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Abstract - Unplanned and abnormal events may have a significant impact on the feasibility of plans and 
schedules which requires to repair them ‘on-the-fly’ to guarantee due date compliance of orders-in-progress 
and negotiating delivery conditions for new orders. In this work, a repair-based rescheduling approach based 
on the integration of intensive simulations with logical and relational reinforcement learning is proposed. 
Based on a relational (deictic) representation of schedule states, a number of repair operators have been 
designed to guide the search towards a goal state. The knowledge generated via simulation is encoded in a 
relational regression tree for the Q-value function defining the utility of applying a given repair operator at a 
given schedule state. A prototype implementation in Prolog language is discussed using a representative 
example of three batch extruders processing orders for four different products. The learning curve for the 
problem of inserting a new order vividly illustrates the advantages of logical and relational learning in 
rescheduling. 
Keywords: Automated planning; Artificial intelligence; Batch plants; Reinforcement learning; Relational 
modeling; Rescheduling. 

 
 
 

INTRODUCTION 
 

Most of the existing works addressing schedule 
optimization in batch plants are based on the 
assumptions of complete information and a static and 
fully deterministic environment (Méndez et al., 
2006). A pervasive assumption in the deterministic 
scheduling field has been that the optimized 
schedule, once released to the production floor, can 
be executed as planned. However, a schedule is 
typically subject to the intrinsic variability of a batch 
process environment where difficult-to-predict 
events occur as soon as it is released for execution: 
disruptions always occur and elaborated plans 
quickly become obsolete (Henning and Cerda, 2000). 

Examples of such disruptions include equipment 
failures, quality tests demanding reprocessing 
operations, arrival of rush orders and delays in 
material inputs from previous operations. The 
inability of most scheduling literature to address the 
general issue of uncertainty is often cited as a major 
reason for the lack of influence of current research in 
the field on industrial practice (Henning, 2009). 

Continuous adaptation and repair of schedules 
while being executed is thus essential for efficient 
and robust operation. Rescheduling (or reactive 
scheduling) is the knowledge-intensive activity of 
updating an existing schedule in response to 
disruptions or other changes (Vieira et al, 2003). 
Basically, the options available are (1) simply shifting 
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forwards all subsequent activities, (2) rescheduling 
only a subset of affected operations, or (3) generating 
an entirely new schedule for all of the remaining tasks. 
The first method is computationally inexpensive but 
requires plenty of slack and can lead to poor resource 
utilization (Herroelen and Leus, 2004). Generating a 
schedule from scratch maximizes schedule quality, but 
typically requires a high computational effort and may 
impose a huge number of schedule modifications 
(Zhu, et al., 2005). The option of partial rescheduling 
represents a sort of tradeoff: it aims at the 
identification of a schedule that provides the optimal 
combination of schedule efficiency and schedule 
stability at reasonable computational cost, bearing in 
mind that rescheduling decisions are taken without too 
much deliberation on the shop-floor. 

Real-time rescheduling is a key issue in 
disruption management. For example, in refinery 
supply chains, disruptions such as crude arrival delay 
could make the current schedule infeasible and 
necessitate rescheduling of operations. Existing 
approaches for generating (near) optimal schedules 
for a real-world refinery typically require 
significantly large amounts of time. This is 
undesirable when rectification decisions need to be 
made in real-time. Furthermore, when the problem 
data given to the existing scheduling approaches are 
changed, as is the case during a disruption 
management scenario, rescheduling may follow 
different solution paths and result in substantially 
different schedules. A heuristic rescheduling strategy 
that overcomes both these shortcomings has been 
proposed by Adhitya et al. (2007). The key insight 
exploited in their approach is that any schedule can 
be broken down into operation blocks. Rescheduling 
is thus performed by modifying such blocks in the 
original schedule using simple heuristics to generate 
a new schedule that is feasible for the new supply 
chain situation. It is worth noting that rescheduling 
strategy avoids major operational changes by 
preserving blocks in the original schedule. The trade-
off between performance and stability of the repaired 
schedule is a very important issue to be addressed.   

Fast rescheduling in real-time is mandatory to 
account for unplanned and abnormal events by 
generating satisfying schedules rather than optimal 
ones (Vieira et al, 2003). Reactivity and responsiveness 
is a key issue in any rescheduling strategy which makes 
the capability of generating and representing 
knowledge about heuristics critical for repair-based 
scheduling using case-based reasoning (Miyashita, 
2000). One such example is the CABINS framework 
for case-based rescheduling proposed by Miyashita and 
Sycara (1994) that heavily resorts to human experts. 

