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Abstract – The determination of species concentration profiles in reactive flows with variable inlets is a problem 
of practical interest to many fields such as in flow reactor transient operation and in cyclic degradable pollutants 
disposals in watercourses. In these cases, the inflow condition often consists of a time-dependent function, which 
may imply unsteady outflows, not always well represented by the usual boundary conditions (BC) used so far. A 
new approach, using an outlet condition in the form of a material derivative, termed Material Derivative Boundary 
Condition (MDBC), is introduced and a numerical model to solve convection-diffusion-reaction equations in two-
dimensional (2-D) incompressible flows is developed. Upon reviewing the literature, it is noted that the Finite Element 
Method (FEM) is rarely used in the simulation of reactive flows, in spite of its ability of consistently coping with 
variable BCs. The above facts are reasons to explore its use along with a semi-discrete formulation with the Galerkin 
Method in our simulations. Results are obtained for various conditions, in order to show features of the code, and are 
compared to existing solutions. Use of the MDBC is shown to provide a better approximation of the exit concentrations 
and use of FEM in reactive flows is further enhanced.

Keywords: Concentration Profile Simulation, 2-D Reactive Flows, Finite Element Method, Material Derivative, 
Unsteady Boundary Conditions.

INTRODUCTION

Preliminaries

The determination of species concentration profiles in 
incompressible reactive flows presents practical interest to 
many engineering applications, such as tubular continuous 
chemical reactors design and operation, concentration 
evolution prediction of degradable and non-buoyant 
contaminants in rivers, downstream industrial wastewater 
or domestic sewage discharge, etc. 

While reactants in chemical reactors are subject to 
transformation due to chemical or biochemical reactions, 
pollutants in rivers may also disappear by physical 
processes, such as volatilization or reactive decay, all of 
which can be accounted for in the transport equation by 
addition of a reaction term r (van der Perk, 2013):

r
x
CD

xx
Cu

t
C

j
ij

ii
i ±













∂
∂

∂
∂

+
∂
∂

−=
∂
∂ (1)

Brazilian Journal
of Chemical
Engineering

ISSN 0104-6632
Printed in Brazil

www.scielo.br/bjce

http://dx.doi.org
mailto:norberto @uerj.br
mailto:ade_oliveira@hotmail.com


Brazilian Journal of Chemical Engineering

A. G. de Oliveira Filho, N. Mangiavacchi and J. Pontes1134

where we define for 2-D flows:

After a certain initial time interval, when the mixing 
processes are completed, species concentration along the 
flow can be modeled by the use of equation 1. In ideal 
tube reactors, often treated as plug flow devices, molecular 
diffusion and radial/lateral velocities terms may be 
dropped (Levenspiel, 1999), leading to a one-dimensional 
(1-D) pure advective-reactive model. In other cases, these 
terms must be taken into account, requiring 2-D models 
to describe the flow. It is also reasonable to assume 1-D 
convective and diffusive flows for small rivers and channels 
when the length is ten or more times larger than its width 
(Kachiashvili et al., 2007). In larger watercourses, in turn, 
where the river depth is significantly small compared to its 
width, depth-averaged concentrations assuming vertically 
well-mixed species could be employed (Lee and Seo, 
2007), making it possible to apply a 2-D model derived 
from equation 1.

Thus, it is all about solving equation 1 in the applicable 
dimensions, subject to proper initial and boundary 
conditions. Usually, three types of BC apply:
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where c , q  and g  may be homogeneous, constant valued 
or functions of time and the greek letters Γ denote the 
corresponding surface where the BC applies. Equation 2 is 
usually referred to as the Dirichlet or Essential Boundary 
Condition (EBC), equation 3, as the Neumann or Natural 
Boundary Condition (NBC) and equation 4, as the Robin 
or Cauchy Boundary Condition.

Scope 

In this paper, we are particularly interested in 2-D 
simulations of reacting species transport, where the inlet 
boundary concentration is a pulse, a series of pulses or a 
continuous periodic function. These inlet conditions apply 
to cases of flow chemical reactors operating under variable 
inlet feed and variable species concentration spills in rivers 
and channels.

