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Abstract - This article describes the application of a three-layer feed-forward neural network to analyze
industrial plant data. To adjust mathematical models (for control or optimization purposes) from plant data, it
is necessary to analyze and detect outliers and systematic errors and to remove them. The system studied is
the feed preparation of an isoprene production unit and represents a multivariable problem. To detect outliers
in a multivariable system is not an easy task. The technique used in this paper is able to identify this kind of
error. The methodology employed involves construction of a reliable neural network model to represent the
process and its training with a few iterations (a few thousand). Thus, the points at which errors between the
experimental and calculated data appear to be scattered far from the majority of the values are probably
outliers. In some cases, outlier points can be easily detected, but in others, they are not so obvious. In these
cases, they are separated and a cluster with other similar data is built. After analyzing these clusters based on
the similarity principle or by hypothesis tests for means, it is then decided whether or not these points can be
excluded. At the same time the process is checked for any abnormalities recorded during the specific period.

Three year’s worth of process data were analyzed and about 30% of the data were excluded.
Keywords: gross error, neural network, modeling, data analysis.

INTRODUCTION

Gross errors or anomalous measurements may
arise in the data set due to changes in conditions
during the plant operation, errors in the operation of
measurement and recording devices, or simply errors
in the information register, which may contaminate
the valid data. Depending on the average time for
data treatment, fluctuations in data could be
incorporated in the results. Many times this could
result in unreliable information. In cases of errors
due to measurement instruments over a long period
of time, the average reflects this error. On the other
hand, the outlier may simply be one of the extreme
values in a probability distribution for a random
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variable, which occurs quite naturally but not
frequently and should not be rejected.

If one knows the origin of the abnormal values,
one does not hesitate to discard this observation. On
the other hand, when one is not sure about the error
or does not have enough practice to either accept or
reject an extreme observation, judgment must be
based on some kind of statistical analysis. The
question to be analyzed is how probable it is that the
observed differences are due solely to random
sampling errors so that the decision of whether or not
to reject the information can be made. This task
becomes especially complicated for complex
processes where not all of the influencing parameters
are directly accessible or where large stochastic
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deviations of the process variables result in
considerable scattering of the measured data. For this
reason, a large variety of approaches to tackling this
problem have been proposed. These are commonly
based on either statistics or first principle equations
or a combination of both. However, this procedure
may become extremely complicated either if the
underlying physics and chemistry of the process are not
very well understood or if application of a sharp
statistical criterion for separation of the data into one
set of valid and another of invalid values is impossible.

This article demonstrates the ability of a neural
network model to learn and adapt itself to different
statistical distributions of inputs involving nonlinear
mappings. In this way, it allows classification of
similar inputs and outputs in order to identify
clusters and then proceed with elimination of the
gross errors. As will be shown, this approach to
detect outliers has considerable potential in the field
of data analysis; it is easier and requires much less
knowledge of the underlying physicochemical
process.

NEURAL NETWORK

Neural computation has become an established
discipline and has attracted extensive interest within
chemical engineering. Most chemical engineering
processes are nonlinear and complex with
conventional modeling and simulation techniques
often relying on specific simplifying transport,
kinetic  and/or  thermodynamic  assumptions.
Artificial neural networks (NNs), on the other hand,
are able to extract information from a data plant in an
efficient manner. NNs have been successfully
employed in solving problems in areas such as fault
diagnosis, dynamic modeling and control of
chemical processes (Bhat and McAvoy, 1990;
Hoskins and Himmelblau, 1988; Giudici et al., 1999)
and in solving nonlinear optimization problems
(Nascimento & Giudici, 1998, Nascimento et al.,
2000), among others. In spite of the extensive range
of NN applications explored for use in chemical
engineering, the quality of information is crucial to
train the net and also to avoid overfitting.