Based on domain-dependent past experience or know-
how, evaluation of a repaired schedule in CABINS is 
done not only from its local and direct effects of repair 
activities in the resulting schedule, but also on the 
rather global and indirect influences in the final 
repaired schedule.  Along similar ideas, another 
important work in the field of the so-called intelligent 
scheduling techniques are contributions by Zweben et 
al. (1994).  Also, Zhang and Dietterich (1995) applied 
reinforcement learning to the scheduling problem and 
succeeded in resorting to repair-based rescheduling in 
NASA’s space shuttle payload processing problem. 
Since the objective function in this type of project-
oriented rescheduling problems is primarily minimizing 
makespan, the search for an optimal sequence of repair 
operators can be conveniently pruned (i.e., the search 
length is only 20-90 steps). 

Schedule repairs in CABINS are based on 
expert’s predictive capability of global effects of 
intermediate rescheduling activities. This is a severe 
limitation of using case-based reasoning in bath plant 
rescheduling.  To overcome the issue of non-existing 
human experts for domain-specific scheduling 
problems, integrating intensive simulations with 
case-based reinforcement learning has been proposed 
by Miyashita (2000).  The tricky issue with this 
approach is that resorting to a feature-based 
representation of schedule state is very inefficient 
and learning is very ineffective and generalization to 
unseen states is highly unreliable. Futhermore, repair 
operators are difficult to define in a propositional 
setting. In constrast, humans can succeed in 
rescheduling thousands of tasks and resources by 
increasingly learning a repair strategy using a natural 
abstraction of a schedule: a number of objects (tasks 
and resources) with attributes and relations 
(precedence, synchronization, etc.) among them. 

Thus, for automated learning of domain-specific 
knowledge using simulation it is mandatory to 
represent schedule states and repair operators using a 
relational abstraction that highlights the very nature 
of interacting objects and their relationships.  In this 
work, a novel rescheduling approach that combines a 
relational (deictic) representation of schedule states 
and repair operators with relational reinforcement 
learning is proposed. To learn a near-optimal policy 
using simulations, a relational reinforcement learning 
approach (Driessens, 2004; Croonenborghs, 2009) 
for interactive scheduling repair, bearing in mind 
different goals and scenarios, is proposed. To this 
aim, domain-specific heuristics for scheduling repair 
are developed using two general-purpose algorithms 
already available: TILDE and RRL (Džeroski et al, 
2001; De Raedt, 2008). 
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REPAIR-BASED (RE)SCHEDULING 
 

Fig. 1 depicts the repair-based optimization 
architecture where search control knowledge about 
repair operator selection is acquired through 
reinforcements using a schedule state simulator.  In 
the simulation environment, an instance of the 
schedule is interactively modified by the learning 
agent using a set of repair operators until a goal is 
achieved or the impossibility of repairing the 
schedule is accepted.  In each interaction, the 
learning agent receives information from the 
schedule situation or state s and then selects a repair 
operator to be applied to the current schedule, 
resulting in a new one.  The resulting quality of the 
schedule after the repair operator has been applied is 
evaluated using the simulation environment via an 
objective or reward function r(s). The learning agent 
then updates its action-value function Q(s,a) that 
estimates the value or utility of resorting to the 
chosen repair operator a in a given schedule state s. 
Such an update is made using a reinforcement 
learning algorithm (Sutton and Barto, 1998) such as 
the well-known Q-learning rule. By accumulating 
enough experiences over many simulated interactions, 
the agent is able to learn an optimal policy for 
choosing the best repair operator at each schedule 
state. The main issue for learning is then how 
schedule states and actions must be represented for 
knowledge acquisition and iterative revision. 
 

 
 

Figure 1: Knowledge acquisition for schedule repair 
using reinforcement learning. 

 
For repairing a schedule, the agent is given a goal 

function: goal S → {true, false} defining which 

states in the schedule are target states, e.g., states in 
which total tardiness is less than or equal to 1 
working day. The objective of any schedule repair 
task can be phrased as:  given a starting state for the 
schedule 1s , find a sequence of repair operators 

1 2 na ,a ,...,a   with ia ∈A such that: 
 

1 1 ngoal( (... (s ,a )...,a )) trueδ δ =                                (1) 
 
where δ  is the transition function, which is unknown 
to the learning agent. 

