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Abstract  -  Haemophilus influenzae type b (Hib) vaccine is made up from its capsular polysaccharide (PRP). 
Low productivity of the polysaccharide during cell growth increases the final cost of this vaccine. Hib achieves 
low levels of cellular concentration in vitro due to the inhibition caused by acetate. The Akaike Information 
Criterion (AIC) was used in this work for selecting models of microbial growth. The application to the case of 
the multivariate models is outlined and the procedure is carried out using data from Hib cultures. From 4 models 
of biomass and 15 of acetate and PRP, one could be selected with great evidence for support. The use of AIC has 
shown to be robust and free of subjectivity, and it was able to define a kinetic model that is adequate for the cell 
growth and the production of its PRP over a wide range of culture conditions. The exponential inhibition factor 
was found to be the best for modelling inhibition of cell growth by acetate, while the hyperbolic factor was the 
best for inhibition of PRP formation. The acetate formation was found to have both growth associated and non-
associated types. PRP formation was found to be only growth associated.
Keywords: Haemophilus influenzae type b; Akaike’s Information Criterion; Mathematical model; Biomass; 
Polysaccharide.

INTRODUCTION

Haemophilus influenzae is a bacterium present in 
the nasopharyngeal tract of humans, and is potentially 
pathogenic. Of all its six serotypes, type b is the 
most harmful one, having once been reported as the 
main cause of bacterial meningitis in infants until the 
introduction of the conjugated polysaccharide vaccine 
in the 1980’s (Wilfert, 1990; Yogev et al., 1990). 
This polysaccharide forms the extracellular capsule 
of the bacterium, acting as a virulence factor and 
preventing phagocytosis. The capsular polysaccharide 
of H. influenzae type b (Hib) is a linear polysaccharide 
composed of poly-ribosylribitol-phosphate units, 
defined as PRP (Crisel et al., 1975). Upon submerged 

growth in vitro the majority of the PRP content present 
in the capsule is released into the supernatant, whence 
it can be purified and chemically conjugated to a 
protein, originating the conjugate vaccine (Anderson 
et al., 1976).

Low productivity of PRP is observed in the 
vaccine production process due to many aspects. One 
of them comes from the fact that Hib is a fastidious 
microorganism, requiring specific growth factors 
(NAD and Hemin) and enriched nutrients (amino acids 
and vitamins) (Biberstein et al., 1963; Loeb, 1995; 
Reidl et al., 2000). Also, it is difficult to achieve high 
cell densities due to metabolic inhibition, which is 
caused by high levels of secondary metabolites that are 
produced during growth. Acetate is the main byproduct 
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found in Hib cultivations, being a dead-end product 
in energy metabolism. The buildup of acetate in the 
culture broth cannot be avoided by supplying oxygen 
as in the case of other facultative bacteria, and thus 
optimization of the polysaccharide production process 
must account for acidic inhibition (Fleischmann et al., 
1995; Schilling and Palsson, 2000).

Several models of microbial growth, metabolic 
inhibition and biomolecule production are described in 
the literature. Typically, these models are included in a 
system of ordinary differential equations (SODE) for 
the solution of the mass balances in the control volume 
of the reactor. The SODE describes the rates of growth 
and production as functions of cell concentration, cell 
growth rate and metabolite or substrate concentration 
(which are inhibiting or limiting factors). In a batch 
culture, the variables predicted by the models are the 
rates of variation over time, and not the concentration 
itself, therefore the experimental data must somehow 
be transformed into a velocity measurement. This can 
be done in two ways. The most accurate and reliable 
alternative is to conduct continuous cultures. In this 
type of cultivation, the process can be driven into a 
stationary state, where the cell multiplication rate 
can be kept constant. As there is a continuous flow of 
culture broth out of the reactor, the rates of variation 
can be obtained from the association of concentrations 
with the flow rate applied. Multiple flow rates will 
provide multiple formation rates, which can be plotted 
against the growth rate or the metabolite/substrate 
concentration, and thus yield sufficient data for the 
fitting of the equations. Despite being a satisfactory 
method for obtaining the rates of interest, continuous 
cultures are troublesome when taken into practical 
consideration. For instance, adequate equipment must 
be available, there is higher risk of contamination 
and a high quantity of medium is needed, which 
is unattractive for the case of Hib, among others. 
Furthermore, the stationary state is not achieved 
before several retention times, and for this reason only 
few experimental data can be drawn without an overly 
longstanding experiment.

