

 ISSN 0104-6632
Printed in Brazil

www.abeq.org.br/bjche

 Vol. 27, No. 03, pp. 413 - 427, July - September, 2010

*To whom correspondence should be addressed
This is an extended version of the manuscript presented at the PSE 2009 - 10th International Symposium on Process Systems Engineering, 2009,
Salvador, Brazil, and published in Computer Aided Chemical Engineering, vol. 27, p. 1377-1382.

Brazilian Journal
of Chemical
Engineering

LEARNING TO REPAIR PLANS AND
SCHEDULES USING A RELATIONAL

(DEICTIC) REPRESENTATION

J. Palombarini1 and E. Martínez2*

1UTN-Fac. Reg. V. María, Av. Universidad 450, Villa María 5900, Argentina

2INGAR(CONICET-UTN), Fax: +54 342 4553439.Avellaneda 3657,
S3002 GJC, Santa Fe, Argentina.

E-mail: ecmarti@santafe-conicet.gob.ar

(Submitted: December 12, 2009 ; Revised: July 5, 2010 ; Accepted: July 12, 2010)

Abstract - Unplanned and abnormal events may have a significant impact on the feasibility of plans and
schedules which requires to repair them ‘on-the-fly’ to guarantee due date compliance of orders-in-progress
and negotiating delivery conditions for new orders. In this work, a repair-based rescheduling approach based
on the integration of intensive simulations with logical and relational reinforcement learning is proposed.
Based on a relational (deictic) representation of schedule states, a number of repair operators have been
designed to guide the search towards a goal state. The knowledge generated via simulation is encoded in a
relational regression tree for the Q-value function defining the utility of applying a given repair operator at a
given schedule state. A prototype implementation in Prolog language is discussed using a representative
example of three batch extruders processing orders for four different products. The learning curve for the
problem of inserting a new order vividly illustrates the advantages of logical and relational learning in
rescheduling.
Keywords: Automated planning; Artificial intelligence; Batch plants; Reinforcement learning; Relational
modeling; Rescheduling.

INTRODUCTION

Most of the existing works addressing schedule
optimization in batch plants are based on the
assumptions of complete information and a static and
fully deterministic environment (Méndez et al.,
2006). A pervasive assumption in the deterministic
scheduling field has been that the optimized
schedule, once released to the production floor, can
be executed as planned. However, a schedule is
typically subject to the intrinsic variability of a batch
process environment where difficult-to-predict
events occur as soon as it is released for execution:
disruptions always occur and elaborated plans
quickly become obsolete (Henning and Cerda, 2000).

Examples of such disruptions include equipment
failures, quality tests demanding reprocessing
operations, arrival of rush orders and delays in
material inputs from previous operations. The
inability of most scheduling literature to address the
general issue of uncertainty is often cited as a major
reason for the lack of influence of current research in
the field on industrial practice (Henning, 2009).

Continuous adaptation and repair of schedules
while being executed is thus essential for efficient
and robust operation. Rescheduling (or reactive
scheduling) is the knowledge-intensive activity of
updating an existing schedule in response to
disruptions or other changes (Vieira et al, 2003).
Basically, the options available are (1) simply shifting

414 J. Palombarini and E. Martínez

Brazilian Journal of Chemical Engineering

forwards all subsequent activities, (2) rescheduling
only a subset of affected operations, or (3) generating
an entirely new schedule for all of the remaining tasks.
The first method is computationally inexpensive but
requires plenty of slack and can lead to poor resource
utilization (Herroelen and Leus, 2004). Generating a
schedule from scratch maximizes schedule quality, but
typically requires a high computational effort and may
impose a huge number of schedule modifications
(Zhu, et al., 2005). The option of partial rescheduling
represents a sort of tradeoff: it aims at the
identification of a schedule that provides the optimal
combination of schedule efficiency and schedule
stability at reasonable computational cost, bearing in
mind that rescheduling decisions are taken without too
much deliberation on the shop-floor.

Real-time rescheduling is a key issue in
disruption management. For example, in refinery
supply chains, disruptions such as crude arrival delay
could make the current schedule infeasible and
necessitate rescheduling of operations. Existing
approaches for generating (near) optimal schedules
for a real-world refinery typically require
significantly large amounts of time. This is
undesirable when rectification decisions need to be
made in real-time. Furthermore, when the problem
data given to the existing scheduling approaches are
changed, as is the case during a disruption
management scenario, rescheduling may follow
different solution paths and result in substantially
different schedules. A heuristic rescheduling strategy
that overcomes both these shortcomings has been
proposed by Adhitya et al. (2007). The key insight
exploited in their approach is that any schedule can
be broken down into operation blocks. Rescheduling
is thus performed by modifying such blocks in the
original schedule using simple heuristics to generate
a new schedule that is feasible for the new supply
chain situation. It is worth noting that rescheduling
strategy avoids major operational changes by
preserving blocks in the original schedule. The trade-
off between performance and stability of the repaired
schedule is a very important issue to be addressed.

Fast rescheduling in real-time is mandatory to
account for unplanned and abnormal events by
generating satisfying schedules rather than optimal
ones (Vieira et al, 2003). Reactivity and responsiveness
is a key issue in any rescheduling strategy which makes
the capability of generating and representing
knowledge about heuristics critical for repair-based
scheduling using case-based reasoning (Miyashita,
2000). One such example is the CABINS framework
for case-based rescheduling proposed by Miyashita and
Sycara (1994) that heavily resorts to human experts.