Usually a precondition function pre S × A → 
{true, false} is used to specify which subset of repair 
operators can be applied at each state of the schedule 
to account for resource capabilities and precedence 
constraints (e.g., product recipes). This puts the 
following extra constraints on the action sequence: 
 

i 1 1 na : pre( (... (s ,a )...,a )) true∀ δ δ =               (2) 
 

Also, a reward function is used to approximate a 
repair policy from reinforcements based on 
simulations (Martínez, 1999): 
 

t
t t t t t

1 goal(s ) false and
r r(s ,a ) goal( (s ,a )) true

0 otherwise

=⎧⎪= = δ =⎨
⎪⎩

               (3) 

 
A reward is thus only given when a repaired 

schedule is reached. This reward function is unknown 
to the learning agent, as it depends on the unknown 
transition function δ . Based on the reward function 
and simulation, the optimal policy: i ia (s )∗= π  can be 
approximated using reinforcement learning algorithms 
(Sutton and Barto, 1998; Martínez, 1999).  The 
optimal policy ∗π  can be used to compute the shortest 
action-sequence to reach a repaired scheduled, so this 
optimal policy, or even an approximation thereof, can 
be used to improve responsiveness on the shop-floor to 
handle unplanned events and meaningful disturbances 
on the shop-floor. 

Most research works on reinforcement learning 
focus on the computation of the optimal utility of 
states (i.e., the function V∗  or related values) to find 
the optimal policy ∗π . Once this function V∗  is 
known, it is easy to translate it into an optimal 
policy. The optimal action in a state s is the action 
that leads to the state with the highest V*–value:  
 

a(s) arg max [r(s,a) V ( (s,a))]∗ ∗π = + γ δ                 (4) 
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where 0 1≤ γ <   is a discount factor. As can be seen 
in equation 4, this translation requires an explicit 
model of the scheduling world through the use of the 
state transition function δ  (and the reward function 
r). In rescheduling applications, building such a 
model of the problem is at least as hard as finding an 
optimal policy, so learning V∗   is not sufficient to 
learn the optimal repair policy. Therefore, instead of 
learning the utility of states V(s), an agent can learn 
directly a different value Q, which quantifies the 
utility of an action a in a given state s when 
following the optimal policy ∗π  is used:  
 
Q(s,a) r(s,a) V ( (s,a))∗= + γ δ                        (5) 
 

An action in a given state will be optimal if the 
action has the highest Q-value in that state. A 
simulation-based algorithm to learn the optimal 
policy is Q-learning (Watkins, 1989; Sutton and 
Barto, 1998). Q-learning is a simple algorithm that 
updates these Q-values incrementally while the 
reinforcement learning agent interacts with a real or 
simulated world. Fig. 2 shows a high level 
description of the algorithm. The value update rule in 
Q-learning is very simple: 
 

bQ(s,a) r  max Q(s',b)← + γ                          (6) 
 
where s’ is the resulting state of using action a at state s. 

The key issue in applying reinforcement learning 
in rescheduling is how a schedule state must be best 
represented so that the repair policy can be applied to 
unseen schedule states more effectively. Miyashita 
(2000) proposed to represent states and actions in a 
propositional format. This corresponds to describing 
each state (and possibly each action as well) as a 

feature vector with an attribute for some distinctive 
properties of the schedule state. The features used 
are the same as the ones used in CABINS, consisting 
of local and global features. Global features 
represent information related to the entire schedule, 
such as total tardiness and total work-in-process in 
the schedule. Local features are variables that are 
descriptive of the local schedule in the neighborhood 
of a given task, milestone or constraint conflict.  
Propositional representations are not adequate for 
learning in open planning worlds defined by tasks, 
their characteristic attributes and their relations to 
other tasks and resources.  

A relational (deictic) representation that deals 
with the varying number of tasks in the planning 
world by defining a focal point for referencing 
objects in the schedule is proposed here as a much 
powerful alternative. To characterize transitions in 
the schedule state due to repair actions, a deictic 
representation resorts to constructs such as: 
 The first task in the new order. 
 The next task to be processed in the reactor.  
 Tasks related to the last order.  

In a deictic representation, both scheduling states 
and repair operators (actions) are defined in relation 
to a given focal point (i.e., a task) as is shown in Fig. 3. 
These local repair operators move the position of a 
task alone; however, due to the ripple effects caused 
by tight resource-sharing constraints, other tasks may 
need to be moved as well, which is not desirable. 
Whenever the goal-state for the schedule cannot be 
achieved using primitive repair operators, more 
elaborate macro-operators can be used to implement 
a combination of basic repair operators such as task-
swapping, batch-split or batch-merge until a goal 
state in the repaired schedule (e.g., order insertion 
without delaying other orders) is achieved.  