Artificial neural networks are made up of highly
interconnected layers of simple neuron like nodes.
The neurons act as nonlinear processing elements
within the network. An attractive property of
artificial neural networks is that, given the
appropriate network topology, they are capable of
characterizing nonlinear functional relationships,
representing internal models of a system through a
direct learning algorithm, and thus they are able to
handle the intrinsic complexities of chemical

processes. Of the many existing artificial neural
network paradigms, the three-layers feed-forward
neural network is the most widely used network for
chemical engineering applications. This NN is
classified as a supervised learning network, in which
knowledge is captured by the strength of its
interconnections between a set of artificial neurons.
These interconnections are called the weights of the
neural model, which are calculated iteratively using a
backpropagation algorithm, i.e., the steepest descent-
based optimization routine in order to minimize a
given objective function (Rumelhart & McClelland,
1986). The computations are carried out over the
entire network, except the input layer. The mapping
of each unit is in terms of the combination of all its
inputs, followed by the application of a nonlinear
function, called the activation function. In this work, a
sigmoid function was used as the activation function.

Construction and training of the NN used in this
work were carried out using in-house software.

METHODOLOGY

The available industrial data on the process
studied (isoprene production unit) were provided as a
daily average. These data were collected during three
years. Analysis was carried out for each year
individually. Treatment of the data was performed
in two steps: first, a preliminary analysis for
abnormal values (e.g., points out side of the possible
operational range, which may be subject to rejection)
was carried out. The second step involved data
analysis using neural network approach and
statistical techniques. The methodology applied in
this work follows the steps shown in Figure 1.

The first step in the data analysis makes use of
the following criteria to eliminate abnormal values:
values out side of an acceptable range for the
corresponding variable, graphic observations of the
variables as function of time, experience with
statistical features as much as with the process and
material and energy balances. The variables of
interest were defined considering the available
process data and its importance to the process and
plant operation. Then, the minimum, maximum and
mean values as well as the variance for each selected
variable were identified. The variables whose
operational ranges were too close to the wind-up
measurement instruments were not included as
neural network information.

After this initial analysis, the resulting data set
was used to train the neural network, as shown in
Figure 1. In this step, all data were included in the
training data set and during the training process few
iterations were performed. It was observed that some
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points and groups of points were not well adjusted.
Identification of these groups (or points) is an
indication of consistency problems or gross errors
not identified in the first step of the procedure. To
decide whether or not these points must be
eliminated some statistical analyses such as cluster
analysis and hypothesis tests for means were used.

Cluster analysis is based on the similarity
principle among several data sets. A data set was
formed by the input and output variables chosen for
each process unit, corresponding to information from
one day of operation. It is expected that for a series
of similar input variables, the process must yield
similar output variables (dependent variables). When
a different input or output variable is observed in a
series of similar data, the corresponding data set may
be rejected. Table 1 shows two examples of cluster
analysis: it can be observed that for variable out2 the
values 25.24 and 20.85 in the first and second groups
of data, respectively, must be rejected.

In some cases a simple and direct analysis is not
possible, e.g., when a given data set is unique or

when there are only two data sets for comparison
with some different information, it is not possible to
determine which one is correct. In these cases, the
domains of the variables are extended, compared
with the previous group. Although these new groups
are less accurate, it is usually possible to identify
abnormal points. For this step, the hypothesis test for
means, which involves a confidence interval estimate
and a hypothesis test was employed with a
confidence level of 95% (Himmelblau, 1970).

Table 2 shows the application of this
methodology in analysis of plant data. The values in
bold in groups 1 and 2 were not well adjusted during
neural network training and it was not possible to
identify groups of similar data sets for the cluster
analysis; thus a hypothesis test for means analysis
was performed. It was observed that the value 25.81
is inside the confidence interval and the null
hypothesis is accepted and this data must not be
eliminated. On the other hand, the value 1.62 is
outside the confidence interval and the null hypothesis
is rejected and this data set must be eliminated.
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Figurel: Data analysis methodology