This class of problems has motivated studies pursuing 
analytical solutions of convection-diffusion-reaction 
equation subjected to time-dependent BCs, like the ones 
from van Genuchten and Alves (1982), Logan and Zlotnik 
(1995), Logan (1996), Aral and Liao (1996), Golz and 
Dorroh (2001), Chen and Liu (2011) and Pérez Guerrero 
et al. (2013). However, these studies either are restricted to 
1-D cases, or adopt conditions that may not represent time 
dependence close to the domain exit. 

We emphasize that, in the case of time-dependent inlet 
conditions, special attention must be given to the outlet 
BC. Since the exit concentration or the species flux is an 
unknown, assuming prescribed values at the outlet is not 
consistent.

Up to the present, as in the works cited above, this 
indeterminacy is treated either by considering that the 
outlet concentration gradients are zero, which may be 
physically unrealistic (Ziskind et al., 2011), or by using 
Robin type BCs, best suited to represent inlet conditions.

Literature Review

A number of papers address the advection–dispersion 
equation, with or without the reaction term, providing both 
analytical and numerical solutions for cases of pollutant 
discharge. O’Loughlin and Bowmer (1975), for instance, 
applied analytical solutions to equation 1 in 1-D channel 
flows with decaying species, later extended by Chapman 
(1979) to non-uniform steady rivers, both considering only 
pulse or continuous inlet concentrations and homogeneous 
NBC for the concentrations at the outlet. Comparison 
with the results obtained in the experimental works of 
Vilhena and Leal (1981) for non-reacting pollutants in 
point source injection showed good agreement with them. 
Czernuszenko (1987), also working with dispersion of 
conservative species, proposed a numerical solution for the 
2-D advection–diffusion equation, using a conditionally 
stable finite differences (FD) scheme. But, since the study 
was restricted to mixing far from the pollution source, 
leaving convection in the background, the equation was 
bounded by NBCs, not encompassing unsteady BCs. 
Piasecki and Katopodes (1997), interested in the sensitivity 
of contaminant concentration profiles to timely changes in 
their load, a similar aspect of our own concern, treated the 
problem by the use of a FEM scheme, but the unsteady 
load was a zeroth order production term of the transport 
equation and the problem was subjected to Dirichlet and 
Neumann type BCs. Kaschiashvili et al. (2007) provided 
a consistent model for river reactive flow problems in 
one, two and three dimensions and used dimension-
splitting FD numerical schemes, with unsteady upstream 
BC and a NBC downstream. But, due to the equilibrium 
condition at the outlet, consisting of a constant spatial 
concentration gradient, this BC no longer applies and is 
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modified, sometimes, with the introduction of an additional 
parameter in order to better reproduce experimental data. 
The fact supports our remark that time-dependent inlet 
conditions may imply difficulties for prescribing values 
for the outlet conditions. Lee and Seo (2007) used a 2-D 
finite element model, based on the Streamline-Upwind 
Petrov-Galerkin Method (SUPG) together with a Crank-
Nicholson FD scheme for the time derivative, as in this 
paper, but restricted to rivers where the process is diffusion 
dominated and the downstream BC was a prescribed 
diffusion flux. Two years later, the same authors employed 
this same method for accidental mass release in rivers (Lee 
and Seo, 2009). Similar to Piasecki and Katopodes (1997), 
the accidental mass release was represented by a zeroth 
order production term of the transport equation which was 
subjected to Dirichlet inlet BC and Neumann outlet BC, 
once more not considering unsteady BCs.

The literature survey detailed above, related to 
watercourse pollutant spills, shows that FEM has not been 
widely used to obtain solutions of reactive flows, in spite 
of its ability of consistently coping with differential BCs 
(Logan, 2007). This might be explained by the existence of 
the advective term in the transport equation that makes the 
system of equations nonsymmetric and prone to numerical 
oscillations (Yu and Singh, 1995). Several authors 
addressed the problem by focusing the development of 
consistent and stable FEM schemes for these flows (Yu 
and Singh, 1995; Galeão et al., 2004; John and Schmeyer, 
2011) but rarely holding their attention on unsteady BCs. 
We also quote the studies of Konzen et al (2007) by 
which a convective-diffusive-reactive problem formulated 
through vorticity and stream-function is numerically 
solved, employing Galerkin FEM (GFEM) together with 
a Runge-Kutta scheme for the time stepping. But, owing 
to the formulation adopted, the BCs were assumed to be 
homogeneous Neumann type and the flow, taking place in 
a closed cavity, is not subjected to inflows and outflows 
rates, as in rivers and continuous chemical reactors.