The second alternative is to estimate the derivative 
at each experimental point. For this, there are several 
methods. A broadly used one is polynomial fitting or 
interpolation of experimental data from discontinuous 
batches. The problem with this method is that it 
is highly affected by experimental error: as the 
polynomial curve tends to pass exactly over the data 
points, any experimental error causes a significant 
change in the curve obtained, and differentiation of 
this curve only amplifies the error. Furthermore, the 
choice of the right order or the cutting out of outliers 
in extremely biased by the subjectivity of the operator, 
making the process of model selection non-robust.

A more accurate method of using discontinuous 
batch data is directly using non-linear fitting with 
several candidate models. The goodness of fit for the 
models can be assessed and compared, and the best 
fitting model can be determined as the true model. 

Hypothesis testing is one way of assessing the 
goodness of fit for the models. It can give a p-value 
and a notion of statistical significance for the model 
chosen. However, this technique is troublesome as it 
can only be used to compare nested models (Motulsky 
and Christopoulos, 2003). With it, the comparison 
between the varieties of models proposed for microbial 
kinetics becomes unfeasible.

The field of information theory supplies an 
alternative for model comparison that is much more 
versatile. Akaike’s Information Criterion (AIC) is 
a concept introduced in 1973 which balances the 
proximity of the model to reality with the bias inherent 
to the equations used in the model, assessed by the 
number of estimable parameters used (Burnham and 
Anderson, 2002). For an experimental data set, each 
model will have a value of AIC; the differences between 
these values can be used in formulating a confidence 
set of models, in a Bayesian inference sense (Burnham 
and Anderson, 2004; Wagenmakers and Farrell, 2004; 
Li et al. 2017).

In this work, the AIC was applied to models 
of microbial growth, considering the necessary 
adjustments, in order to select a model for kinetics of 
Hib growth and polysaccharide production.

MATERIAL AND METHODS

Experimental Design

A complete 2² Rotational Central Composite 
Design (RCCD) with two replicates of the central 
point was used to set the conditions of temperature 
and pH. The temperature range was set between 29.0 
and 37.0 °C, while the pH range was set between 6.30 
and 7.50. Table 1 specifies the conditions used at each 
fermentation run.

Experiment T (°C) pH

1 33.0 6.90

2 33.0 6.90

3 35.8 7.32

4 35.8 6.48

5 30.2 7.32

6 30.2 6.48

7 33.0 7.50

8 33.0 6.30

9 37.0 6.90

10 29.0 6.90

Table 1. Values of the independent variables used in 
the Hib cultivation as determined by the experimental 
design.
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Experimental and Analytical Methods

Strain GB3291 of Haemophilus influenzae type 
b was purchased from the Culture Collection Section 
of Instituto Adolpho Lutz (São Paulo, Brazil). A seed 
composed of a suspension of cells in Greaves medium 
was stored in liquid nitrogen (Greaves, 1960). An 
aliquot of 200 μL of this seed was transferred to 100 
mL of the MMP medium as described by Takagi et al. 
(2003) and incubated in static anaerobic conditions at 
37 °C for about 8 h, when the optical density at 540 
nm (OD540) exceeded a reading of 0.400 AU. At this 
moment, a volume of this suspension was transferred 
into 200 mL of fresh MMP medium in a 1 L Erlenmeyer 
flask, resulting in an initial OD540 of 0.050 AU. This 
flask was then incubated in an orbital shaker (INNOVA 
44 – New Brunswick Scientific) at 150 rpm and 37 °C, 
for about 12 h, when the OD540 was expected to exceed 
a value of 5.0 AU. A volume of this suspension was 
calculated in order to achieve 0.150 AU for the OD540 
in a total volume of 6 L of culture, and inoculated in 
the reactor. The reactor (BioFlo 2000 bioreactor – New 
Brunswick Scientific) consisted of a 13 L vessel with 6 L 
of a modified MMP medium, where the concentrations 
of glucose and yeast extract were raised to 20 g.L-1. Air 
was supplied at 0.5 vvm, and the pO2 was controlled at 
30% of the saturation. pH was controlled by addition 
of NaOH 5 M. Samples were taken periodically and 
centrifuged at 4 °C and 16,000 g for 10 min; the pellets 
were washed with NaCl 150 mM and centrifuged again 
in the same conditions, dried at 70 °C and used for 
measuring the dry mass concentration. The cell free 
supernatant was frozen at -20 °C for further analyses. 
Acetate concentration was measured by ion exclusion 
chromatography as described by Takagi et al 2006.