Table 1: Cluster analysis - examples

Input Variables Output Variables

inl in2 in3 in4 in5 in6 in7 in8 | outl | out2 | out3 | out4
12.79 | 15.34 | 1.86 | 63.80 | 39.30 | 59.90 | 8.89 | 4.37 | 835 | 2524 | 2.50 | 97.4
12.80 | 15.40 | 1.88 | 63.80 | 39.20 | 59.90 | 8.87 | 4.35 | 835 |27.21| 2.63 | 97.3
12.80 | 15.25| 1.79 | 63.80 | 39.20 | 59.90 | 8.85 | 4.38 | 835 | 26.88 | 2.53 | 974
12751 15.07 | 1.71 | 63.80 | 39.10 | 59.80 | 8.79 | 4.36 | 835 |27.21| 2.49 | 97.3
13.99 | 16.03 | 2.40 | 64.50 | 55.10 | 59.80 | 11.19 | 4.83 | 9.08 | 20.85 | 2.68 | 102.6
13.82 | 16.15 | 2.93 | 64.30 | 55.50 | 59.30 | 10.79 | 5.06 | 9.16 | 28.84 | 2.89 | 97.2
13.80 | 16.09 | 2.91 | 64.30 | 55.10 | 59.40 | 10.81 | 4.97 | 9.23 | 28.57 | 2.85 | 97.8
13.70 | 16.02 | 2.74 | 64.20 | 55.60 | 58.60 | 11.13 | 4.91 | 9.07 | 30.50 | 2.66 | 95.0
13.70 | 15.86 | 2.54 | 64.20 | 55.80 | 58.60 | 11.15 | 5.07 | 892 |30.92 | 2.54 | 94.6
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Table 2: Hypothesis test for means

Group Input Variables Output Variables
inl in2 in3 in4 in5 in6 in7 in8 | outl | out2 | out3 | out4
1 13.00 | 14.50 | 1.95 | 66.00 | 51.10 | 59.90 | 10.51 | 5.55 | 7.62 |26.73 | 1.62 | 93.5
13.00 | 14.57 | 2.77 | 65.90 | 50.60 | 60.00 | 10.25 | 5.37 | 7.72 | 26.15| 2.68 | 91.6
2 | 13.20 ‘ 16.20‘ 243 ‘ 64.30 ‘ 50.40 ‘ 59.70| 9.94 | 441 | 8.68 ‘25.81 ‘ 3.17 | 100.1
Sample 12.00 | 13.58 | 2.38 | 66.00 | 50.20 | 61.20 | 10.40 | 3.77 | 8.78 | 1991 | 2.77 | 97.2
12.00 | 14.74 | 2.14 | 65.90 | 48.40 | 61.30 | 10.08 | 3.77 | 8.89 |20.77 | 2.70 | 98.5
12.09 | 14.13 | 1.75 | 66.50 | 48.60 | 61.00 | 10.23 | 4.04 | 8.58 |23.51| 2.07 | 97.5
13.30 | 14.99 | 2.46 | 66.80 | 48.80 | 60.90 | 10.32 | 5.15 | 8.73 |24.35| 2.70 | 94.8
13.48 | 15.74 | 2.37 | 66.80 | 49.60 | 60.70 | 10.47 | 5.35 | 8.76 |24.60 | 2.47 | 93.8
13.50 | 15.64 | 2.23 | 66.80 | 50.30 | 60.80 | 10.57 | 5.48 | 8.72 |25.22 | 2.30 | 93.8
13.51 | 15.02 | 2.01 | 66.70 | 50.50 | 60.80 | 10.56 | 5.51 | 8.76 |25.23 | 2.26 | 94.0
13.50 | 15.87 | 1.96 | 66.40 | 49.10 | 60.60 | 10.34 | 5.49 | 8.79 | 2591 | 2.17 | 94.5
13.00 | 14.50 | 1.95 | 66.00 | 51.10 | 59.90 | 10.51 | 5.55 | 7.62 |26.73 | 1.62 | 93.5
12.98 | 13.52 | 2.22 | 65.70 | 51.60 | 60.00 | 10.65 | 538 | 7.74 | 26.09 | 2.57 | 93.1
13.00 | 14.57 | 2.77 | 65.90 | 50.60 | 60.00 | 10.25 | 5.37 | 7.72 | 26.15| 2.68 | 91.6
13.20 | 16.20 | 2.43 | 64.30 | 50.40 | 59.70 | 9.94 | 4.41 | 8.68 |25.81 | 3.17 | 100.1
13.00 | 14.06 | 2.05 | 64.30 | 51.20 | 59.70 | 10.27 | 4.28 | 8.65 |20.93 | 2.66 | 100.5
13.38 | 14.13 | 1.98 | 64.30 | 50.10 | 59.40 | 10.38 | 4.41 | 8.84 |20.98| 2.52 | 100.8
14.01 | 13.99 | 2.60 | 64.50 | 52.30 | 59.60 | 10.97 | 4.40 | 9.45 | 17.98 | 2.94 | 100.9
14.00 | 14.24 | 2.64 | 64.40 | 52.30 | 59.50 | 11.00 | 4.61 | 9.30 | 18.49 | 2.89 | 99.6
14.00 | 14.11 | 2.57 | 64.40 | 52.30 | 59.50 | 11.00 | 4.62 | 9.30 | 19.09 | 2.89 | 99.9
14.01 | 15.67 | 2.59 | 64.30 | 50.70 | 59.70 | 10.81 | 4.56 | 9.41 | 19.65| 2.82 | 99.8
Minimum 12.00 | 13.52 | 1.75 | 64.30 [ 48.40|59.40 | 9.94 | 3.77 | 7.62 | 17.98 | 1.62 | 91.60
Maximum 14.01 | 16.20 | 2.77 | 66.80 | 52.30 | 61.30 | 11.00 | 5.55 | 9.45 | 26.73 | 3.17 |100.90
Mean 13.22 | 14.71 | 2.28 | 65.56 | 50.45 | 60.24 | 10.49 | 4.79 | 8.71 | 22.86 | 2.57 | 96.88
Std dev 0.65 | 0.82 | 0.29 | 1.04 | 1.23 | 0.66 | 0.31 | 0.63 | 0.54 | 3.06 | 0.37 | 3.20
t(n-1=18) 2.11
Mean+std dev*t | 14.60 | 16.44 | 2.90 | 67.75 | 53.05 | 61.63 | 11.13 | 6.10 | 9.84 |29.31 | 3.35 |103.63
Mean-std dev*t | 11.84 | 12.97 | 1.67 | 63.37 | 47.85 | 58.85| 9.84 | 3.47 | 7.57 | 16.41 | 1.78 | 90.13
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RESULTS AND DISCUSSION