Based on domain-dependent past experience or know-
how, evaluation of a repaired schedule in CABINS is
done not only from its local and direct effects of repair
activities in the resulting schedule, but also on the
rather global and indirect influences in the final
repaired schedule. Along similar ideas, another
important work in the field of the so-called intelligent
scheduling techniques are contributions by Zweben et
al. (1994). Also, Zhang and Dietterich (1995) applied
reinforcement learning to the scheduling problem and
succeeded in resorting to repair-based rescheduling in
NASA’s space shuttle payload processing problem.
Since the objective function in this type of project-
oriented rescheduling problems is primarily minimizing
makespan, the search for an optimal sequence of repair
operators can be conveniently pruned (i.e., the search
length is only 20-90 steps).

Schedule repairs in CABINS are based on
expert’s predictive capability of global effects of
intermediate rescheduling activities. This is a severe
limitation of using case-based reasoning in bath plant
rescheduling. To overcome the issue of non-existing
human experts for domain-specific scheduling
problems, integrating intensive simulations with
case-based reinforcement learning has been proposed
by Miyashita (2000). The tricky issue with this
approach is that resorting to a feature-based
representation of schedule state is very inefficient
and learning is very ineffective and generalization to
unseen states is highly unreliable. Futhermore, repair
operators are difficult to define in a propositional
setting. In constrast, humans can succeed in
rescheduling thousands of tasks and resources by
increasingly learning a repair strategy using a natural
abstraction of a schedule: a number of objects (tasks
and resources) with attributes and relations
(precedence, synchronization, etc.) among them.

Thus, for automated learning of domain-specific
knowledge using simulation it is mandatory to
represent schedule states and repair operators using a
relational abstraction that highlights the very nature
of interacting objects and their relationships. In this
work, a novel rescheduling approach that combines a
relational (deictic) representation of schedule states
and repair operators with relational reinforcement
learning is proposed. To learn a near-optimal policy
using simulations, a relational reinforcement learning
approach (Driessens, 2004; Croonenborghs, 2009)
for interactive scheduling repair, bearing in mind
different goals and scenarios, is proposed. To this
aim, domain-specific heuristics for scheduling repair
are developed using two general-purpose algorithms
already available: TILDE and RRL (Džeroski et al,
2001; De Raedt, 2008).

Learning to Repair Plans and Schedules Using a Relational (DEICTIC) Representation 415

Brazilian Journal of Chemical Engineering Vol. 27, No. 03, pp. 413 - 427, July - September, 2010

REPAIR-BASED (RE)SCHEDULING

Fig. 1 depicts the repair-based optimization
architecture where search control knowledge about
repair operator selection is acquired through
reinforcements using a schedule state simulator. In
the simulation environment, an instance of the
schedule is interactively modified by the learning
agent using a set of repair operators until a goal is
achieved or the impossibility of repairing the
schedule is accepted. In each interaction, the
learning agent receives information from the
schedule situation or state s and then selects a repair
operator to be applied to the current schedule,
resulting in a new one. The resulting quality of the
schedule after the repair operator has been applied is
evaluated using the simulation environment via an
objective or reward function r(s). The learning agent
then updates its action-value function Q(s,a) that
estimates the value or utility of resorting to the
chosen repair operator a in a given schedule state s.
Such an update is made using a reinforcement
learning algorithm (Sutton and Barto, 1998) such as
the well-known Q-learning rule. By accumulating
enough experiences over many simulated interactions,
the agent is able to learn an optimal policy for
choosing the best repair operator at each schedule
state. The main issue for learning is then how
schedule states and actions must be represented for
knowledge acquisition and iterative revision.

Figure 1: Knowledge acquisition for schedule repair
using reinforcement learning.

For repairing a schedule, the agent is given a goal

function: goal S → {true, false} defining which

states in the schedule are target states, e.g., states in
which total tardiness is less than or equal to 1
working day. The objective of any schedule repair
task can be phrased as: given a starting state for the
schedule 1s , find a sequence of repair operators

1 2 na ,a ,...,a with ia ∈A such that:

1 1 ngoal((... (s ,a)...,a)) trueδ δ = (1)

where δ is the transition function, which is unknown
to the learning agent.

Usually a precondition function pre S × A →
{true, false} is used to specify which subset of repair
operators can be applied at each state of the schedule
to account for resource capabilities and precedence
constraints (e.g., product recipes). This puts the
following extra constraints on the action sequence:

i 1 1 na : pre((... (s ,a)...,a)) true∀ δ δ = (2)

Also, a reward function is used to approximate a
repair policy from reinforcements based on
simulations (Martínez, 1999):

t
t t t t t

1 goal(s) false and
r r(s ,a) goal((s ,a)) true

0 otherwise

=⎧⎪= = δ =⎨
⎪⎩

 (3)

A reward is thus only given when a repaired

schedule is reached. This reward function is unknown
to the learning agent, as it depends on the unknown
transition function δ . Based on the reward function
and simulation, the optimal policy: i ia (s)∗= π can be
approximated using reinforcement learning algorithms
(Sutton and Barto, 1998; Martínez, 1999). The
optimal policy ∗π can be used to compute the shortest
action-sequence to reach a repaired scheduled, so this
optimal policy, or even an approximation thereof, can
be used to improve responsiveness on the shop-floor to
handle unplanned events and meaningful disturbances
on the shop-floor.