Two fractions of PRP were measured. The free 
fraction was determined from the culture broth 
supernatant, and the cell associated fraction was 
obtained by extraction from the cell pellets as 
described by Kroll and Moxon (1988). The amount of 
PRP in both fractions was measured by ion exchange 
chromatography with pulsed amperometric detection, 
using a CarboPac PA10 column and a ICS-5000 
chromatography system (Thermo Fisher Scientific) 
and with the protocols described by de Hann et al. 
(2013). The two fractions were summed to give the 
total amount of PRP produced by the bacterium.

All the measured data obtained in these experiments 
are available for consultation in Cintra (2014).

MODELLING AND THEORETICAL ASPECTS

Candidate Models

Three variables were considered to be modeled: 
biomass, acetate and PRP formation. Acetate inhibition 

was proposed to act upon all three variables, each with 
a dedicated inhibition factor. Four inhibition factors 
were tested. The first inhibition factor evaluated in this 
work was the one proposed by Aiba et al. (1968) and 
codified as IA in eq. 1, and the second is equivalent but 
with an additional exponent, codified as IB in eq. 2. The 
third was proposed by Stepanova et al. (1965), denoted 
as IC in eq. 3, and the fourth is equivalent to the third 
with an additional exponent, as was also proposed by 
Yano and Koga (1973) and described as ID in eq. 4. In 
these four equations I is the inhibition factor, ki is the 
inhibition constant, A is the concentration of acetate 
and ni is the inhibition exponent.

Table 2. Balance equations with the candidate models 
of biomass formation.
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For the modeling of biomass formation, the 
maximum specific rate of growth was simply multiplied 
by one of the four inhibition factors. Biomass formation 
was identified as Xf, and the models were coded from 
A to D, as specified in Table 2. In the equations shown, 
X denotes biomass concentration and μmax denotes the 
maximum specific rate of growth.

For the formation of products, identical 
constructions were used for both the formation of 
acetate (models Af) and of PRP (models Pf). First, the 
equation of Luedeking and Piret (1959) was used in the 
three forms: growth-associated (code A), non-growth-
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associated (code B) and mixed formation (code C). 
Each one of the formation models is multiplied by an 
inhibition factor, as shown in Table 3. In the equations 
shown, P denotes the concentration of PRP, α denotes 
the constant of growth-associated formation and β 
denotes the constant of non-associated formation.

Five possibilities of acidic inhibition were 
considered for the formation of the products, and were 
denoted as models Ai for inhibition by acetate or models 
Pi for inhibition of PRP: without inhibition (code O) 
and by the four forms of inhibition as used for biomass 
(identified similarly by the subscripts A through D). The 
equations used are specified in Table 4. 

The global kinetic model was constructed in two 
steps. First, the four models for biomass formation, 
the three for acetate formation and the five for acetate 
inhibition were combined, resulting in a testing set of 
sixty partial models (they were named partial as they 
do not include the models of product formation). These 
models were denoted by a code PM, as listed in Table 5.

From these sixty partial models, only the most 
adequate ones were chosen, as determined by the AIC. 
The selected partial models were then combined to 
the three models of PRP formation and to the five of 
PRP inhibition. Therefore, there were fifteen complete 
models to be tested for each selected partial model. 
The codification of the complete models was done by 
extending the PM numbers of Table 5 with a CM code, 
as listed in Table 6.

Table 3. Candidate models of acetate and PRP 
formation.