 
 

for each  s ∈S  and  a∈A  do 
initialize table entries Q(s, a)  

end for  
generate a starting state s 
repeat  

select an action a and execute it 
receive an immediate reward r=r(s, a) 
observe the new state s’ 
update the table entry for Q(s, a) as follows: 

bQ(s,a) r  max Q(s',b)← + γ  
s← s’ 

until no more learning episodes 

Figure 2: Basic Q-learning algorithm. 
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Figure 3: Deictic representations of repair operators. 

 
To gain the most from a deictic representation of 

states and actions in the rescheduling problem, 
resorting to a relational interpretation of such 
relationships, as used in the “learning from 
interpretations” setting (De Raedt and Džeroski, 
1994; Blockeel et al., 1999), is proposed. In this 
notation, each (state, action) pair will be represented 
as a set of relational facts.  
 
 

RELATIONAL REINFORCEMENT 
LEARNING (RRL) 

 
RRL algorithms are concerned with reinforcement 

learning in domains that exhibit structural properties 
and in which different kinds of related objects such as 
tasks and resources exist (Džeroski et al, 2001; De 
Raedt, 2008; van Otterlo, 2008). These kinds of 
domains are usually characterized by a very large and 
possibly unbounded number of different states and 
actions, as is the case with planning and scheduling 
worlds. In this kind of environment, most traditional 
reinforcement learning techniques break down. One 
reason why propositional RL algorithms fail is that 
they store the learned Q-values explicitly in a state-
action table, with one value for each possible 
combination of states and actions. Rather than using an 
explicit state−action Q-table, RRL stores the Q-values 
in a logical regression tree (Blockeel and De Raedt, 
1998). The relational version of the Q-learning 
algorithm is shown in Fig. 4. The computational 
implementation of the RRL algorithm needs to be able 
to deal successfully with: 
 the relational format for (states, actions)-pairs in 

which the examples are represented; 
 incremental data: the learner is given a continuous

stream of (state, action, Q-value)-triplets and has to 
predict Q-values for (state, action)-pairs during 
learning, not after all examples have been processed; 
 a moving target: since the Q-values will gradually 

converge to the correct values, the function being 
learned may not be stable during simulation-based 
learning. 

In RRL, states are represented as sets of first-
order logical facts, and the learning algorithm can 
only see one state at a time. Actions are also 
represented relationally as predicates describing the 
action as a relationship between one or more 
variables. Because of the relational representation of 
states and actions and the inductive logic 
programming component of the RRL algorithm, 
there must exist some body of background 
knowledge which is generally true for the entire 
domain to facilate induction. After the Q-function 
hypothesis has been initialized, the RRL algorithm 
starts running learning episodes like in the standard 
Q-learning algorithm of Fig. 2 (Sutton and Barto, 
1998; Džeroski et al, 2001). During each learning 
episode, all the encountered states and the selected 
actions are stored, together with the rewards related 
to each encountered (state, action)-pair. At the end of 
each episode, when the system encounters a goal 
state, it uses reward back-propagation and the current 
Q-function approximation to compute and update the 
corresponding Q-value approximation for each 
encountered (state, action)-pair in the episode. The 
algorithm then presents the set of (state, action, Q-
value) triplets to a relational regression engine, 
which will use this set of Examples to update the 
current regression tree of the Q-function, and then 
the algorithm continues executing the next learning 
episode. 
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Initialize the Q-function hypothesis 0Q̂  

e ← 0 
repeat 

Examples ← ∅ 
Generate a starting schedule state s0 
i ←  0 

repeat 
choose a repair operator ai at si  using a policy (e.g., ε-greedy) based 
on the current hypothesis eQ̂  implement operator ai, observe ri and 
the resulting schedule si+1 
i ←  i +1 

until schedule state si  is a goal state 
for j =i -1 to 0 do 

generate example j j jˆx (s ,a ,q )= , where j j a e j 1
ˆq̂ r max Q (s ,a)+← + γ  

Examples ← Examples ∪ {x} 
end for 
Update eQ̂ to e 1Q̂ + using Examples and a relational regression 
algorithm (e.g. TG in Fig. 4) 

until no more learning episodes 

Figure 4: A RRL algorithm for learning to repair schedules through intensive simulations. 
 

Several incremental relational regression 
techniques have been developed that meet the above 
requirements for RRL implementation: an incremental 
relational tree learner TG (Driessens et al., 2001), an 
instance based learner (Driessens and Ramon, 2003), a 
kernel-based method (Gärtner et al., 2003; Driessens et 
al., 2006) and a combination of a decision tree learner 
with an instance-based learner (Driessens and 
Džeroski, 2004).  Of these algorithms, the TG is the 
most popular one, mainly because it is relatively easy 
to specify background knowledge in the form of a 
language bias. In the other methods, it is necessary to 
specify a distance function between modeled objects 
(Gärtner, 2008) or a kernel function is needed between 
(state, action)-pairs (Driessens et al., 2006).   