Most research works on reinforcement learning
focus on the computation of the optimal utility of
states (i.e., the function V∗ or related values) to find
the optimal policy ∗π . Once this function V∗ is
known, it is easy to translate it into an optimal
policy. The optimal action in a state s is the action
that leads to the state with the highest V*–value:

a(s) arg max [r(s,a) V ((s,a))]∗ ∗π = + γ δ (4)

416 J. Palombarini and E. Martínez

Brazilian Journal of Chemical Engineering

where 0 1≤ γ < is a discount factor. As can be seen
in equation 4, this translation requires an explicit
model of the scheduling world through the use of the
state transition function δ (and the reward function
r). In rescheduling applications, building such a
model of the problem is at least as hard as finding an
optimal policy, so learning V∗ is not sufficient to
learn the optimal repair policy. Therefore, instead of
learning the utility of states V(s), an agent can learn
directly a different value Q, which quantifies the
utility of an action a in a given state s when
following the optimal policy ∗π is used:

Q(s,a) r(s,a) V ((s,a))∗= + γ δ (5)

An action in a given state will be optimal if the
action has the highest Q-value in that state. A
simulation-based algorithm to learn the optimal
policy is Q-learning (Watkins, 1989; Sutton and
Barto, 1998). Q-learning is a simple algorithm that
updates these Q-values incrementally while the
reinforcement learning agent interacts with a real or
simulated world. Fig. 2 shows a high level
description of the algorithm. The value update rule in
Q-learning is very simple:

bQ(s,a) r max Q(s',b)← + γ (6)

where s’ is the resulting state of using action a at state s.

The key issue in applying reinforcement learning
in rescheduling is how a schedule state must be best
represented so that the repair policy can be applied to
unseen schedule states more effectively. Miyashita
(2000) proposed to represent states and actions in a
propositional format. This corresponds to describing
each state (and possibly each action as well) as a

feature vector with an attribute for some distinctive
properties of the schedule state. The features used
are the same as the ones used in CABINS, consisting
of local and global features. Global features
represent information related to the entire schedule,
such as total tardiness and total work-in-process in
the schedule. Local features are variables that are
descriptive of the local schedule in the neighborhood
of a given task, milestone or constraint conflict.
Propositional representations are not adequate for
learning in open planning worlds defined by tasks,
their characteristic attributes and their relations to
other tasks and resources.

A relational (deictic) representation that deals
with the varying number of tasks in the planning
world by defining a focal point for referencing
objects in the schedule is proposed here as a much
powerful alternative. To characterize transitions in
the schedule state due to repair actions, a deictic
representation resorts to constructs such as:
 The first task in the new order.
 The next task to be processed in the reactor.
 Tasks related to the last order.

In a deictic representation, both scheduling states
and repair operators (actions) are defined in relation
to a given focal point (i.e., a task) as is shown in Fig. 3.
These local repair operators move the position of a
task alone; however, due to the ripple effects caused
by tight resource-sharing constraints, other tasks may
need to be moved as well, which is not desirable.
Whenever the goal-state for the schedule cannot be
achieved using primitive repair operators, more
elaborate macro-operators can be used to implement
a combination of basic repair operators such as task-
swapping, batch-split or batch-merge until a goal
state in the repaired schedule (e.g., order insertion
without delaying other orders) is achieved.

for each s ∈S and a∈A do
initialize table entries Q(s, a)

end for
generate a starting state s
repeat

select an action a and execute it
receive an immediate reward r=r(s, a)
observe the new state s’
update the table entry for Q(s, a) as follows:

bQ(s,a) r max Q(s',b)← + γ
s← s’

until no more learning episodes

Figure 2: Basic Q-learning algorithm.

Learning to Repair Plans and Schedules Using a Relational (DEICTIC) Representation 417

Brazilian Journal of Chemical Engineering Vol. 27, No. 03, pp. 413 - 427, July - September, 2010

Figure 3: Deictic representations of repair operators.

To gain the most from a deictic representation of

states and actions in the rescheduling problem,
resorting to a relational interpretation of such
relationships, as used in the “learning from
interpretations” setting (De Raedt and Džeroski,
1994; Blockeel et al., 1999), is proposed. In this
notation, each (state, action) pair will be represented
as a set of relational facts.

RELATIONAL REINFORCEMENT
LEARNING (RRL)

RRL algorithms are concerned with reinforcement

learning in domains that exhibit structural properties
and in which different kinds of related objects such as
tasks and resources exist (Džeroski et al, 2001; De
Raedt, 2008; van Otterlo, 2008). These kinds of
domains are usually characterized by a very large and
possibly unbounded number of different states and
actions, as is the case with planning and scheduling
worlds. In this kind of environment, most traditional
reinforcement learning techniques break down. One
reason why propositional RL algorithms fail is that
they store the learned Q-values explicitly in a state-
action table, with one value for each possible
combination of states and actions. Rather than using an
explicit state−action Q-table, RRL stores the Q-values
in a logical regression tree (Blockeel and De Raedt,
1998). The relational version of the Q-learning
algorithm is shown in Fig. 4. The computational
implementation of the RRL algorithm needs to be able
to deal successfully with:
 the relational format for (states, actions)-pairs in

which the examples are represented;
 incremental data: the learner is given a continuous

stream of (state, action, Q-value)-triplets and has to
predict Q-values for (state, action)-pairs during
learning, not after all examples have been processed;
 a moving target: since the Q-values will gradually

converge to the correct values, the function being
learned may not be stable during simulation-based
learning.

