t are related to raw, influent and treated water. The 
Anderson-Darling (AD) normality test was performed 
for a 90% confidence interval. All variables exceeded 
the critical value of the p-value (equal to 0.10), so the 
hypothesis of normality was rejected. Skewness and 
kurtosis were also evaluated to check the normality of 
the data.

The available data are shown in Figure 1.Color and 
turbidity show seasonal behavior. Peaks are related to 
the occurrence of heavy rain that promotes changes in 
raw water quality and consequently makes it difficult 
to control the treated water quality. In such cases, 
Zhang and Stanley (1997) have shown water quality is 
much more difficult to predict by ANN. The observed 
pH (pH_r) decrease is related to industrial effluents 
released into the water upstream. The alkalinity 
(alka_r) has widened its range of variation in recent 
years. Color (color_r) varies widely as can be observed 
in the time series and basic statistics, and efficient 
color removal depends on the pair of optimum pH 
and coagulant dosage. These data behavior were not 
present in other studies which focused on the modeling 
of coagulant dosage through quality parameters of raw 
water (Joo et al, 2000; Maier et al., 2004).

ANN MODELING

Because neural networks are massively parallel, 
they have a better filtering capacity and generally 
perform better than traditional linear models with noisy 
or incomplete data (Baughman, 1995). The trained 
model may be continuously adapted to new data, even 
though neural networks require previous data to be 
useful. In this research, neural network models were 
built and validated to predict the alkalizer dosage and 
coagulant dosages based on their relations with water 

Table 2. Basic statistics for the variables available.
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Figure 1. Plot of the available data over a six-year period.

Table 3. Inputs and output of the ANN inverse models.

quality parameters. Table 3 shows the description of 
input and output variables used to predict alkalizer 
dosage (NaOH_in) and coagulant dosage (Sulf_in).

Data Pre-Processing

Environmental data commonly contain samples 
that are different from the collection data and can be 
identified by some methods, for example: time series 
analysis, quartile method and Principal Component 
Analysis (PCA)(De Bruyne et al, 2006). The first 
enables observing data that do not follow the general 
trends and seasonality (Johnson and Wichern, 2007). 
The second is a method based on the position of a 
sample in relation to the upper and lower data limits 
of the one variable (Daszykowski et al., 2007). The 
third, PCA, is a multivariate method widely used for 

outlier analysis and variable orthogonalization (Chen 
et al., 2009; Daszykowski et al., 2007), and has been 
successfully used to deal with environmental variable 
data (Singh, 1996).

PCA transformation is defined by a set of 
p-dimensional vectors of weights or loadings (wk w, 
Equation 1) that map each row vector, X(i) of X to a new 
vector of principal componentscores (ti t, Equation 2), 
given by Eq. 3, in such a way that individual variables 
that are considered over the data set successively 
inherit the maximum possible variance from x, with 
each loading vector w constrained to be a unit vector.

( )1,...,k p k
w w w=

( )1,...,i p i
t w w=

(1)

(2)
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ANN Architecture

ANN architecture is composed of a multilayer 
perceptron (MLP), which has already been successfully 
used for the prediction of coagulant dosage (Maier 
et al., 2004; Robenson et al., 2009; Wu and Lo, 
2008).The number of neurons in an ANN should 
increase according to the complexity of the problem; 
nevertheless, a higher number of parameters (neurons) 
in relation to the number of available data for model 
training may compromise the ability of generalization. 
On the other hand, if there are insufficient neurons, it is 
difficult to obtain convergence during training (Maier 
and Dandy, 2000).

Feng et al. (2005) pointed out that the number of 
hidden layers depends on the complexity level of the 
relationship between inputs and outputs. Networks 
with one and two hidden layers were tested and the 
number of neurons in the hidden layer and the network 
geometry were found by trial and error. Two hidden 
layers may be required when the model with one layer 
does not show a good performance to represent the 
nonlinear input-output relations.

The optimization of the ANN is obtained by 
estimating the connected weights in a process called 
training. The Levenberg-Marquardt algorithm was 
used for training, which is one of the backpropagation 
algorithm modifications. Basically, the Levenberg–
Marquardt algorithm performs a combined training 
process: around the area with complex curvature, the 
algorithm switches to the steepest descent algorithm, 
until the local curvature is proper to make a quadratic 
approximation; then it approximately becomes the 
Gauss–Newton algorithm, which can speed up the 
convergence significantly (Yu and Wilamowski, 2011).