Modeling work on fluid dynamics by FEM in chemical 
reactors is also not commonly found in the literature. 
Ranade’s (2002) book on computational fluid modeling of 
reactors employs the finite volume method in the examples 
and applications presented. Sometimes, commercial 
packages using the FEM in their built-in routines are 
employed for the study of chemical reactors models 
performance (Galante, 2012; Mushtaq, 2014). However, 
in addition to being proprietary, these routines often focus 
simulations of chemical reaction media, rather than flow 
dynamics. Yet, it is possible to verify, in the works by 
Skrzypacz and Tobiska (2005) and Skrzypacz (2010), a 
FEM scheme to solve a simple 1-D reactive flow in packed 
bed reactors. Even though these two studies assume steady 
flow, BCs are of the Dirichlet type and the reaction term 
is not explicitly solved, the convenience of using FEM in 
chemical reactors flow modeling is pointed out.

Aims and Objective

Thus, additional motivation exists for the study of 
concentration fields using FEM, to simulate problems 
modeled by equation 1 and subjected to unsteady BCs.

Our proposal, and what depicts the main contribution 
of this work, is to use an outlet BC in the form of a material 
derivative, directly representing the concentration gradient 
or the species flux time dependence, an usual feature for 
such models.

To the authors’ knowledge, no analytical solution 
considering a material derivative as the outlet BC was yet 
constructed. So, a computer code prototype is developed 
in MATLAB, through a semi-discrete formulation with 
GFEM and implicit FD scheme for the simulations. The 
inlet, or upstream, unsteady BC behavior is assumed either 
as time periodic, or as pulse functions, providing a variable 
condition. At the outlet, or downstream, to better represent 
the equilibrium condition among diffusion, advection and 
reaction in unsteady conditions, the outlet flux is evaluated 
by the species concentration material derivative.

MATHEMATICAL FORMULATION

Considering the objectives of the present study, 
of addressing isothermal reactive flows, an average 
hydrodynamic field is assumed, so turbulence models are 
not introduced in the evolution equations. We emphasize 
that averaging the concentration field along one of the 
three directions, in order to construct 2-D models, requires 
that reactants or pollutants be mixed at a much faster rate 
than the reaction rate, as in the microfluid idealization 
(Levenspiel, 1999).

The reaction term in equation 1 may vary considerably, 
depending on the process. For simplicity, it was decided to 
analyze only a first order reaction model and the diffusion 
tensor was considered constant. The transport equation 
then becomes:
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 with initial condition given by:

C(xi, 0) = 0

BCs used at the inlet or upstream are prescribed in one 
of the two forms below:

Cinj(0,y,t) = 0, t ≠ nτ 
Cinj(0,y,t) = C*

inj, t = nτ

in order to represent short injections at arbitrary times nτ, 
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or to represent a periodic injection, we assume:

Cinj(0,y,t) = CI (1 + cos mπt)

where CI is the mean amplitude of the species concentration 
at the inlet. In equations 7-8, the y coordinate dependence 
is applicable to 2-D flows and may represent the injection 
in part or along all its length.

As already mentioned, analytical solutions for this 
kind of problem exist and will be used in order to validate 
numerical results. These solutions assume either prescribed 
or Neumann’s outlet BCs mostly at semi-infinite domains. 
Moreover, even the solutions for finite domains that accept 

one or other of those BC are subjected to criticism (Ziskind, 
2011).

Equation 5 is solved by a FEM scheme, with a Galerkin 
formulation. So, a weighted residual statement of that 
equation reads:
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By applying the divergence theorem to the third term of 

the above equation, and substituting the result in equation 
9, the following weak form is obtained:
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and outin ΓΓΓΓ=Γ  21 .