In RRL, states are represented as sets of first-
order logical facts, and the learning algorithm can
only see one state at a time. Actions are also
represented relationally as predicates describing the
action as a relationship between one or more
variables. Because of the relational representation of
states and actions and the inductive logic
programming component of the RRL algorithm,
there must exist some body of background
knowledge which is generally true for the entire
domain to facilate induction. After the Q-function
hypothesis has been initialized, the RRL algorithm
starts running learning episodes like in the standard
Q-learning algorithm of Fig. 2 (Sutton and Barto,
1998; Džeroski et al, 2001). During each learning
episode, all the encountered states and the selected
actions are stored, together with the rewards related
to each encountered (state, action)-pair. At the end of
each episode, when the system encounters a goal
state, it uses reward back-propagation and the current
Q-function approximation to compute and update the
corresponding Q-value approximation for each
encountered (state, action)-pair in the episode. The
algorithm then presents the set of (state, action, Q-
value) triplets to a relational regression engine,
which will use this set of Examples to update the
current regression tree of the Q-function, and then
the algorithm continues executing the next learning
episode.

418 J. Palombarini and E. Martínez

Brazilian Journal of Chemical Engineering

Initialize the Q-function hypothesis 0Q̂

e ← 0
repeat

Examples ← ∅
Generate a starting schedule state s0
i ← 0

repeat
choose a repair operator ai at si using a policy (e.g., ε-greedy) based
on the current hypothesis eQ̂ implement operator ai, observe ri and
the resulting schedule si+1
i ← i +1

until schedule state si is a goal state
for j =i -1 to 0 do

generate example j j jˆx (s ,a ,q)= , where j j a e j 1
ˆq̂ r max Q (s ,a)+← + γ

Examples ← Examples ∪ {x}
end for
Update eQ̂ to e 1Q̂ + using Examples and a relational regression
algorithm (e.g. TG in Fig. 4)

until no more learning episodes

Figure 4: A RRL algorithm for learning to repair schedules through intensive simulations.

Several incremental relational regression
techniques have been developed that meet the above
requirements for RRL implementation: an incremental
relational tree learner TG (Driessens et al., 2001), an
instance based learner (Driessens and Ramon, 2003), a
kernel-based method (Gärtner et al., 2003; Driessens et
al., 2006) and a combination of a decision tree learner
with an instance-based learner (Driessens and
Džeroski, 2004). Of these algorithms, the TG is the
most popular one, mainly because it is relatively easy
to specify background knowledge in the form of a
language bias. In the other methods, it is necessary to
specify a distance function between modeled objects
(Gärtner, 2008) or a kernel function is needed between
(state, action)-pairs (Driessens et al., 2006).

The TG algorithm described in Fig. 5 is a
relational regression algorithm that has been
developed for policy representation in logical and
relational learning (Driessens, 2004; De Raedt, 2008,
van Otterlo, 2008). This incremental first order
regression tree algorithm is used here for
accumulating simulated experience in a compact
representation of a repair-based policy based on Q-
values for all repair operators available at each state s.
Fig. 6 gives a small example of a first order
regression tree for the Q-value function in a task
(re)scheduling world trained using simulations to
react to events and disturbances. A first-order
decision tree can be easily translated into a Prolog
decision list.

//initialize by creating a tree with a single leaf with empty statistics

for each learning example that becomes available do
sort the example down the tree using the tests of the internal
nodes until it reaches a leaf
update the Q-value in the leaf according to the new example

if the statistics in the leaf indicate that a new split is needed
then generate an internal node using the indicated test

grow 2 new leaves with empty Q statistics
end if

end for

Figure 5: TG algorithm for relational tree induction.

Learning to Repair Plans and Schedules Using a Relational (DEICTIC) Representation 419

Brazilian Journal of Chemical Engineering Vol. 27, No. 03, pp. 413 - 427, July - September, 2010

Figure 6: A simple example of a relational regression tree

A first-order decision tree is a binary tree in
which every internal node contains a test that is a
conjunction of first-order literals. Also, every leaf
(terminal node) of the tree contains a prediction
(nominal for classification trees and real-valued for
regression trees). Prediction with first-order trees is
similar to prediction with propositional decision
trees: every new instance is sorted down the tree. If
the conjunction in a given node succeeds (fails) for
that instance, it is propagated to the left (right)
subtree. Once the instance arrives at a leaf node, the
value of that leaf node is used as the prediction for
that instance. TG stores the current tree together
with statistics for all tests that can be used to decide
how to split each leaf further. Every time an
example (triplet) is inserted, it is sorted down the
tree according to the tests in the internal nodes and,
in the resulting leaf, the statistics of the tests are
updated.