Codes Codes Codes Codes

PM Xf Af Ai PM Xf Af Ai PM Xf Af Ai PM Xf Af Ai

01 A A O 16 B A O 31 C A O 46 D A O

02 A A A 17 B A A 32 C A A 47 D A A

03 A A B 18 B A B 33 C A B 48 D A B

04 A A C 19 B A C 34 C A C 49 D A C

05 A A D 20 B A D 35 C A D 50 D A D

06 A B O 21 B B O 36 C B O 51 D B O

07 A B A 22 B B A 37 C B A 52 D B A

08 A B B 23 B B B 38 C B B 53 D B B

09 A B C 24 B B C 39 C B C 54 D B C

10 A B D 25 B B D 40 C B D 55 D B D

11 A C O 26 B C O 41 C C O 56 D C O

12 A C A 27 B C A 42 C C A 57 D C A

13 A C B 28 B C B 43 C C B 58 D C B

14 A C C 29 B C C 44 C C C 59 D C C

15 A C D 30 B C D 45 C C D 60 D C D

Table 5. Models for biomass and acetate kinetics used in the testing set of partial models.

Table 4. Candidate models of acetate and PRP 
inhibition.

Table 6. Models for PRP kinetics used in the testing 
set of complete models.

Codes Codes Codes

CM Pf Pi CM Pf Pi CM Pf Pi

01 A O 06 B O 11 C O

02 A A 07 B A 12 C A

03 A B 08 B B 13 C B

04 A C 09 B C 14 C C

05 A D 10 B D 15 C D

Model Fitting

The system of ordinary differential equations 
(SODE) obtained by the combinations of the models 
were solved by the Runge-Kutta algorithm of order 
(4.5). The models were then fitted to the experimental 
data by the Levenberq-Marquart algorithm. The 
implementations of both numerical methods were 
taken from the functions ode45 and leasqr from GNU 
Octave 3.8.0.

AIC Application to Multivariate Functions

AIC is described as the balance between the log 
likelihood of the model and the number of estimable 
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parameters in the same model (Burnham and Anderson, 
2002). It is detailed in eq. 5, where  denotes the 
likelihood of the model with the maximum likelihood 
estimator (MLE) b of the parameters, calculated on the 
set D of experimental data, and K is the number of 
estimable parameters in the model.

which can be denoted as the S-model, then has its value 
subtracted from the remaining ones. The difference is 
used to calculate the evidence ratio εi for each model 
compared to the apparent best, as stated by eq. 8.

( )( )ˆ2 ln | 2AIC  K=− b +D

The function
 

 is calculated under the 
premise that the deviation of the model for the data 
approximates a multivariate normal distribution, as 
stated in eq.6, where D is a n × p matrix, n being the 
number of samples and p the dimensionality of the 
model, which is equivalent to the number of dependent 
variables measured and modeled; yi is the vector of the 
experimental values for the i-th sample, or the i-th line 
in D;  is the value predicted by the resolution 
of the SODE in the model at time ti; and Si is the p × p 
covariance matrix of the errors.

( )
( )

( )( ) ( )( )1

1

1 1ˆ ˆ ˆ| D exp ,   ,
22

n '

i i i i ip
i

i

  y f t y f t−

=

 b = − − b S − b 
 π S

∏

In some applications, the variance of the errors is 
unknown and is estimated as 1, increasing the number 
of estimable parameters in the model (Motulsky and 
Christopoulos, 2003). In the multivariate case, this 
increase would equal p(p + 1)/2, or the number of 
independent values in Si (Bedrick and Tsai, 1994). If the 
experimental error is accessible, Si can be formulated 
as a diagonal matrix having these values of error for 
each sample i, thus considering that the measured 
variables are inter-independent and minimizing the 
number of parameters to penalize for. As for K, its 
value equals the number of parameters estimated in  
plus one, because of the estimation of the initial value 
y0 necessary for the resolution of the SODE.

It has been stated that, in small samples, a correction 
must be made to account for the bias incurred from the 
low number of real data. This correction is necessary 
in cases where n/K < 40 (Hurvich and Tsai, 1989). The 
corrected AIC, or AICc, is calculated by eq. 7 below. It 
can be seen that the minimum number of samples must 
be such that n ≥ K + 2.
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Comparison and Selection of the Models

In order to compare models and determine which 
are the most adequate to describe the experimental 
data, the value of AICc is calculated for each model in 
the set being tested. The model with the smallest  AICc, 