Γ1 and Γ2 represent lateral surfaces and the related 
fluxes are zero. Γin, in turn, represents the inlet boundary, 
subject to specified, but time-dependent, BCs, as given by 
equations 7-8. In this case, the weight functions are zero 
for Γin, implying that the surface integral is only evaluated 
along Γout.

For the outlet surface, we can assume that:

xen 

=

and, therefore, the r.h.s. of equation 10 becomes:
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By looking again at equation 12, it can be verified that 
the weak formulation boundary term represents the species 
flux by Fick’s Law. Yu and Singh (1995) sustain that this 
formulation should only be applied to situations where there 
are exclusively diffusion fluxes at the outlet boundary. But 
in the problems under consideration, advection effectively 
occurs at the outlet, and must be taken into account in the 
BC expression.

In fact, there are cases where gradients normal to the 
outlet surface are zero, bringing the formulation back into 
consistency, even in the presence of convection because it 

eliminates the surface integral. Again considering equation 
12:
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We must have in mind that, for a developed profile, 
equation 13 also implies, taking into account equation 5, 
that:

We emphasize that this condition does not hold when 
the gradients at the outlet are not zero. It is well known that 
flow problems involving the transport of chemical species 
with homogeneous NBC fail to satisfy the conservation 
law for species concentrations within the domain (Golz 
and Dorroh, 2001). In particular, prescribed constant outlet 
fluxes also do not lead to correct description of time-
dependent problems.

So, for the sake of generality another outlet BC 
must be assumed. We point out that, in the flows under 
consideration, the species dispersion is mainly due to 
vertical and transverse velocity gradients, while molecular 
and turbulent diffusions are generally negligible (Launay 
et al., 2015). So, adding the advection term to equation 14, 
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one has:
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 Equation 15 is in fact a nonhomogeneous material 
derivative that automatically evaluates the spatial gradients 
at the outlet boundary. We propose to term it Material 
Derivative Boundary Condition, or MDBC, as previously 

mentioned.
Assuming that, at the boundary Γout, Unu 

= , where 
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 Then, equation 17 is the one to be numerically implemented by GFEM, in order to obtain the species concentration 
profiles.

The numerical procedure may be tested by comparing the results with existing analytical solutions. In the simplest 
case of 1-D flow, analytical solutions for continuous and pulse mass injection, are, respectively (O’Loughlin and Bowmer, 
1975; Chapman, 1979):
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 and M inj is the total mass injected per unit area. And for a 2-D case with pulse injection where there 
is a transversal diffusion Dy and zero lateral component of velocity (Vilhena and Sefidvash, 1985):
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When the inlet BC is given by equation 8, an one-
dimensional analytical solution may be obtained. By 
following the work of Logan and Zlotnik (1996), it is 
possible to establish that equation 5 clearly admits a 
solution of the form:

( ) tˆxˆet,xC βα +=

where α̂ and β̂  are complex valued, thus:

IR iˆ ααα += and IR iˆ βββ +=

Then, substituting equations 21-22 in the 1-D form of 
equation 5, one obtains:

2ααβ ˆDˆukˆ
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Once the periodic BC forces the inlet concentration 
at a fixed value, βR = 0 and the solution may be 
expressed as:

( ) ( )[ ]tixIiR Iet,xC βαα ++= R

where R means the real part of equation 24 and:
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Also, considering that the concentration at x = 0 
cannot take negative values, it is necessary to add a 
constant forcing, such that this restriction is satisfied, 
and equation 24 becomes:

( ) ( )[ ]tixIiR
o

IeCt,xC βαα +++= R

For this constant forcing, obviously βR = βI =0 and, 
therefore, with the use of equation 25:
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which implies that:
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Thus, given k, xu  and Dx, as well as an abitrary αR, 
the analytical solution may be constructed, employing 
equations 25-28.

NUMERICAL PROCEDURE

By using the Galerkin formulation, the concentration 
profile is approximated by:
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Substituting this approximation into the weak form 
given by equation 17, where, according to the GFEM, 

the weight functions are the same as the shape functions 
(Zienkiewicz and Taylor, 2000), one has:
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Equation 30 encompasses a stiffness matrix and a 
modified mass matrix, which is related to the concentration 

time derivative and the reaction term. It can be put under 
matrix form as:

[ ] [ ]{ } [ ]{ } 0MKM 11 =++

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where M1 and K are, respectively, the modified mass and 
stiffness matrices.