EXAMPLE

A small example problem proposed by Musier
and Evans (1989) is considered to illustrate the use
of repair operators for batch plant rescheduling. The
plant is made up of 3 semicontinuous extruders that

process customer orders for four products.
Processing rates and cleanout requirements are
detailed in Table 1. Order attributes corespond to
product type, due date and size. In this section, this
example is used to illustrate concepts like relational
definition of schedule states and repair operators,
global and focal (local) variables used in the
relational model, and the overall process of repairing
a schedule bearing in mind minimum increase of the
total tardiness when a new order needs to be inserted.
In learning to insert an order the situation before the
sequence of repair operations is applied is described
by: i) arrival of an order with given attributes that
should be inserted in a randomly generated schedule
state, and ii) the arriving order attributes are also
randomly chosen. Variables used to represent
scheduled states and repair operators in the relational
format are given in Table 2.

The prototype application has been implemented
in Visual Basic.NET 2005 Development Framework
2.0 SP2 and SWI Prolog 5.6.61 running under
Windows Vista. The TILDE and RRL modules
from The ACE Datamining System developed by
the Machine Learning group at the University of
Leuven have also been used. The overall architecture
of the prototype is shown in Fig. 7.

420 J. Palombarini and E. Martínez

Brazilian Journal of Chemical Engineering

Table 1: A small example problem formulation (Musier and Evans, 1989)

Processing rate (lb/day)
 A B C D

Extruder #0 100 200 --- ---
Extruder #1 150 --- 150 300
Extruder #2 100 150 100 200

Cleanout requirements (days/cleanout)
 Next operation

Previous operation A B C D
A 0 0 0 2
B 1 0 1 1
C 0 1 0 0
D 0 2 0 0

Table 2: Global and focal variables in the prototype.

Name Description
TotalTardiness [h] Global variable. Sum over all orders in the schedule of each order tardiness.
MaxTardiness [h] Global variable. Tardiness of the order with the maximum due date deviation.
AvgTardiness [h] Global variable. Total Tardiness divided the number of orders in the schedule.
TotalWIP [lb] Global variable. Total size of all the orders in the schedule.

TardinessRatio Global variable. Sum over all orders in the schedule of the ration between tardiness of
the order and its lead time.

InventoryRatio Global variable. Sum over all orders in the schedule of the ratio between processing
time of the order and its lead time.

Ext0Load [%] Global variable. Utilization ratio for extruder # 0 in the schedule.
Ext1Load [%] Global variable. Utilization ratio for extruder # 1 in the schedule.
Ext2Load [%] Global variable. Utilization ratio for extruder # 2 in the schedule.
TotalCleanoutTime Global variable. Time spent in cleanout operations.
FocalTardiness [h] Focal variable. Tardiness associated to the focal task (order).
ProductType Focal variable. Product associated to the order of the focal task(order).

FocalRSwappability Focal variable. Binary variable to indicate if it is feasible to swap the focal task with
one to the right in the same extruder.

FocalLSwappability Focal variable. Binary variable to indicate if it is feasible to swap the focal task with
one to the left in the same extruder.

FocalAltRSwappability Focal variable. Binary variable to indicate if it is feasible to swap the focal task with
one to the right in a different extruder

FocalAltLSwappability Focal variable. Binary variable to indicate if it is feasible to swap the focal task with
one to the left in a different extruder

Env.

RRT
Learner

Examples

Background
Knowledge

Policy

Act. State
ActionAct. State

Consult
Q-Value

Consult
Best

Action

.NET Agent

Env.

RRT
Learner

Examples

Background
Knowledge

Policy

Act. State
ActionAct. State

Consult
Q-Value

Consult
Best

Action

.NET Agent

Env.

RRT
Learner

Examples

Background
Knowledge

Policy

Act. State
ActionAct. State

Consult
Q-Value

Consult
Best

Action

.NET Agent

Figure 7: SWI Prolog engine for implementing RRL in repair-based (re)scheduling.

Learning to Repair Plans and Schedules Using a Relational (DEICTIC) Representation 421

Brazilian Journal of Chemical Engineering Vol. 27, No. 03, pp. 413 - 427, July - September, 2010

At the beginning of each training episode, the
prototype interface asks the user to generate a given
number of orders with their corresponding attributes
bounded over allowable ranges defined interactively.
To generate the initial schedule state s0, these orders
are randomly assigned to one of the three available
extruders. Later on, the attributes of the order to be
inserted -without increasing the total tardiness in the
initial schedule- are generated and it is assigned
arbitrarily to one of the extruders. The learning
episode progresses by applying a sequence of repair
operators until the goal state is reached. At the end of
the episode, examples containing the schedule states
found during it are archived in the knowledge base
“Examples” along with the update made by the
induction procedure of the relational regression tree,
which resorts to the RRTL (Relational Regression
Tree Learner) component of the prototype. This
regression tree contains (in relational format) the
repair policy learned from “Examples” from the
current and previous episodes. Background
knowledge, which is valid all over all the domain, is
used by the RRTL component (regression tree) to
answer queries regarding the Q-value of a given
state-action pair or the best repair operator for a
given schedule state. These queries are actually
processed by the Prolog wrappers
ConsultBestAction.exe and ConsultQ.exe, which
made up a transparent interface between the .NET
agent and the relational repair policy. Also, the
RRTL module includes the functionality for
discretizing continuous variables such as Total
Tardiness and Average Tardiness in non-uniform
real-valued intervals, so as to make the generated
rules useful for Prolog wrappers. In the .NET
application, different classes are used to model
Agent, Environment, Actions and Policy using the

files Policy.pl, ActState.pl, ActStateAction.pl and
BackgroundKnowledge.pl. Finally, the .NET agent is
fully equipped to handle situations where the agent
cannot be inserted in the initial schedule. To this
aim, the agent may modify order attributes such as
date or size so as to insert the order. The prototype
allows the user to interactively revise and
accept/reject changes made to order attributes to
insert it in the initial schedule without increasing the
Total Tardiness of the resulting schedule.