( )1exp
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This ratio represents the relative likelihood 
supported by the available data that the i-th model 
must be considered to represent the reality over the 
S-model (Motulsky and Christopoulos, 2003). The 
whole set of evidence ratios can then be normalized to 
sum 100, giving the Akaike weights w% shown in eq. 9.
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It has been demonstrated that the weight of a model 
can be used as the probability of that model being the 
true model, given the data available and the set of 
models chosen. It has also been demonstrated that, if 
the true model is present in the set, its weight value 
will approach 1 as the number of samples tends into 
infinity, and that with a limited number of samples the 
true model may not show the highest weight, implying 
that simply choosing the model with the highest 
value may not be a robust procedure (Burnham and 
Anderson, 2002). Instead, a method for defining a 
confidence set of models must be carried out. This can 
be done by ranking the models in order of their Akaike 
weights, from highest to lowest; then, the confidence 
set is generated by adding the models one by one until 
the total sum of their weights surpasses a defined 
threshold, which for this work was set at 99.9 %. This 
set represents the set of models whose probability of 
being true is supported by the data available, for the 
total set of proposed models. Because of this, special 
care must be taken when formulating the candidate 
models, as an increased number of models in the set 
may negatively influence the results for the confidence 
set (Burnham and Anderson, 2002).

RESULTS AND DISCUSSION

In this work biomass, acetate and polysaccharide 
were considered for the construction of models of Hib 
growth kinetics. Acetic acid is the main byproduct 
of Hib’s metabolism, originated from energetic 
homeostasis, and it was investigated because it causes 
inhibition of growth and biosynthesis. Substrate, 
despite the fact that it is usually considered in kinetic 
modelling, was left out from the study for several 

(5)

(6)

(7)

(8)

(9)
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reasons. For instance, when the regression algorithms 
are applied to Monod’s equation and its variations, 
they yield unreal values for the parameters, which are 
highly correlated; this happens in our specific case 
because bacterial growth ceases much earlier than the 
substrate achieves limiting concentrations due to the 
high susceptibility of Hib to acetate concentration. In 
this way, the experiments were carried out on complex 
medium with excess amounts of substrates, in order 
to eliminate the limitation factors from the model 
construction.

The differential equations in the mass balance that 
are used to solve the kinetic model are interdependent, 
i.e., the resolution of the equation for one variable 
depends on the resolution of the others. In the case of 
biomass, the rate of formation is determined by the 
concentration of acetate. The acetate concentration is 
in turn obtained from the resolution of the Luedeking 
and Piret’s equation, which depends upon cell 
formation rate and/or concentration. In this way, they 
must be solved together. In the same way as acetate, 
PRP formation is dependent on the resolution of 
the equations of biomass and acetate. However, as 
neither biomass nor acetate formation are dependent 
on PRP concentration, this variable can be left out of 
the resolution in the first moment, leaving a model 

that describes only biomass and acetate formation. 
This also simplifies the selection procedure by 
reducing the number of model combinations in the 
testing set. The four models for biomass formation in 
Table 2 were combined to the three models of acetate 
formation listed in Table 3 and to the five models 
of inhibition by acetate formation listed in Table 4, 
resulting in sixty partial models which were fitted to 
the experimental data.

After the fitting procedure, it was observed that 
not all models yielded satisfactory convergence, i.e., 
in some experiments either the values of the fitted 
parameters were unrealistic (negative or divergent 
towards infinity) or the fitting algorithm was unable to 
find a MLE for the parameters after several attempts. 
Thus, the models that did not converge satisfactorily 
in any experiments were excluded from the study. 
From the sixty candidate models for biomass and 
acetate formation, only twenty-nine could achieve 
convergence in all experiments.

For each one of the twenty-nine successfully 
adjusted partial models, the values of AICc were 
calculated followed by the determination of the 
respective Akaike weights. These values were then 
ordered in descent, and the 99.9% confidence set was 
selected. This procedure was replicated for each of 

Table 7. Akaike weights calculated for the partial models of biomass, acetate formation and acetate inhibition.
Model Codes Experiments

PM X Af Ai 1 2 3 4 5 6 7 8 9 10

01 A A O < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.03
06 A B O < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

08 A B B < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 55.11
11 A C O < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3.93
12 A C A < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.62
13 A C B < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2.70

15 A C D < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2.63
16 B A O < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 1.13 < 0.01 < 0.01 0.03

21 B B O < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

22 B B A 83.78 92.50 0.63 0.01 27.39 7.23 0.94 6.17 54.09 0.30
> 23 B B B 1.97 4.25 3.53 55.39 5.10 56.21 4.76 60.94 2.69 10.02
24 B B C 7.76 0.20 < 0.01 < 0.01 60.21 < 0.01 0.33 0.06 30.67 2.10