In order to solve equation 32, we employ a numerical 

scheme, using the Crank-Nicholson Method (Lewis et al., 
2005), which reads:
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 It must be observed that it is also possible to look for 
another solution without modifying the original mass 
matrix, as suggested above. In this case, the use of the 

Crank-Nicholson scheme on the GFEM approximation of 
equation 10, implies:
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the line integral approximation on the r.h.s of equation 10 
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decay term, last term on the left of equation 17, or:
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In this case, the boundary vectors ({B}t and {B}t+1)  
must be evaluated using equation 31. Being dependent on 
the concentration and its time derivative in past and present 
time steps, these vectors must be continuously updated, 
making the numerical scheme for solving equation 33 
simpler than the one required for solving equation 34. 
Thus, we opted for the first scheme.

The code was implemented in MATLAB, taking 
advantage of its matrix calculation resources. The integrals 
in equation 30 were evaluated by the Gauss Quadrature 
(GQ). The solution domain was discretized in regular 
triangular or quadrangular element meshes by routines 
within the program, depending on the case run. The 
program is also capable of performing GQ calculations 
in diversified number of interval points. Linear shape 
functions were used throughout this work, so precision of 
the scheme was controlled by properly refining the mesh.

It is well known that simple GFEM presents numerical 
oscillations and instabilities in problems where advection 
is important. So, more elaborated FEM schemes would be 
required to solve problems with small diffusion coefficients. 
However, considering that the role of the unsteady BC along 
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with the outlet BC represented by a material derivative 
were the main aspects to be investigated, this method was 
employed with restrictions. Aware that some of the major 
factors causing these issues are improper choice of a time 
step size and also of element size and shape (Yu and Singh, 
1995), we adopted, as a basis for the time step and element 
size control, respectively, (Chapra and Canale, 2010):

( )
( )2

2

2 ix

i
i x.kD

x
t

i
∆+

∆
≤∆ and

i

x
i u

D
x i

2
≤∆

RESULTS AND DISCUSSION

Preliminary Tests

A more detailed look at the analytical solution presented 
by equation 18 reveals that, actually, the assumed constant 
upstream BC is not time independent, as it may appear to be 
at a first glance. Assuming unitary injection concentration 
(Cinj = 1.0), the analytical solution results in the plots of 
Figure 1, obtained for Pe = 5.0 (ux = 1.0; Dx = 4.0; Da = 
2.0). 

Figure 1. 1-D Plot of Analytical Solution (Equation 18).

As it can be verified, within the stream limits, the 
BC shows an unsteady profiles characterized by the inlet 
concentration correction due to particular advective and 
diffusion effects. Obviously, the analytical solution follows 
the general form of the concentration profile for this kind 
of problem (Vilhena and Sefidvash, 1985):

     ktexpt,xCt,xC  o  

 where Co is the corrected species concentration at initial 
time.

It can be also easily seen, by inspection of equations 19 
and 20, that the solution for pulse injections also follows 
equation 37, in order to correct the inlet concentration 
values.

So, in order to check the code results, the inlet BCs 
to be applied at x=0 must carry on the initial shape of the 
defined concentration, as suggested by Yu and Li (1998). 
This implies that:

for equation 18:
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Having that in mind, one can apply equations 38-40 
to the MATLAB code and compare the results with the 
analytical solutions for constant and pulse injection cases.

In the following Figures 2-3, conditions for Pe = 5.0 
are the same as for Figure 1; for Pe = 50 are: ux = 10, Dx 
= 4.0 and k = 1.0; for Pe = 200 are: ux= 10, Dx = 1.0 and k 

= 1.0, resulting in the same Damköhler Number (2.0) for 
all cases. For the tests with equation 20, which admits a 
lateral component of diffusion, Dy was set equal to 0.2 and 
its 1-D plot (graph C of Figure 2) represents the centerline 
concentration profile (y = 0.0).

Figure 2. 1-D Analytical and Numerical Solution of Equations 18-20 Cases.