To illustrate the advantages of relational
reinforcement learning in order insertion, we
consider the specific situation where there exist 10
orders already scheduled in the plant and a new order
#11 must be inserted so that the Total Tardiness (TT)
in the schedule is minimized. Example data for
scheduled orders (#1 through #10) and the new order
(#11) in a given episode are shown in Table 3. In
each episode, a random schedule state for orders #1
through #10 is generated and a random insertion
attempted for the new order (whose attributes are
also randomly chosen), which in turn serves as the
focal point for defining repair operators. The goal
state for the repaired schedule is stated in terms of
the TT: a maximum of 5% increase. Background
knowledge such as “the number of orders scheduled
for extruder #3 is larger than the number for extruder
#2” is provided to speed up learning in the relational
domain. In Fig. 8, the learning curve for the new
order insertion rescheduling event is shown. As can
be seen, learning occurs rather quickly in such way
that, after 60 episodes, a near-optimal repair policy is
obtained. As shown in Fig. 9, the number of repair
steps required to reach the goal state is drastically
reduced after a few training episodes. After 60
training episodes, only 8 repair steps are required, on
average, to insert the 11th order.

 Table 3: Example data for the initial orders and the one (# 11) to be inserted.

Order # Product Size [lb] DD [days]
1 A 300 6
2 B 300 5
3 C 700 3
4 D 100 2
5 D 700 10
6 B 600 5
7 A 400 6
8 B 500 12
9 C 700 17

10 C 300 8
11 A 150 10

422 J. Palombarini and E. Martínez

Brazilian Journal of Chemical Engineering

Figure 8: Learning curve for the repair-based order insertion example.

Figure 9: Average number of repair steps to reach the goal state as learning progresses.

Fig. 10 provides an example of applying the
optimal sequence of repair operators from the
schedule in Fig. 10 (a). Before the 11th order has
been included, the Total Tardiness is 16.42 h. Once
the arriving order (in white) has been inserted, the
Total Tardiness has been increased to 27.21 h;
orange tasks are used to indicate cleaning
operations. Based on the learned repair policy, a
DownLeftSwap operator should applied, which

gives rise to the schedule in Fig. 10 (b) with a
TT=31.56 h. Then a BatchSplit repair operator is
applied which does not change TT. Then an
UpRightJump repair operator is used, which lowers
the TT to 21.86 h. Finally, by means of a
DownRightSwap the goal state is reached with a
Total Tardiness of 14.99 h., which is even lower
than the TT in the initial schedule before the 11th
order was inserted.

Learning to Repair Plans and Schedules Using a Relational (DEICTIC) Representation 423

Brazilian Journal of Chemical Engineering Vol. 27, No. 03, pp. 413 - 427, July - September, 2010

Figure 10 (a): Initial schedule for the
example: TT= 27.21 h.

Figure 10 (b): Resulting schedule after a
DownLeftSwap. TT=31.56 h.

Figure 10 (c): Resulting schedule after a
BatchSplit. TT=31.56 h.

Figure 10 (d): Resulting schedule after a
UpRightJump. TT=21.86 h.

Figure 10 (e): Resulting schedule after a
DownRightSwap. TT=14.99 h.

In the foregoing discussion, the rescheduling

objective was the minimization of the total tardiness
(TT) impact of inserting the incoming order without
any account for preserving the structure of the existing
schedule. Consider next a trade-off between tardiness
increase and the number of changes made to the
schedule required by the arriving order. To this end,
the reward function for rescheduling is defined as the
ratio between tardiness reduction and the number of
steps required to modify the schedule by following a
given repair strategy. As an illustrative example, the
initial schedule for orders #1 through # 13 shown in

Table 4 is considered. An arriving order (#14) must be
inserted and a new schedule generated. In Table 4, for
each extruder, orders are ordered in the same sequence
as they were positioned in the initial schedule. The
Total Tardiness of this initial schedule is 48.31 hs.
The order # 14 that must be inserted has a small size
(84 lbs) for product type A, with a very near due date
(1 day). To assess the qualiy of the rescheduling
policy learned using RRL, insertion of order #14 into
the existing schedule (Table 4) is compared with
schedules corresponding to repair heuristics called 1-
optimal, 2-optimal, 3-optimal and 4-optimal.

424 J. Palombarini and E. Martínez

Brazilian Journal of Chemical Engineering

Table 4: Example data for balancing tardiness with changes to the initial schedule

Order # Product type Size (lbs) Due Date (days) Extruder #
8 B 837 16 0
6 A 888 8 0
4 B 380 5 0

11 B 340 8 0
2 D 656 18 1

10 C 292 9 1
3 C 554 9 1

13 D 227 16 1
5 D 800 14 1
9 B 580 10 2
1 D 453 14 2
7 C 943 11 2

12 B 373 4 2

Fig. 11 (b) shows the 1-optimal schedule obtained

from inserting order #14 following an initial
insertion (see Fig. 11(a)). Note that order #14 is
inserted so as to disturb the least the orders already
scheduled. The corresponding reward function for
the 1-optimal insertion is -1.09, resulting from an
increase in the TT from 55.85 hs to 59.12 hs and
requiring three repair steps. As a result, order # 14 is
scheduled in extruder #1 without altering the
previously scheduled order in this equipment.