The TG algorithm described in Fig. 5 is a 
relational regression algorithm that has been 
developed for policy representation in logical and 
relational learning (Driessens, 2004; De Raedt, 2008, 
van Otterlo, 2008). This incremental first order 
regression tree algorithm is used here for 
accumulating simulated experience in a compact 
representation of a repair-based policy based on Q-
values for all repair operators available at each state s. 
Fig. 6 gives a small example of a first order 
regression tree for the Q-value function in a task 
(re)scheduling world trained using simulations to 
react to events and disturbances. A first-order 
decision tree can be easily translated into a Prolog 
decision list. 

 
//initialize by creating a tree with a single leaf with empty statistics 
 

for each learning example that becomes available do 
sort the example down the tree using the tests of the internal  
nodes until it reaches a leaf  
update the Q-value in the leaf according to the new example  

if the statistics in the leaf indicate that a new split is needed  
then generate an internal node using the indicated test 

grow 2 new leaves with empty Q statistics 
end if 

end for 
 

Figure 5: TG algorithm for relational tree induction. 
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Figure 6:   A simple example of a relational regression tree 
 

A first-order decision tree is a binary tree in 
which every internal node contains a test that is a 
conjunction of first-order literals. Also, every leaf 
(terminal node) of the tree contains a prediction 
(nominal for classification trees and real-valued for 
regression trees). Prediction with first-order trees is 
similar to prediction with propositional decision 
trees: every new instance is sorted down the tree. If 
the conjunction in a given node succeeds (fails) for 
that instance, it is propagated to the left (right) 
subtree. Once the instance arrives at a leaf node, the 
value of that leaf node is used as the prediction for 
that instance. TG stores the current tree together 
with statistics for all tests that can be used to decide 
how to split each leaf further. Every time an 
example (triplet) is inserted, it is sorted down the 
tree according to the tests in the internal nodes and, 
in the resulting leaf, the statistics of the tests are 
updated. 
 

EXAMPLE 
 

A small example problem proposed by Musier 
and Evans (1989) is considered to illustrate the use 
of repair operators for batch plant rescheduling. The 
plant is made up of 3 semicontinuous extruders that 

process customer orders for four products. 
Processing rates and cleanout requirements are 
detailed in Table 1. Order attributes corespond to 
product type, due date and size. In this section, this 
example is used to illustrate concepts like relational 
definition of schedule states and repair operators, 
global and focal (local) variables used in the 
relational model, and the overall process of repairing 
a schedule bearing in mind minimum increase of the 
total tardiness when a new order needs to be inserted. 
In learning to insert an order the situation before the 
sequence of repair operations is applied is described 
by: i) arrival of an order with given attributes that 
should be inserted in a randomly generated schedule 
state, and ii) the arriving order attributes are also 
randomly chosen. Variables used to represent 
scheduled states and repair operators in the relational 
format are given in Table 2.  

The prototype application has been implemented 
in Visual Basic.NET 2005 Development Framework 
2.0 SP2 and SWI Prolog 5.6.61 running under 
Windows Vista. The TILDE and RRL modules 
from The ACE Datamining System developed by 
the Machine Learning group at the University of 
Leuven have also been used. The overall architecture 
of the prototype is shown in Fig. 7.  
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Table 1: A small example problem formulation (Musier and Evans, 1989) 
 

Processing rate (lb/day) 
 A B C D 

Extruder #0 100  200 --- --- 
Extruder #1 150 --- 150 300 
Extruder #2 100 150 100 200 

 

Cleanout requirements (days/cleanout) 
 Next operation 

Previous operation A B C D 
A 0 0 0 2 
B 1 0 1 1 
C 0 1 0 0 
D 0 2 0 0 

 
Table 2: Global and focal variables in the prototype. 

 
Name Description 
TotalTardiness [h]       Global variable. Sum over all orders in the schedule of each order tardiness. 
MaxTardiness [h]            Global variable. Tardiness of the order with the maximum due date deviation. 
AvgTardiness [h]           Global variable. Total Tardiness divided the number of orders in the schedule. 
TotalWIP [lb]                     Global variable. Total size of all the orders in the schedule. 

TardinessRatio Global variable. Sum over all orders in the schedule of the ration between tardiness of 
the order and its lead time. 

InventoryRatio Global variable. Sum over all orders in the schedule of the ratio between processing 
time of the order and its lead time. 