Figure 3. 2-D Analytical and Numerical Solution of Equation 20 Case. (1250 Element Mesh; GQ 9 points; Pe = 50).
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The numerical solution of equation 5, for the periodic 
inlet BC (equation 8), may be compared with the 1-D 
analytical solution constructed from equations 25-28 

through a plot extracted from the centerline concentration 
profile. Figure 4 shows the outcome for Pe = 100, where ux 
= 5.0, Dx =1.0 and k = 0.1, implying Da = 0.4.

Figure 4. 1-D Analytical and Numerical Solutions of Equation 5 with periodic inlet BC. (1250 Element Mesh; GQ 9 points).

In order to obtain the plots of Figures 2 to 4, we ran 
the code and then compared the results with the analytical 
solution corresponding to the time run. Numerical 
calculation was performed, respecting the stability 
restrictions posed by equations 36. The plots show good 
agreement between analytical and numerical solutions 
even for high Péclet Numbers.

It is possible to observe a better agreement between 
analytical and numerical solutions for the continuous 
injection case (equation 15), as shown in plot A of Figure 
2. The plots B and C of Figure 2 (equations 19 and 20) and 
the plot of Figure 3 (equation 20), show that the numerical 
curves are slightly delayed compared to the exact solutions. 
This delay results from the fact that the discrete time 
integration cannot completely follow the instant moment 
of mass release (Lee and Seo, 2010).

Comparing Analytical and Numerical Solutions

Figure 5 compares simulated concentration profiles for 
sorted conditions, such as Pe = 5 (ux = 1.0; Dx = 4.0; k = 
0.1), Pe = 25 (ux = 5.0; Dx = 4.0; k = 0.1) and Pe = 100 
(ux = 5.0; Dx = 1.0; k = 0.1). In order to obtain the plots, 
we solved equation 5 subjected to a time periodic inlet 
BC (equation 8), changing the outlet BC type. First, we 
employed an EBC arbitrarily set to a given constant value, 
then, we employed a homogeneous NBC and last, our 
proposed MDBC. Since the meshes used were the same 
in all simulations, we compared the centerline node values 
obtained, plotting the concentration differences (Dif C).

As we can see, profiles obtained when the adopted 
outlet condition is either EBC or the homogeneous NBC, 
compared to those obtained by the adoption of the MDBC, 
concentrate larger differences around the exit.

In order to check the validity of the above proposition, 
we numerically evaluated concentration 1-D profiles for 
various flow and reaction parameters. The results were 
compared to the analytical solution and analyzed by the 
Root-Mean-Square Deviation (RMSD), or:

where a
iC is the analytical solution at node i for a given 

total number of nodes nd at the exit region.

Outcome Analysis

We observe that the numerical solutions with outlet 
EBC provide the poorest approximations in all Péclet and 
Damköhler Numbers considered and that MDBC solutions 
result in better approximations than NBC in almost all cases. 
This is possibly due to the fact that MDBC better captures 
specific features of the flow because it encompasses, in its 
formulation, physical effects of the problem which are not 
present in the usual types of BCs.

Results in Table 1 also point at examples where the 
advantages of using MDBC instead of homogeneous NBC 
are not clear. Such situations arise from particular flow 
conditions that imply very small concentration gradients 
at the outlet, as a consequence of Péclet and Damköhler 
Number combinations. These cases approach patterns that 
can be treated conveniently by the homogeneous NBC 
(equation 3) and so, when we compare the outcomes 
obtained both with the use of NBC and MDBC, we 
verify analogous deviations from the analytical solution. 
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Figure 5. Centerline Concentration Profile Differences – Numerical Solutions. (Inlet BC: Equation 8; Outlet EBC = 0.5; Outlet NBC: 
Equation 13; Outlet MDBC: Equation 16).

Table 1. RMSD between 1-D Analytical and Numerical Solutions.