To lower the increase in the TT due to order #14
insertion, the initial schedule in Table 4 must be
altered to a certain degree. The heuristic 2-optimal is
concerned with inserting order #14 in-between
previously scheduled orders so as to find the
insertion that gives the lowest increase in TT, but an
increase in the number of insertion trials is required.
Fig. 12 (b) shows the 2-optimal insertion from the
initial schedule in Fig. 12 (a) that includes order #14.
As shown, the TT is reduced from the initial 49.99 hs
to 49.66 using the 2-optimal heuristics. The
drawback is that 15 steps are needed to find the
solution and all orders that were scheduled in

extruder #1 are delayed as a result.
A much more aggressive strategy to reduce the TT

of the schedule resulting from arbitrarily inserting
order #14 is to apply the 2-optimal rescheduling
heuristic to all orders so as to produce a major
overhaul of the initial schedule. The very idea of the 3-
optimal rescheduling heuristic is finding the best
positions for orders #1 through #14 in the schedule by
applying a sequence of rescheduling changes based on
exhaustively moving orders one at a time. As can be
seeen in Fig. 13 (b), the TT of the schedule is reduced
from 55.69 hs to 14.86 hs by the 3-optimal heuristic.
However, this significant reduction in the schedule’s
TT is the result of many changes to the initial schedule
due to the more than 185 repair steps made.

In the 4-optimal heuristic, for each possible
possible insertion in the initial schedule, the focal
order (# 14) is swapped with every other order to
find a final schedule that cannot be improved by
merely swapping any pair of orders. As a result, the
TT of the final schedule is reduced from 59.12 hs to
8.57 but the initial schedule has been dramatically
altered, as can be seen in Fig. 14 (b).

(a) (b)

Figure 11: 1-Optimal repair heuristic which gives rise to a reward of -1.09 after schedule repair. (a) Initial
Schedule after random insertion of order # 14 with TT=55.85; (b) Final (repaired) schedule with TT=59.12.

Learning to Repair Plans and Schedules Using a Relational (DEICTIC) Representation 425

Brazilian Journal of Chemical Engineering Vol. 27, No. 03, pp. 413 - 427, July - September, 2010

(a) (b)

Figure 12: 2-Optimal repair heuristic which gives rise to a reward of 0.019 after schedule repair. (a) Initial
Schedule after random insertion of order # 14 with TT=49.99; (b) Final (repaired) schedule with TT=49.69.

(a) (b)

Figure 13: 3-Optimal repair heuristic which gives rise to a reward of 0.22 after schedule repair. (a) Initial
Schedule after random insertion of order # 14 with TT=55.69; (b) Final (repaired) schedule with TT=14.86.

(a) (b)

Figure 14: 4-Optimal repair heuristic which gives rise to a reward of 0.28 after schedule repair. (a) Initial
Schedule after random insertion of order # 14 with TT=59.12; (b) Final (repaired) schedule with TT=8.57.

In Fig. 15, order #14 insertion has been carried

out using the rescheduling policy, resulting in the
proposed RRL algorithm after 100 episodes with a
learning rate α=0.1, a discount factor of γ=0.85 and
softmax exploration. After only 7 repair operations,
the TT has been reduced from 55.69 hs to 28.12 hs.
Thus, the rescheduling policy not only succesfully
inserts order #14, but also significantly reduces the

TT without too many changes to the original
schedule. It is worth noting that order insertion has
been achieved by merging the small order #14 with
order #6. Finally, in Fig. 16 a comparison is made of
the different scheduling strategies using the chosen
reward function, which highlights the advantage of
simulation-based learning of a rescheduling policy
using RRL.

426 J. Palombarini and E. Martínez

Brazilian Journal of Chemical Engineering

(a) (b)

Figure 15: Rescheduling using the repair policy based on RRL which gives rise to a reward of 3.94 after
schedule repair. (a) Initial Schedule after random insertion of order # 14 with TT=55.69; (b) Final (repaired)
schedule with TT=28.12.

RewardReward

Figure 16: Performance comparison for the RRL-based
rescheduling policy with differente heuristic rules for repair.

CONCLUDING REMARKS

A novel approach for simulation-based
development of a relational policy for automatic
repair of plans and schedules using reinforcement
learning has been proposed. The policy allows
generation of a sequence of deictic (local) repair
operators to achieve rescheduling goals to handle
abnormal and unplanned events such as inserting an
arriving order with minimum tardiness based on
relational (deictic) representation of schedule states
and repair operators. Representing schedule states
using a relational abstraction is not only efficient to
profit from, but also potentially a very natural choice
to mimic the human ability to deal with rescheduling
problems where relations between objects and focal
points for defining repair strategies are typically
used. Moreover, using relational modeling for
learning from simulated examples is a very
appealing approach to compile a vast amount of
knowledge about rescheduling policies, where

different types of abnormal events (order insertion,
extruder failure, rush orders, reprocessing needed,
etc.) can be generated separately and then compiled
in the relational regression tree for the repair policy,
regardless of the event used to generate the examples
(triplets). This is a very appealing advantage of the
proposed approach since the repair policy can be
used to handle disruptive events that are even
different from the ones used to generate the Q-
function.