Ext0Load [%]                    Global variable. Utilization ratio for extruder # 0 in the schedule. 
Ext1Load [%]                    Global variable. Utilization ratio for extruder # 1 in the schedule. 
Ext2Load [%]                    Global variable. Utilization ratio for extruder # 2 in the schedule. 
TotalCleanoutTime Global variable. Time spent in cleanout operations. 
FocalTardiness [h]        Focal variable.  Tardiness associated to the focal task (order). 
ProductType Focal variable.  Product associated to the order of the focal task(order). 

FocalRSwappability Focal variable.  Binary variable to indicate if it is feasible to swap the focal task with 
one to the right in the same extruder. 

FocalLSwappability Focal variable.  Binary variable to indicate if it is feasible to swap the focal task with 
one to the left in the same extruder. 

FocalAltRSwappability Focal variable.  Binary variable to indicate if it is feasible to swap the focal task with 
one to the right in a different extruder 

FocalAltLSwappability Focal variable.  Binary variable to indicate if it is feasible to swap the focal task with 
one to the left in a different extruder 
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Figure 7: SWI Prolog engine for implementing RRL in repair-based (re)scheduling. 
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At the beginning of each training episode, the 
prototype interface asks the user to generate a given 
number of orders with their corresponding attributes 
bounded over allowable ranges defined interactively. 
To generate the initial schedule state s0, these orders 
are randomly assigned to one of the three available 
extruders. Later on, the attributes of the order to be 
inserted -without increasing the total tardiness in the 
initial schedule- are generated and it is assigned 
arbitrarily to one of the extruders. The learning 
episode progresses by applying a sequence of repair 
operators until the goal state is reached. At the end of 
the episode, examples containing the schedule states 
found during it are archived in the knowledge base 
“Examples” along with the update made by the 
induction procedure of the relational regression tree, 
which resorts to the RRTL (Relational Regression 
Tree Learner) component of the prototype.  This 
regression tree contains (in relational format) the 
repair policy learned from “Examples” from the 
current and previous episodes. Background 
knowledge, which is valid all over all the domain, is 
used by the RRTL component (regression tree) to 
answer queries regarding the Q-value of a given 
state-action pair or the best repair operator for a 
given schedule state.  These queries are actually 
processed by the Prolog wrappers 
ConsultBestAction.exe and ConsultQ.exe, which 
made up a transparent interface between the .NET 
agent and the relational repair policy.  Also, the 
RRTL module includes the functionality for 
discretizing continuous variables such as Total 
Tardiness and Average Tardiness in non-uniform 
real-valued intervals, so as to make the generated 
rules useful for Prolog wrappers. In the .NET 
application, different classes are used to model 
Agent, Environment, Actions and Policy using the 

files Policy.pl, ActState.pl, ActStateAction.pl and 
BackgroundKnowledge.pl. Finally, the .NET agent is 
fully equipped to handle situations where the agent 
cannot be inserted in the initial schedule. To this 
aim, the agent may modify order attributes such as 
date or size so as to insert the order. The prototype 
allows the user to interactively revise and 
accept/reject changes made to order attributes to 
insert it in the initial schedule without increasing the 
Total Tardiness of the resulting schedule. 

To illustrate the advantages of relational 
reinforcement learning in order insertion, we 
consider the specific situation where there exist 10 
orders already scheduled in the plant and a new order 
#11 must be inserted so that the Total Tardiness (TT) 
in the schedule is minimized. Example data for 
scheduled orders (#1 through #10) and the new order 
(#11) in a given episode are shown in Table 3. In 
each episode, a random schedule state for orders #1 
through #10 is generated and a random insertion 
attempted for the new order (whose attributes are 
also randomly chosen), which in turn serves as the 
focal point for defining repair operators. The goal 
state for the repaired schedule is stated in terms of 
the TT: a maximum of 5% increase. Background 
knowledge such as “the number of orders scheduled 
for extruder #3 is larger than the number for extruder 
#2” is provided to speed up learning in the relational 
domain. In Fig. 8, the learning curve for the new 
order insertion rescheduling event is shown. As can 
be seen, learning occurs rather quickly in such way 
that, after 60 episodes, a near-optimal repair policy is 
obtained. As shown in Fig. 9, the number of repair 
steps required to reach the goal state is drastically 
reduced after a few training episodes. After 60 
training episodes, only 8 repair steps are required, on 
average, to insert the 11th order.  

 
 

  Table 3: Example data for the initial orders and the one (# 11) to be inserted. 
 