Pe = 100 RMSD
Δx Δt Da An. ˗ EBC An. - NBC An. - MDBC

0.2 0.02
0.1 0.8193 0.0315 0.0226
1.0 0.2640 0.1839 0.1744
2.0 0.0745 0.0044 0.0022

Pe = 50 RMSD

0.2
0.005 0.1 0.8628 0.0098 0.0041

0.05
1.0 0.4982 0.0106 0.0032
2.0 0.1312 0.0809 0.0798

Pe = 25 RMSD
0.2 0.02 0.1 0.8846 0.0777 0.0537
0.4 0.01 1.0 0.4010 0.0676 0.0679
0.2 0.02 2.0 0.1476 0.0387 0.0259

Pe = 5 RMSD

0.2
0.05 0.1 0.6155 0.0275 0.0191
0.2 1.0 0.5672 0.0071 0.0072
0.1 2.0 0.0880 0.0178 0.0034

(Inlet BC: Equation 8; Outlet EBC = 0.0; Outlet NBC: Equation 13; Outlet MDBC: Equation 16).

However, these are special cases of the problem and the use 
of the MDBC for more general formulations is established.

2-D Simulation Results

Having in mind the satisfactory results obtained in the 
tests, we further used the code to investigate the behavior 
of 2-D systems. Velocities and diffusion constants were 

chosen as close as possible to real configurations.
For instance, Figure 6 shows the results of 2-D and 

1-D simulations under conditions such that the inlet BC is 
the periodic concentration oscillation given by equation 8, 
lateral components of velocity and diffusivity are ten times 
smaller than the longitudinal components (ux = 5.0, uy= 0.5, 
Dx =1.0, Dy =0.1 and k = 0.1), implying Pe = 100 and Da 
= 0.4.
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Figure 6. Concentration Profile for Decaying Species (900 Element Mesh - Inlet BC: Equation 8; Outlet BC: Equation 16)

In this case, corresponding to a high Pe, convective 
transport plays a major role overcoming diffusion transport 
and reaction decay. Parts A and B of Figure 6 show the 
oscillatory behaviour of the concentration profile along 
the domain at different time values for the concentration 
along all the domain. We also note the variable outlet 
concentration values that would not properly be captured 
by EBCs and possibly NBCs.

Figure 7 shows the outlet concentrations for Pe = 10 

and Da = 0.4 (ux =0.5; uy =0.05; Dx =1.0; Dy =0.1; k=0.01), 
subject to the same BCs, implying a more important role 
for diffusive transport. In addition, smaller flow rates allow 
the chemical reaction to further evolve as the convective 
transport takes place. The oscillatory behavior of the inlet 
concentration is damped before reaching the domain outlet 
and the solution approaches the typical shape of pure 
diffusive transport problems subjected to oscillatory BC, 
known as periodic steady-state (Bird et al, 2002).

Figure 7. Concentration Profile for Decaying Species (2000 Element Mesh - Inlet BC: Equation 8; Outlet BC: Equation 16).
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When equations 7 are applied as the inlet BC, resulting 
in pulse injection of time-dependent concentrations, 
the code shows the concentration profiles approaching 
the oscillatory profile as the interval time between each 

injection becomes shorter (part A of Figure 8), or the pulse 
injection profile (part B of Figure 8), in a Gaussian shape, 
as it becomes larger.

Figure 8. Concentration Profile for Decaying Species (1000 Element Mesh - Inlet BC: Equation 7; Outlet BC: Equation 16).

The code is able to simulate 2-D configurations. 
including flow predictions when the velocity profiles are 
steady but dependent on the spatial coordinates, such that 

( )yuu xx =  and ( )xuu yy = . For example, if a steady 
parabolic profile is considered for the longitudinal velocity 

(equation 42), for the same other parameters as those of 
Figure 4, Figure 9 is obtained:

205 yy.ux −=

Figure 9. Concentration Profile for Decaying Species – Parabolic Longitudinal Velocity (700 Element Mesh - Inlet BC: Equation 8; Outlet 
BC: Equation 16)

(42)
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Figure 9 depicts the evolution of the species cloud 
deformed due to the existence of lateral components of 
velocity and diffusion. But the mass injection occurs 
uniformly at the inlet cross section area, a condition most 
found in chemical reactors or in small channels. 