REFERENCES

Adhitya, A., Srinivasan, R. and Karimi, I. A.,

Heuristic rescheduling of crude oil perations to
manage abnormal supply chain events. AIChE J.,
53, No. 2, p. 397 (2007).

Blockeel, H. and De Raedt, L., Top-down induction
of first order logical decision trees. Artificial
Intelligence, 101, No. 1/2, p. 285 (1998).

Learning to Repair Plans and Schedules Using a Relational (DEICTIC) Representation 427

Brazilian Journal of Chemical Engineering Vol. 27, No. 03, pp. 413 - 427, July - September, 2010

Croonenborghs, T., Model-assisted approaches to
relational reinforcement learning. Ph.D.
dissertation, Department of Computer Science, K.
U. Leuven, Leuven, Belgium (2009).

De Raedt, L., Logical and relational learning.
Springer-Verlag, Berlin, Germany (2008).

De Raedt, L. and Džeroski, S., First order jk-clausal
theories are PAC-learnable. Artificial Intelligence,
70, p. 375 (1994).

Driessens, K., Relational reinforcement learning.
Ph.D. dissertation, Department of Computer
Science, K. U. Leuven, Leuven, Belgium (2004).

Driessens, K., Ramon, J. and Blockeel, H., Speeding up
relational reinforcement learning through the use of
an incremental first order decision tree learner.
Proceedings of the 13th European Conference on
Machine Learning, De Raedt, L. and Flach, P.
(Eds.), Springer-Verlag, 2167, 97 (2001).

Driessens, K. and Ramon, J., Relational instance
based regression for relational reinforcement
learning. Proceedings of the Twentieth International
Conference on Machine Learning, AAAI Press,
123 (2003).

Driessens, K. and Džeroski, S., Integrating guidance
into relational reinforcement learning. Machine
Learning, 57, 271 (2004).

Driessens, K., Ramon, J. and Gärtner, T., Graph
kernels and Gaussian processes for relational
reinforcement learning. Machine Learning, 64,
No. 1/3, 91 (2006).

Džeroski, S., De Raedt, L. and Driessens, K.,
Relational reinforcement learning. Machine
Learning, 43, No. 1/2, p. 7 (2001).

Gärtner, T., Kernels for Structured Data. Series in
Machine Perception and Artificial Intelligence, Vol.
72, World Scientific Publishing, Singapore (2008).

Gärtner, T., Driessens, K. and Ramon, J., Graph
kernels and Gaussian processes for relational
reinforcement learning. Proceedings of 13th
International Conference Inductive Logic
Programming, ILP 2003, Lecture Notes in
Computer Science, Springer., 2835, 146 (2003).

Henning, G., Production Scheduling in the Process
Industries: Current Trends, Emerging Challenges
and Opportunities. Computer-Aided Chemical
Engineering, 27, 23 (2009).

Henning, G. and Cerda, J., Knowledge-based
predictive and reactive scheduling in industrial

environments. Computers and Chemical
Engineering, 24, 2315 (2000).

Herroelen, W. and Leus, R., Robust and reactive
project scheduling: a review and classification of
procedures. International Journal of Production
Research, 42, 1599 (2004).

Martinez, E., Solving batch process scheduling/
planning tasks using reinforcement learning,
Computers and Chemical Engineering, 23, S527
(1999).

Méndez, C., Cerdá, J., Harjunkoski, I., Grossmann, I.,
Fahl, M., State-of-the-art review of optimization
methods for short-term scheduling of batch
processes. Computers and Chemical Engineering,
30, 913 (2006).

Miyashita, K., Learning scheduling control through
reinforcements, International. Transactions in
Operational Research (Pergamon Press), 7, 125
(2000).

Miyashita, K. and Sycara, K., CABINS: a framework
of knowledge acquisition and iterative revision
for schedule improvement and iterative repair.
Artificial Intelligence, 76, 377 (1994).

Musier, R., and Evans, L., An approximate method
for the production scheduling of industrial batch
processes with parallel units. Computers and
Chemical Engineering, 13, 229 (1989).

Sutton, R. and Barto, A., Reinforcement Learning:
An Introduction. MIT Press, Boston, MA (1998).

van Otterlo, M., The logic of adaptive behavior.
Ph.D. dissertation, Twente University, The
Netherlands (2008).

Vieira, G., Herrmann, J. and Lin, E., Rescheduling
manufacturing systems: a framework of strategies,
policies and methods. J. of Scheduling, 6, 39
(2003).

Zhang, W. and Dietterich, T., Value Function
Approximations and Job-Shop Scheduling.
Pre-prints of Workshop on Value Function
Approximation in Reinforcement Learning at
ICML-95 (1995).

Zhu, G., Bard, J. and Yu, G., Disruption management
for resource-constrained project scheduling.
Journal of the Operational Research Society, 56,
365 (2005).

Zweben, M., Davis, E., Doun, B. and Deale, M.,
Iterative repair of scheduling and rescheduling.
IEEE. Trans. Syst. Man Cybern., 23, 1588 (1993).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