Order # Product Size [lb] DD [days] 
1 A 300 6 
2 B 300 5 
3 C 700 3 
4 D 100 2 
5 D 700 10 
6 B 600 5 
7 A 400 6 
8 B 500 12 
9 C 700 17 

10 C 300 8 
11 A 150 10 
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Figure 8:  Learning curve for the repair-based order insertion example. 
 

 
 

Figure 9:  Average number of repair steps to reach the goal state as learning progresses. 
 
 

Fig. 10 provides an example of applying the 
optimal sequence of repair operators from the 
schedule in Fig. 10 (a). Before the 11th order has 
been included, the Total Tardiness is 16.42 h. Once 
the arriving order (in white) has been inserted, the 
Total Tardiness has been increased to 27.21 h; 
orange tasks are used to indicate cleaning 
operations.  Based on the learned repair policy, a 
DownLeftSwap operator should applied, which 

gives rise to the schedule in Fig. 10 (b) with a 
TT=31.56 h. Then a BatchSplit repair operator is 
applied which does not change TT. Then an 
UpRightJump repair operator is used, which lowers 
the TT to 21.86 h. Finally, by means of a 
DownRightSwap the goal state is reached with a 
Total Tardiness of 14.99 h., which is even lower 
than the TT in the initial schedule before the 11th 
order was inserted.  
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Figure 10 (a): Initial schedule for the 
example: TT= 27.21 h. 

Figure 10 (b): Resulting schedule after a 
DownLeftSwap. TT=31.56 h. 

 

 

 

 
Figure 10 (c): Resulting schedule after a 
BatchSplit. TT=31.56 h. 

Figure 10 (d): Resulting schedule after a 
UpRightJump. TT=21.86 h. 

 

 
Figure 10 (e): Resulting schedule after a 
DownRightSwap. TT=14.99 h. 

 
 
In the foregoing discussion, the rescheduling 

objective was the minimization of the total tardiness 
(TT) impact of inserting the incoming order without 
any account for preserving the structure of the existing 
schedule. Consider next a trade-off between tardiness 
increase and the number of changes made to the 
schedule required by the arriving order. To this end, 
the reward function for rescheduling is defined as the 
ratio between tardiness reduction and the number of 
steps required to modify the schedule by following a 
given repair strategy.  As an illustrative example, the 
initial schedule for orders #1 through # 13 shown in 

Table 4 is considered. An arriving order (#14) must be 
inserted and a new schedule generated. In Table 4, for 
each extruder, orders are ordered in the same sequence 
as they were positioned in the initial schedule. The 
Total Tardiness of this initial schedule is 48.31 hs. 
The order # 14 that must be inserted has a small size 
(84 lbs) for product type A, with a very near due date 
(1 day).  To assess the qualiy of the rescheduling 
policy learned using RRL, insertion of order #14 into 
the existing schedule (Table 4) is compared with 
schedules corresponding to repair heuristics called 1-
optimal, 2-optimal, 3-optimal and 4-optimal. 
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Table 4: Example data for balancing tardiness with changes to the initial schedule 
 

Order # Product type Size (lbs) Due Date (days) Extruder # 
8 B 837 16 0 
6 A 888 8 0 
4 B 380 5 0 

11 B 340 8 0 
2 D 656 18 1 

10 C 292 9 1 
3 C 554 9 1 

13 D 227 16 1 
5 D 800 14 1 
9 B 580 10 2 
1 D 453 14 2 
7 C 943 11 2 

12 B 373 4 2 
 

 
Fig. 11 (b) shows the 1-optimal schedule obtained 

from inserting order #14 following an initial 
insertion (see Fig. 11(a)). Note that order #14 is 
inserted so as to disturb the least the orders already 
scheduled. The corresponding reward function for 
the 1-optimal insertion is -1.09, resulting from an 
increase in the TT from 55.85 hs to 59.12 hs and 
requiring three repair steps. As a result, order # 14 is 
scheduled in extruder #1 without altering the 
previously scheduled order in this equipment.  