A simple measure to assess the quality of the fit of
the chosen neural network to the experimental data is
usually a comparison of the values calculated by the
neural network with the original experimental data. The
scatter of data points around the ideal 45° line can be
used to judge the fit of the neural network to the
experimental data. The idea to use neural networks for
the purpose of outlier detection is based on this kind of
diagram (Biilau et al., 1999). Hence, it must only be
shown that the outliers of the experimental data
correspond to the outliers from this curve. Thus, the
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neural network was first of all trained for the entire data
set and afterwards for the filtered data set. The outliers
detected after the first training run were analyzed by
application of the statistics described previously.
This procedure was repeated several times until the
scattered data no longer showed abnormal points.
Since the training of the network with the filtered data
leads to results for calculated data, which are different
from those for the original data set, the input database
changes due to the filtration procedure. Table 3 shows
the number of eliminated points in each run and
Figures 2a-c show the results of this method for the
first, second and final runs, respectively.

Table 3: Points eliminated in each run

Run | Number of points eliminated
1 49
2 28
3 19
4 7
5 12
6 -
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Figure 2: Comparison of calculated and measured data: (a) before analysis;
(b) intermediate results; (¢) final results
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CONCLUSIONS

Application of a neural network is a very
attractive tool for detecting outliers. It is simple,
more cost effective and more easily used,
particularly by plant engineers, and the results
presented demonstrate that neural networks have
considerable potential in the field of data analysis,
mainly because they require much less knowledge of
the underlying physicochemical process. However,
the final decision to eliminate the suspect data is
made by applying a cluster analysis to this approach
to detect outliers.
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