> 25 B B D 1.69 1.74 4.10 18.56 5.11 28.93 5.98 29.27 1.95 19.24
> 26 B C O 4.77 1.26 88.21 1.96 1.44 0.13 13.00 0.20 10.18 2.69
28 B C B 0.01 0.03 0.02 12.16 0.23 3.72 0.12 2.28 0.05 0.07

30 B C D 0.01 0.02 0.03 11.92 0.23 1.85 0.13 0.97 0.04 0.03

31 C A O < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

36 C B O < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

39 C B C < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.04
41 C C O < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.26
46 D A O < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3.96 < 0.01 < 0.01 < 0.01

51 D B O < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

52 D B A < 0.01 < 0.01 0.04 < 0.01 0.08 0.24 1.80 0.02 0.18 < 0.01

54 D B C < 0.01 < 0.01 < 0.01 < 0.01 0.18 < 0.01 0.67 < 0.01 0.12 0.02

55 D B D < 0.01 < 0.01 0.17 < 0.01 0.02 1.45 9.51 0.07 0.01 0.14
56 D C O < 0.01 < 0.01 3.13 < 0.01 < 0.01 < 0.01 49.29 < 0.01 0.02 0.05
58 D C B < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.13 0.36 0.01 < 0.01 < 0.01

59 D C C < 0.01 < 0.01 0.12 < 0.01 0.01 0.01 7.88 < 0.01 0.01 < 0.01

60 D C D < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.10 0.16 < 0.01 < 0.01 < 0.01
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the 10 experiments, and the values of the weights for 
each model in each batch are shown in Table 7; the 
99.9% confidence sets of models for each batch are 
highlighted in bold.

The analysis of the confidence set in each batch 
gives insight into the interpretation of the Akaike 
weights as probabilities. The weight of a model 
states the probability, sustained by the data and by 
the models inserted into the testing set, of that model 
being equivalent to the true model. One cannot 
simply select the model with highest probability, 
as this value may be affected by factors such as the 
number of available data points, the experimental 
error inherent to the measured data, the number of 
models in the testing set, among others (Burnham and 
Anderson, 2002; Wagenmakers and Farrell, 2004, Li, 
et al. 2017). In Table 7, the comparison of the values 
of the Akaike weights obtained in experiments 1 and 
2 demonstrates how the construction of a confidence 
set can overcome the variability inherent to the 
method. As these two experiments are replicates (see 
Table 1), it is expected that any one model should 
show the same goodness of fit; due to experimental 
variability, the value of the w% is not exactly the 
same, neither is the order of quality of the different 
models in the set. Nevertheless, the confidence set 
in both experiments is exactly the same, allowing 
the conclusion and confirmation that these models 
are equally good in describing the kinetics in these 
cultivation conditions. 

In the other eight cultivation conditions 
(experiments 3 to 10) different confidence sets were 
obtained for each case. The modification of pH and 
temperature influenced the metabolism in such a way 
that in one condition the growth kinetics approached 
a profile that may be described satisfactorily by one 
model, but this same model cannot describe the 
kinetics in other conditions. This situation is best 
exemplified in experiment 10, were the seemingly 
best partial model is 08, showing an Akaike weight 
of 55.11, while in any other condition the model fits 
so badly to the experimental data that it is not even 
included in the confidence set.

As the purpose of the study is to select a model 
that can describe the cell kinetics in any condition, 
the models that are included in all the confidence sets 
of the 10 experiments were indicated by an arrow at 
the left side of the MP code in Table 7. Three partial 
models were included in all 10 confidence sets: 23, 
25 and 26. This means that all the data obtained in 
the 10 experiments are enough to support that any 
of these three partial models should be chosen over 
the remaining models in the testing set, but do not 
give clear evidence on which of the three is the most 
adequate.