The sigmoid transfer function is the most 
commonly adopted function for the hidden and output 
nodes (Lingireddy and Brion, 2005; Maier and Dandy, 
2000). So, this function was used in ANN hidden 
layers, while a linear function was used in the output 
layer. Input data was normalized from 0.1 to 0.9 in 
order to avoid both the flat-spots of the sigmoidal 
function near its 0.0 and 1.0 limits and the loss of non-
linear information when using a shorter interval, for 
example 0.2 to 0.8 (Oliveira-Esquerre et al.,2004).

Data Division

The main, well-known disadvantages of neural 
network training are that it requires large quantities 
of experimental data and the training of the network 
can take too long to be practical. Furthermore, its 
nonlinear approximation function can cause local 
minimum problems.

After pre-processing, the available data were 
divided into three sets: training, validation and testing. 
The training and validation sets were used to develop 
the models. The first one for adjusting the connection 
weights and the second to determine when to stop the 
training and to avoid overfitting (Oliveira-Esquerre 
et al., 2004).The test set was reserved to test the 
generalization ability of the model with data that were 
not used in the development process of the models.

In order to guarantee that the three sets contain 
the same statistical population and data from all the 
sampling period, data were sorted according to the 
date of the jar test. After randomization, 60%, 25% 
and 15%of each data set were selected for the training, 
validation and test set – respectively. This ratio was 
adopted based on the procedure of division suggested 
by Baxter et al. (2002), although some research 
indicate the use of up to 80% of samples for trainning 
(Lingireddy and Brion, 2005).

The data of the test and validation sets extrapolated 
to the training data limits were migrated to this data 
set, taking into account that ANN, as an empirical 
method, is not usually able to extrapolate (Oliveira-
Esquerre et al., 2009). The maximum, minimum, 
interquartile range of the data and scores of principal 
components were evaluated to check if the procedure 
of data division was satisfactory to ensure that the 
three sets had the same statistical population. The 
training, validation and testing data sets, composed of 
1166, 467 and 277, respectively, were then obtained.

The relative performance of the models was assessed 
through the coefficient of multiple determination (R²) 
and the adjusted coefficient of multiple determination 
(R²adj.). The latter provides the coefficient of multiple 
determination taking into account the number of 
connection weights which compose the ANN model, 
and the degree of freedom (Oliveira-Esquerre et al., 
2004).Furthermore, two measures of absolute error 
were used: mean absolute error (MAE) and root mean 
square error (RMSE).Both have been used to assess 
model performance when dealing with hydrological 
and water quality variables (Hamel and Smith, 2007), 
although some literature states that MAE is a more 
natural and unambiguous measure of average error 
(Willmott and Matsura, 2005).

UNCERTAINTY EVALUATION

In addition to the identification of the ANN model, 
a method to evaluate the uncertainty of the ANN 
parameters was developed. The method consists of 
applying the multivariate law of propagation of the 
probability density function (MLPP) approach to 
obtain the joint probability density function (PDF) of 
the parameters (BIPM et al, 2011).

( ) i kk it x w= ⋅ (3)
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The MLPP approach is recommended for the 
uncertainty evaluation of the measurand, which is 
represented by a non-linear measurement function. 
By using the joint PDF of the input, it is possible to 
evaluate the joint PDF of the measurand using the 
MLPP, as represented by Equation 4.

represent some systems, in which the list of conditions 
is not tested or is not obeyed, which may provide a 
result with little statistical meaning. A simplified 
algorithm is represented in Figure 2.

From Table 2, it is possible to make a PDF to fit to 
outputs (Sulf_in, NaOH_in) and the input variables; 
however, this is not the objective of this paper. It is also 
possible to know the Type A uncertainty evaluation that 
represents the variability (standard deviation) for each 
variable. The Type B uncertainty was not evaluated 
because there was not enough reliable information, 
such as calibration certificates, temperature influence 
on measurement systems, etc. Therefore, it was 
assumed that each variable is represented by a uniform 
PDF, with variance represented by Equation 5.

( ) ( ) ( ) 1;Y X Ng g h d dη ξ δ η ξ ξ ξ= ⋅   ∫ ∫ 

where δ(.) denotes the Dirac function; ξ and η are 
the possible values of the input (X) and output (Y) 
variables; gY(η) and gX(ξ) are the joint PDFs of the 
input (X) and output (Y) variables; h(.) is the implicit 
multivariate measurement function(BIPM et al, 2011).

This approach may be considered as being more 
complete, because it considers all the nonlinearity of 
the model and all the possible information of each 
variable. However, in some cases, the integrals are 
difficult to solve analytically, which requires a numeric 
method, such as the Monte Carlo Method (MCM) 
(BIPM et al, 2008; BIPM et al, 2011).