To lower the increase in the TT due to order #14 
insertion, the initial schedule in Table 4 must be 
altered to a certain degree. The heuristic 2-optimal is 
concerned with inserting order #14 in-between 
previously scheduled orders so as to find the 
insertion that gives the lowest increase in TT, but an 
increase in the number of insertion trials is required. 
Fig. 12 (b) shows the 2-optimal insertion from the 
initial schedule in Fig. 12 (a) that includes order #14. 
As shown, the TT is reduced from the initial 49.99 hs 
to 49.66 using the 2-optimal heuristics. The 
drawback is that 15 steps are needed to find the 
solution and all orders that were scheduled in

extruder #1 are delayed as a result. 
A much more aggressive strategy to reduce the TT 

of the schedule resulting from arbitrarily inserting 
order #14 is to apply the 2-optimal rescheduling 
heuristic to all orders so as to produce a major 
overhaul of the initial schedule. The very idea of the 3-
optimal rescheduling heuristic is finding the best 
positions for orders #1 through #14 in the schedule by 
applying a sequence of rescheduling changes based on 
exhaustively moving orders one at a time. As can be 
seeen in Fig. 13 (b), the TT of the schedule is reduced 
from 55.69 hs to 14.86 hs by the 3-optimal heuristic. 
However, this significant reduction in the schedule’s 
TT is the result of many changes to the initial schedule 
due to the more than 185 repair steps made.      

In the 4-optimal heuristic, for each possible 
possible insertion in the initial schedule, the focal 
order (# 14) is swapped with every other order to 
find a final schedule that cannot be improved by 
merely swapping any pair of orders. As a result, the 
TT of the final schedule is reduced from 59.12 hs to 
8.57 but the initial schedule has been dramatically 
altered, as can be seen in Fig. 14 (b). 

 
 

  
(a) (b) 

Figure 11: 1-Optimal repair heuristic which gives rise to a reward of -1.09 after schedule repair. (a) Initial 
Schedule after random insertion of order # 14 with TT=55.85; (b) Final (repaired) schedule with TT=59.12. 
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(a)  (b) 

Figure 12: 2-Optimal repair heuristic which gives rise to a reward of 0.019 after schedule repair. (a) Initial 
Schedule after random insertion of order # 14 with TT=49.99; (b) Final (repaired) schedule with TT=49.69. 

 

 
(a) (b) 

Figure 13: 3-Optimal repair heuristic which gives rise to a reward of 0.22 after schedule repair. (a) Initial 
Schedule after random insertion of order # 14 with TT=55.69; (b) Final (repaired) schedule with TT=14.86. 
  

 
(a) (b) 

Figure 14: 4-Optimal repair heuristic which gives rise to a reward of 0.28 after schedule repair. (a) Initial
Schedule after random insertion of order # 14 with TT=59.12; (b) Final (repaired) schedule with TT=8.57. 
 

 
In Fig. 15, order #14 insertion has been carried 

out using the rescheduling policy, resulting in the 
proposed RRL algorithm after 100 episodes with a 
learning rate α=0.1, a discount factor of γ=0.85 and 
softmax exploration. After only 7 repair operations, 
the TT has been reduced from 55.69 hs to 28.12 hs. 
Thus, the rescheduling policy not only succesfully 
inserts order #14, but also significantly reduces the 

TT without too many changes to the original 
schedule. It is worth noting that order insertion has 
been achieved by merging the small order #14 with 
order #6. Finally, in Fig. 16 a comparison is made of 
the different scheduling strategies using the chosen 
reward function, which highlights the advantage of 
simulation-based learning of a rescheduling policy 
using RRL.   
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(a) (b) 

Figure 15:  Rescheduling using the repair policy based on RRL which gives rise to a reward of 3.94 after
schedule repair. (a) Initial Schedule after random insertion of order # 14 with TT=55.69; (b) Final (repaired)
schedule with TT=28.12. 

 
RewardReward

 
Figure 16:  Performance comparison for the RRL-based 
rescheduling policy with differente heuristic rules for repair. 

 
 

CONCLUDING REMARKS 
 

A novel approach for simulation-based 
development of a relational policy for automatic 
repair of plans and schedules using reinforcement 
learning has been proposed. The policy allows 
generation of a sequence of deictic (local) repair 
operators to achieve rescheduling goals to handle 
abnormal and unplanned events such as inserting an 
arriving order with minimum tardiness based on 
relational (deictic) representation of schedule states 
and repair operators. Representing schedule states 
using a relational abstraction is not only efficient to 
profit from, but also potentially a very natural choice 
to mimic the human ability to deal with rescheduling 
problems where relations between objects and focal 
points for defining repair strategies are typically 
used. Moreover, using relational modeling for 
learning from simulated examples is a very 
appealing approach to compile a vast amount of 
knowledge about rescheduling policies, where 

different types of abnormal events (order insertion, 
extruder failure, rush orders, reprocessing needed, 
etc.) can be generated separately and then compiled 
in the relational regression tree for the repair policy, 
regardless of the event used to generate the examples 
(triplets). This is a very appealing advantage of the 
proposed approach since the repair policy can be 
used to handle disruptive events that are even 
different from the ones used to generate the Q-
function. 
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