By analyzing the equations that are used in the 
three selected partial models, it can be seen that only 
one equation of biomass formation is adequate for 
the description of Hib’s cell growth. The biomass 
formation (Xf) model B (see Table 2) is used in all 
the three partial models, thus defining the best choice 
for this variable independent of the kinetics of acetate 
formation. For acetate formation itself, it can be 
seen that partial models 23 and 25 describe almost 
the same configuration, depicting non-associated 
formation (Af model B in Table 3) with inhibition; 
the only difference is the equation used for the 
inhibition factor. It is interesting to note that the two 
possible equations for the inhibition factor are the 
ones that were extended by the use of an exponential 
factor (see Ai models B and D in Table 4). The third 
partial model, 26, discards the inhibition factor and 
incorporates both associated and non-associated 
formation (see Af model C in Table 3). 

One last remark can be made before the 
consideration of the polysaccharide formation 
model. The acetate kinetics in partial models 23 and 
25 are described by one parameter in the formation 
factor and two parameters in the inhibition factor, 
totalizing three parameters; in partial model 26, only 
the two parameters of the formation factor are used. 
Therefore, the first two models are more complex than 
the third, and it could be argued that, as the simpler 
model shows good fitness to the data in all the 10 
experiments, the two more complex ones should be 
ignored. However, the Akaike weights are evidence 
that the increase in fitting quality for partial models 
23 and 25 was enough to compensate for the extra 
parameter. In order to ensure experimental support 
in the choice of the complete model, all three partial 
models were considered in the next steps.

To evaluate the polysaccharide formation kinetics, 
the three models of biomass and acetate formation 
were combined to the three models of polysaccharide 
formation (see Table 3) and to the five models of 
polysaccharide inhibition (see Table 4), thus resulting 
in a testing set of forty five complete models. The 
models were fitted to the experimental data in the 
same way, and again not all the equations could be 
fitted satisfactorily to all the ten experiments. From 
the forty five complete models, only twelve converged 
properly, and the remaining ones were discarded. The 
same procedure for the calculation of AICc and w% 
was used, and the results are shown in Table 8; the 
99.9% confidence sets are highlighted in bold.

In the case of the complete model, the confidence 
sets for the two replicate experiments (1 and 2) were not 
exactly the same, but they were very similar, with only 
one model (26/07) not being included in both sets. This 
may have arisen due to the extra information added by 
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the consideration of the PRP formation kinetics, the 
differences in the distribution of the experimental data, 
the increased number of parameters in the model to be 
penalized for and the reduced number of models in the 
testing set.

Similar to what happened with the partial models, 
the confidence sets for the complete models in 
the other eight experiments differed significantly. 
However, while the previous selection procedure 
using the partial model disregarding PRP formation 
could only outline clearly the best choice for biomass 
formation leaving uncertainty in the model of acetate 
synthesis, the ten confidence sets of complete models 
showed only one common model, as seen in Table 8. 
With the addition of one more variable in the model, 
more statistical information was given to the test and 
so the data obtained in the experiments could give 
stronger support to the choice of the best complete 
model, increasing the penalty for model complexity 
and broadening the differences in the evidence ratios 
of the models.

The complete model that is chosen in this procedure 
is the one of code 26/10 for which the parameters are 
shown in Table 9. This model states that biomass is 
subjected to inhibition from acetate, following an 
inhibition kinetics similar to the proposed by Aiba et 
al. (1968) but with the addition of an extra exponent 

in the formula; acetate follows uninhibited mixed 
formation kinetics, while PRP formation is non-growth 
associated (Pf model B from Table 3) and is subjected 
to acidic inhibition, following the inhibition factor of 
Yano and Koga (1973) (Pi model D from Table 4). 
Therefore, the complete model proposed in this work 
as supported by experimental data to describe the 
kinetics of Hib growth and polysaccharide production 
is described by eqs. 10 through 12 below.

Table 8. Akaike weights calculated for the complete models with PRP formation.
Model Codes Experiments

PM/CM Pf Pi 1 2 3 4 5 6 7 8 9 10

23/01 A O < 0.01 < 0.01 < 0.01 0.08 < 0.01 0.02 < 0.01 < 0.01 < 0.01 < 0.01

25/01 A O < 0.01 < 0.01 < 0.01 0.03 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01

25/06 B O < 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.09
25/15 C D < 0.01 < 0.01 < 0.01 0.03 < 0.01 28.12 < 0.01 25.09 < 0.01 0.01

26/01 A O < 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

26/06 B O < 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01 0.01 < 0.01 < 0.01 0.02