The MCM algorithm applied to solve the MLPP 
approach is summarized in the following steps:

1.	 Define the joint PDF, gX(ξ), for the input 
variables (X);

2.	 Define the number of Monte Carlos trials (M);
3.	 From the joint PDF, gX(ξ), M vectors (x1, ..., 

xM) are sampled;
4.	 Evaluate the non-linear measurement function, 

(h(Y; X) = 0) for each sample (x1, ..., xM) to obtain a M 
vector of the measurand (y1, ..., yM).

5.	 Compute the estimate and the covariance 
matrix from the measurand vector (y1, ..., yM).

Uncertainty Evaluation of the Parameters

The estimation of the parameters is an optimization 
problem where the decision variables are the 
parameters of the model and the cost function, in most 
cases, is the Least Square (LS). This cost function is a 
simplification of the Maximum Likelihood Estimation 
(MLE), as the weighted Least Square (WLS). The main 
difference between LS and WLS is that the former 
assumes that the experimental variance is constant, 
while in the latter this condition is not assumed.

The following conditions are required to carry out our 
uncertainty evaluation of the parameters: the variance of 
the output variable is constant and is known; variability 
of the input is much smaller than the variability of the 
output; the measurements of the inputs do not influence 
the measurement of the outputs; and all measurements 
are independent (Schwaab and Pinto, 2007).

In most commercial solvers to train an ANN, some 
cost function similar to the LS is used, like the MSE 
(Mean Square Error) or the determination coefficient 
(R2). However, in most cases, the ANN is used to 

Figure 2. Simplified algorithm for the uncertainty 
evaluation of the parameters.

( )
max min

12
i i

c i
x x

u X
−

=

where uc(Xi) is the combined uncertainty of any variable 
Xi; Xi

max and Xi
min are, respectively, the maximum and 

minimum of any variable.
After this, the Monte Carlo Simulation was 

performed to solve the MLPP. This is a simple algorithm, 
which consists of evaluating the measurement function  
M (Monte Carlo sample) times.

In the training of the ANN, the measurement 
function is the optimization problem, and the 
measurand is the parameters of the ANN, so it is 
necessary to get M training samples from output 
variables and to solve the optimization problem for 
each one. In the end, M samples of the joint PDF of 
the parameters are obtained, with which it is possible 
to evaluate statistical moments, such as the mean, 
standard deviation, and others.

Propagation of the Uncertainty

From the propagation of the uncertainty it is 
important that the measurand (Y) is represented by a 

(4)

(5)
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perfect measurement function. Otherwise, measurand 
uncertainty will depend on the uncertainty parameters 
of the measurement function as well.

After the uncertainty evaluation of the parameters, 
this is propagated with the input variable uncertainties 
to find the output uncertainty. In this case, the Monte 
Carlo Method is also used; however, the measurement 
function is the ANN with the uncertainty in the 
parameters and input variables. Figure 3 shows the 
simplified MCM algorithm applied to obtain the 
measurand PDF.

To obtain the measurand PDF, it is necessary to 
get M validation samples of the input variables and 
the M samples of the parameters from their PDF. The 
ANN is simulated from each sample and, in the end, 
the measurand PDF is constructed, making it possible 
to calculate the statistical moments.

results of jar testing that show high values of treated 
water quality parameters. Both groups were excluded. 
Since these conditions rarely happen during process 
operation, the data were reduced to 1910 samples at 
the end of the outlier analysis.

A correlation analysis of the model inputs was 
carried out considering a multivariate and bivariate 
analysis. For the multivariate analysis, a graph of the 
loadings of the first and second principal component 
is shown in Figure 5. It can be seen that there is an 
agreement of the physical relationship between color, 
suspended solids and turbidity, as well as between 
pH and alkalinity. The correlation of the application 
of alkalizer (NaOH_in) as a function of the coagulant 
(Sulf_in) is also verified in Figure 5.

For the bivariate analysis, the Spearman rank 
coefficient was used to assess the degree of correlation, 
linear or not, without requiring normalization of the 

Figure 3. Simplified MCM algorithm applied to 
uncertainty propagation.

RESULTS AND DISCUSSION

Descriptive Analysis of the Data

Table 4 shows the loadings of the principal 
components and their eigenvalues. It shows that the 
outliers identified by using the first two methods 
were confirmed with PCA. Through scatter plotting 
of the PCA scores of the first and second principal 
components, it is possible to verify that there are two 
groups of observations (A and B)away from the mass 
of data (Figure 4).