So, in order to demonstrate the code ability to simulate 
conditions more likely to happen in large watercourses, we 
modify the inlet BC as follows. Considering that in 2-D 
analysis the inlet may also be dependent on y (equation 8) 
we are able to obtain results:

a) for centered point source injection: Figure 10;
b) for right margin (left bottom) point source injection: 

Figure 11;
c) for left margin (upper left) point source injection: Figure 

12.
Figures 10 and 11 are obtained from the same 

parameters as those for Figure 9 and in Figure 12 the lateral 
component of the velocity is set from the upper margin 
downwards, assuming the negative of Figure 9 value for 
this same component.

Figure 10. Concentration Profile for Decaying Species – Left centerline injection (1250 Element Mesh - Inlet BC: Equation 8; Outlet BC: 
Equation 16)

Figure 11. Concentration Profile for Decaying Species – Bottom left injection (1250 Element Mesh - Inlet BC: Equation 8; Outlet BC: 
Equation 16)
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Figure 12. Concentration Profile for Decaying Species – Upper left injection (1250 Element Mesh - Inlet BC: Equation 8; Outlet BC: Equation 
16)

CONCLUSION

In transient reactive flow problems subjected to 
unsteady BC the main issue is to achieve physical 
coherence in constructing the model to be solved. Some 
analytical solutions of this class of problems are found 
in the literature which, though being parabolic, usually 
assume that the outlet BC is in the form of a constant 
concentration or of a given concentration gradient.

As indicated by Piasecki and Katopodes (1997), 
simulations presented in this work confirmed that 
oscillatory inlet conditions result in time-dependent 
concentrations at the outlet, that cannot be accounted for 
by EBCs and NBCs. Also, NBCs may not represent the 
total equilibrium flux at the outlet (Yu and Singh, 1995), 
leading to physically incomplete models that could perform 
imprecise profile estimation.

A new procedure was then proposed, by which a 
material derivative is considered as the outlet BC. Our 
results show that these BCs provide a better picture of the 
process, updating the outlet equilibrium concentration.

A MATLAB code was developed with a numerical 
scheme subjected to prescribed stability restrictions 
(equations 36), using a semi-implicit GFEM scheme. Good 
agreement was obtained between simulations and existing 
analytical solutions, as can be seen on Figures 2 to 4 and 
Table 1. Also shown in Table 1 and Figure 5 are comparisons 
of numerical solutions using EBC, homogeneous NBC 
and the proposed MDBC, evidencing the positive aspects 
of applying the material derivative as the outlet BC. 2-D 
simulations were then performed in rectangular channels, 
assuming fully developed velocity profiles.

The code features a certain flexibility for automatically 
generating regular triangular and quadrangular meshes 
that could be selected for the applicable case. There was 
also the option of changing the number of GQ points to 
evaluate the model integrals, known to slightly affect the 
computational time.

Several simulations were run on an i5 CPU notebook, 
limited to a maximum of 2000 element meshes, all 
requiring a few minutes to run, showing that even more 
refined meshes could be used while keeping CPU times 
within acceptable limits. Our tests indicate that the 
numerical scheme is sufficiently tested to be implemented 
in codes written in lower level languages.

The use of FEM in reactive flow simulations was 
reinforced and, finally, a further improvement could be 
made in the code by future work, in the sense of adopting 
more elaborated FEM formulations, involving a SUPG 
or other more advanced stabilization technique, so as to 
combine the advantages of more stable schemes with the 
proposed adoption of the MDBC.

NOMENCLATURE

C	 section-averaged species concentration
Cappr	 approximate concentration given by the FEM 
	 formulation
Cinj	 injected averaged concentration
Dx, Dy 	 averaged diffusion coefficient in the direction of 
	 the respective coordinate axis
Da	 Damköhler Number
k	 reaction constant or pollutant decay constant
m, na	 rbitrary integers 1, 2, 3 …
NN	 number of nodes in the finite element mesh
Pe	 Péclet Number
r	 reaction term
Sj(xi)	 shape function
t	 time

iu 	 averaged flow velocity along coordinate ix
w	 arbitrary weight function

ix 	 coordinate in an arbitrary direction i
Γ	 control surface
Γs	 arbitrary boundary on surface s



Brazilian Journal of Chemical Engineering

A. G. de Oliveira Filho, N. Mangiavacchi and J. Pontes1148

τ	 arbitrary time between injections
Ω	 control volume
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