26/07 B A 5.75 < 0.01 0.12 < 0.01 29.09 < 0.01 0.08 < 0.01 < 0.01 17.35
26/08 B B 6.33 34.04 0.12 66.16 1.03 < 0.01 < 0.01 37.53 78.24 30.13
26/09 B C < 0.01 < 0.01 < 0.01 < 0.01 23.41 < 0.01 0.07 < 0.01 < 0.01 11.81

> 26/10 B D 1.93 54.69 0.20 32.50 1.06 71.84 2.46 35.78 21.11 31.62
26/11 C O 85.99 11.25 99.56 0.86 45.38 < 0.01 97.35 < 0.01 < 0.01 7.95
26/13 C B < 0.01 0.01 < 0.01 0.33 0.01 < 0.01 0.03 1.61 0.65 1.02

Experimental

Design

Biomass

Parameters

Acetate

Parameters

Polysaccharide

Parameters

Run
T

(°C)
pH

μmax

(h-1)

kX

(gA.L-1)
nX

αA

(gA.gX
-1)

βA

(gA.gX
-1.h-1)

βP

(mgP.gX
-1.h-1)

kP

(gA.L-1)
nP

1 33.0 6.90 0.50 7.10 2.69 0.62 0.11 39.97 7.71 5.12

2 33.0 6.90 0.49 7.38 3.77 0.65 0.11 37.67 8.08 7.06

3 35.8 7.32 0.50 9.25 4.09 0.88 0.12 44.43 9.64 3.11

4 35.8 6.48 0.60 6.30 3.50 0.60 0.11 32.29 6.91 11.82

5 30.2 7.32 0.29 8.55 3.17 0.66 0.08 23.60 12.63 3.07

6 30.2 6.48 0.37 6.60 7.70 0.54 0.10 24.25 6.98 17.43

7 33.0 7.50 0.34 9.91 3.15 0.79 0.10 31.26 12.08 5.48

8 33.0 6.30 0.40 5.82 7.54 0.44 0.13 20.52 6.54 16.29

9 37.0 6.90 0.61 7.44 3.01 0.56 0.14 41.33 8.39 11.88

10 29.0 6.90 0.26 7.35 4.50 0.61 0.08 20.63 7.52 13.43

Table 9. Fitted values for the parameters of the final chosen model, at each run of the experimental design.

( )( )exp Xn
max X

dX  k  A  X
dt

= µ −

A A
dA dX  X
dt dt

 = α +b 
 

1

1
PP n

P

dP   X
dt A

k

= b
 +  
 

(10)

(11)

(12)

The overall quality of the fitted model is 
demonstrated in Figures 1 and 2, where the results 
of experiments 1 and 2 with the measured data and 
the experimental error estimates can be compared to 
the fitted model. All the other experiments and fitted 
curves can be assessed in Cintra (2014). 
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Figure 1. Experimental data and fitted model for experiment 1.

Figure 2. Experimental data and fitted model for experiment 2.

CONCLUSION

In this work, the techniques of model selection 
based on Akaike’s Information Criterion were applied 
to models of bacterial kinetics. The procedure for 
converting the experimental data into AICc values 
for the multivariate kinetic models was outlined and 
carried out on real data from Hib cultivations. The 
performance of this technique could be evaluated 
by using experimental data from ten experiments 
generated from a RCCD, including experiments in 
replicate and in different culture conditions of pH and 
temperature. This procedure enabled visualization and 
understanding of the meaning of the Akaike weights in 
the probability sense and for assessing the robustness 
of the technique. By analyzing the confidence set of 
models obtained from these ten experiments, it was 
possible to point out one model with good evidence 
for support. The model of Hib kinetics selected in this 
paper describes the inhibition of cellular growth by 
acetate and the formation of two main metabolites, 
acetate and PRP. Acetate synthesis was determined as 

being free of inhibition and following a mixed type 
formation, while PRP is subjected to acetate inhibition 
and is not growth-associated. Inhibition of cell growth 
was found to be of the exponential type, as described by 
Aiba et al. (1968), and the inhibition of polysaccharide 
formation was found to be of the hyperbolic type, as 
described by Yano and Koga (1973).

The selection procedure using AIC was demonstrated 
to be a noteworthy alternative for defining models for 
microbial kinetics in discontinuous batches, replacing 
the methods of approximating derivatives that are 
traditionally used in the field, but that are error prone 
and bound to subjectivity of the operator.
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