Group A represents those days on which 
observations showed the highest values of raw 
water quality parameters. The measure of color and 
suspended solids on these days were about twice as high 
as the second highest measure. Group B represents the 

Table 4. Loadings and eigenvalues of the principal 
components.

Figure 4. Result of PCA showing the scores of the first 
and second principal components.

Figure 5. Graph of loadings corresponding to the first 
and second principal component.
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data (Hogg and Craig, 1995; Montgomery and Runger, 
2015), see Table5.The results agree with those obtained 
by using PCA, that is, the highest correlations were 
found for the same variables clustered in Figure 5.In 
addition, pH_r, col_r, turb_r, ss_r, alka_r, and ss_tshow 
significant correlation with Sulf_in and NaOH_with 
95% confidence interval. In this case, a 95% confidence 
interval was used so that the identification phase of the 
potential variables was not heavily penalized. Sulf_in 
was included in the models due to its importance in 
drinking water. Despite the low correlation between 
NaOH_in and col_t, col_t was considered as an input 
of the alkalizer prediction model for the importance of 
monitoring and control of this parameter.

Modeling Results Before Uncertainty Evaluation

The best network topologies found for prediction 
of aluminum sulfate dosage (Model I) and sodium 
hydroxide dosage (Model II) are composed of[10-
10-10-01] and [08-12-12-01] nodes in the input, 
hidden and output layers, respectively. Scatter plots 
of the measured versus predicted values of aluminum 
sulfate dosage (Sulf_in) and sodium hydroxide dosage 
(NaOH_in) for the testdata set are shown in Figures6 
(a) and (b) – for a prediction interval of 90%. The 
prediction performance indices (R2, R2

adjMAE and 
RMSE) for the ANN models are shown in Table 6.The 
values show good agreement between predictions and 
measured data. 

The plots of predicted and measured aluminum 
sulfate and sodium hydroxide are shown in Figures 6 
(a) and (b). Both models provide predictive capability 
and, as expected, predict most outputs within 90% 
prediction bands.

Comparing the obtained results with others, Maier 
et al. (2004) found aR² of 0.94 and MAE of 3.2 mg/L. 
The results obtained in this research show R2 smaller 
than 0.94 probably because of the bigger range of the 
raw water quality parameters, which indicates that 
the present research shows good results. Although 
both used jar test results, the seasonal variations in 
raw water and the pH adjustment were not taken into 

In bold, coefficients of correlation among variables with statistical significance for a 95% confidence interval, i.e., p-value< 0.05.

Table 5. Matrix of Spearman rank correlation coefficients.

Table 6. Indicators of model performances.

Figure 6. Relationship between predicted vs. measured 
value employing Model I (a) and Model II (b) for the 
test set. The dashed lines indicate the 90% prediction 
interval.

A.

B.

account in the cited study. Wu and Lo (2008) obtained 
a R² around 0.75 when taking into account seasonal 
variation.
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To aid the evaluation of the model’s predictive 
capacity, the predicted and measured values for the test 
data set were plotted for Model I and II, Figure 7(a) 
and (b), respectively. Both models show good results 
of forecasting, even for adverse operating conditions 
(i.e., with significant variations in the dose required). 
One must be aware that data interpolation should be 
avoided since some patterns were deleted during data 
pre-processing.

a sensitivity analysis using from half to double the 
uncertainty calculated by Equation (5) was used.

The output estimate (black line) and the confidence 
interval (95.45 %), represented by the minimum and 
the maximum (grays dash lines), are evaluated by 
using the PDFs predicted by the MCM method for 
each experimental sample (dots).

It is possible to observe that the increase in the 
output uncertainty implies in a decrease in the model 
performance, considering the mean of predicted PDFs. 
However, it should be noted that the predicted coverage 
intervals contain the experimental data, i.e., the 
evaluated PDFs consider the variability of the process.

The MCM method also allows us to find the joint 
PDF of the parameters and, with this, it is possible to 
evaluate any statistical moments. An ANN with the 
mean of the joint PDF of the parameters was simulated 
and the results are shown in Figure 10 and Table 7.

The results in Table 7, when compared with Table 
6, show that the mean of the parameters provides little 
improvement in the results relative to traditional ANN 
training for Model I. Because “M” trainings were 
performed (in this paper 104 Monte Carlo samples 
were used), the mean of the parameters represents 
the estimate of the expected value of the parameters, 
which provides, in this case, a robust model.

For Model II, the same procedure was carried out 
and the results are shown in Figures 11 and 12 and 
Table 8.

Figure 7. Plot of the predicted (point) and measured 
(solid line) values of aluminum sulfate dosage (a) and 
sodium hydroxide dosage (b) for samples 150 to 277 
of the test set.

B.

A.

Times series plots of the model residuals are shown 
in Figure 8. No systematic pattern is observed. Model 
I shows about 83% residuals (for the test data set) 
within the variation limits adopted in the operation of 
coagulant dosage application (operation interval of 5.0 
mg/L) in this water treatment plant –solid line. If this 
operation interval is compared with values of average 
model-performance error (MAE and RMSE), the good 
predictive capacity of the model is more evident. The 
dashed line indicates a 90% confidence interval. The 
residuals with the highest dispersion (since mid-2005) 
can be related to a decreasing pH in recent years, as 
well as widening of the alkalinity variation range.

Results with Uncertainty Evaluation

The ANN structure evaluated in the previous 
section, including the number of neurons and layers, 
was maintained to evaluate the parameter uncertainties.

Figure 9 shows the behavior of the output prediction 
with variations in the uncertainties for Model I (Sulf_
in). As the uncertainty was not evaluated correctly, 

Figure 8. Residual time series of the Models I (a) and 
II (b) for the test set. Upper and lower dashed lines 
indicates 90% confidence interval and solid lines in (a) 
indicate variation limits adopted for the operation.

A.

B.
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Figure 9. Aluminum sulfate estimated behavior with half (a), one time (b) and the double (c) of the uncertainty 
evaluated by Equation (5).

A. B. C.

Figure 10. Aluminum sulfate prediction behavior with half (a), one times (b) and the double (c) of the uncertainty 
evaluated by Equation (5) and using the mean values of the parameters.

Table 7. Prediction performance indices by using the 
mean values of the parameters for Model I - MCM.

A. B. C.

Figure 12. Sodium hydroxide prediction behavior with half (a), one times (b) and the double (c) of the uncertainty 
evaluated by Equation (5) and using the mean values of the parameters.

A. B. C.

Figure 11. Sodium hydroxide estimated behavior with half (a), one times (b) and the double (c) of the uncertainty 
evaluated by Equation (5).

A. B. C.

Table 8. Values of the performance index with the 
mean of the parameters for Model II.
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Both Model I and II performances are better 
than when uncertainty analysis is carried out, which 
indicates that this method can be used to improve the 
ANN performance.

CONCLUSIONS

ANN models for the prediction in real–time of 
coagulant (aluminum sulfate) and alkalizer (sodium 
hydroxide) dosage were developed for a clarifying 
process of a water treatment plant in Camaçari, Bahia, 
Brazil. The models took into account the quality 
parameters of raw and treated water, together with 
the process parameters and the wide quality variation 
of raw water. In this case, the quality that the water 
source has is associated with water pollution.

The ANN models without uncertainty analysis 
reproduce the aluminum sulfate and sodium hydroxide 
dosage based on jar test results satisfactorily. In the 
models developed, the prediction of the aluminum 
sulfate dosage depends on the sodium hydroxide 
dosage, and vice versa, which does not represent 
a difficulty for operators who have experience and 
empirical knowledge of the application of one in 
function of the other. Indeed, this already is done when 
the jar test is carried out. Model I considers alkalizer 
dosage variation and raw and treated water parameter 
measures to estimate the required dosage of coagulant. 
This model shows R², R²adj., MAE and RMSR equal 
to 0.77, 0.77, 3.79 mg/L and 5.17 mg/L, respectively. 
Slightly better results were obtained for Model II, 
withR², R²adj., MAE and RMSR equal to0.81, 0.81, 
1.99 mg/L; 2.68 mg/L, respectively. However, the 
coagulant is considered to be an input and the alkalizer 
an output of the model. 

By applying the proposed algorithm to evaluate the 
parameters and the output uncertainty of the ANN, it 
was possible to verify that both models are sensitive to 
uncertainty. The results show that it is possible to obtain 
an output estimate with its respective coverage interval 
and an improved neural network may be achieved by 
using the means of the joint PDF of the parameters

The proposed model can be used to reduce the 
frequency of jar tests by using the estimates of 
coagulant and alkalizer dosages. Both models can 
be useful to overcome the difficulty of determining 
chemical dosages in events such as heavy rain in order 
to be able to respond to significant changes in raw 
water quality to ensure the efficient operation of the 
water treatment plant.
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