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Abstract - A new mathematical model was developed in this study to simulate the unsteady flow in 
controlled mud-cap drilling systems. The model can predict the time-dependent flow inside the drill string and 
annulus after a circulation break. This model consists of the continuity and momentum equations solved using 
the explicit Euler method. The model considers both Newtonian and non-Newtonian fluids flowing inside the 
drill string and annular space. The model predicts the transient flow velocity of mud, the equilibrium time, 
and the change in the bottom hole pressure (BHP) during the unsteady flow. The model was verified using 
data from U-tube flow experiments reported in the literature. The result shows that the model is accurate, with 
a maximum average error of 3.56% for the velocity prediction. Together with the measured data, the 
computed transient flow behavior can be used to better detect well kick and a loss of circulation after the mud 
pump is shut down. The model sensitivity analysis show that the water depth, mud density and drill string size 
are the three major factors affecting the fluctuation of the BHP after a circulation break. These factors should 
be carefully examined in well design and drilling operations to minimize BHP fluctuation and well kick. This 
study provides the fundamentals for designing a safe system in controlled mud-cap drilling operatio． 
Keyword: Deep water; Controlled mud-cap drilling; Unsteady flow; Mathematical model; Kick detection.  

 
 
 

INTRODUCTION 
 

Due to the depletion of onshore oil and gas re-
sources, the oil-gas industry has extended its search 
for resources to deep-water areas. However, deep-
water drilling is facing many problems and chal-
lenges, including pore pressure prediction uncertain-
ties, narrow pressure margins, and high equivalent 
circulation density (ECD) (Shaughnessy et al., 1999; 
2007; Stave, 2014). These problems and challenges 
not only lead to the inability to design wells for tradi-
tional kick tolerances, but also make a well techni-
cally undrillable due to lack of drilling window right 

below the previous casing/liner shoe. Controlled 
mud cap (CMC) drilling is the solution to all of these 
problems and challenges, and improve safety and 
efficiency in the well construction process (JPT staff, 
2013; Stave, 2014; Malt and Stave, 2014; Godhavn 
et al, 2014; Børre and Sigbjørn, 2014). 

CMC drilling is a kind of subsea mud-lift pump 
drilling system technologies. Figure 1 shows a sche-
matic of a CMC drilling system. The mud-lift pump 
is placed in water and return mud and cuttings to 
surface through a mud return line (MRL). The tech-
nique allows for precise control of bottom hole pres-
sure (BHP) during drilling by regulating the mud 
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right-hand side term takes into account the boundary 
pressure at the mud level in the drill string and the 
annulus. The third right-hand side term is related to 
friction, and the last right-hand side term represents 
the driving mechanism caused by the hydrostatic 
pressure imbalance between the drill string and the 
annulus. All symbols are defined in the Nomencla-
ture section.  

The final expression for the equation of motion 
for the length of mud, AnnL , in the annulus is ob-
tained: 
 

Ann
Ann

L
U

t


 


              (2) 

 
These two equations are solved numerically in a 

computer program. 
 
Numerical Formulation 
 

Because the mud level is not changing very rap-
idly, the numerical integration need not to be exces-
sive. The explicit Euler method is locally second-
order accurate but first-order globally accurate (Bew-
ley, 2012). Provided that the time step is small 
enough, the explicit Euler method will yield good 
results for the problem. The simplest and most intui-
tive way of integrating the above scheme is by using 
the explicit Euler method, which takes the following 
form for Equation (1):  
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    (3) 

 
The explicit scheme of the length of the mud col-

umn in annulus is 

1 1n n n
Ann Ann AnnL L U t                (4) 

 
Eq. (3) can be easily solved using the velocity 

and position of the previous time step to solve for the 
acceleration of mud in annulus in each time step. The 
acceleration is then used to obtain the velocity of 
mud in annulus, which in turn is used to calculate the 
position of the liquid level in annulus. In practice, 
the routine can be summarized as follows: 
 Use Eq. (3) to update the acceleration based 

on the level position and velocity at the previous 
time step; 
 Use Eq. (4) to update the level position based 

on the new velocity. 
This procedure is repeated for each time step until 

the maximum time is reached.  
 
Initial Conditions 
 

After a circulation break, the initial mudflow ve-
locity in the drill string is equal to that in the string 
before a circulation break: 
 

0( 0)DCU t U               (5) 
 

During normal circulation, the length of the mud 
column within the drill string is equal to the well 
depth: 
 

( 0)DC wellL t L 
 (6) 

 
The annulus pressure at subsea level is ap-

proximately equal to the seawater hydrostatic pres-
sure; therefore, the length of the mud column within 
the annulus can be calculated using the following 
equation: 
 

( 0) w
ann well wL t L h

 



             (7) 

 
 

RESULT AND ANALYSIS 
 
Model Verification 
 

Field experimental test for the unsteady flow after 
a circulation break are not currently available for a 
CMC drilling system. In 2007, Akira Ogawa et al. 
studied the flow in a U-tube in a laboratory (Ogawa 
et al, 2007). They adopted 3 non-Newtonian fluids to 
carry unsteady flow experiments in a U-tube: 68% 
glycerin solution, 1.8% acrylic co-polymer solution 
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Table 3: Basic parameter values. 
 

Parameter Value 
Mud density, g/cm3 1.50 
Seawater density, g/cm3 1.03 
Fluid model Power-law
Water depth, m 2500 
Plastic viscosity, cP 45 
Bingham yield point, Pa 0.87 
Number of bit nozzles 3 
Bit nozzle diameter, 1/32nd in 14 
Well vertical depth, m 5000 
Length of drill collars, m 91.5 
Inner diameter of the last casing, m 0.22289 
Open hole diameter, m 0.22225 
OD and ID of drill string, m 0.127×0.1086 
OD and ID of drill collars, m 0.1778×0.0762 
ID of return line, m 0.1524 

 

Figure 6: Change of annulus flow velocity over 
time after the surface pump is shut down 

Figure 7: Change of mud level in annulus over 
time after the surface pump is shut down 

 
The BHP can be predicted based on the mudflow 

velocity and mud level in the annulus (Figure 8). 
 

Figure 8: Transient BHP after the surface pump is
shut down. 
 

The BHP is the sum of the hydrostatic pressure 

and friction pressure loss in the annulus. During un-
steady flow, a fluctuation in the BHP can occur. Fig. 8 
shows that the BHP rapidly decreases within the first 
few seconds due to the disappearance of the SPP. 
Subsequently, the BHP increases as the increase in 
the pressure resulting from the rising mud level in 
the annulus is larger than the decrease in the pressure 
caused by reduced annulus flow velocity; when these 
two equal to each other, the BHP reaches to a new 
high point; and then the increase in the pressure re-
sulting from the rising mud level in the annulus be-
comes less than the decrease in the pressure caused 
by reduced annulus flow velocity, and the BHP de-
creases gradually and tends to a constant. The fluc-
tuation in the BHP can threaten drilling safety as it 
can lead to the occurrence of kick. 
 
Applications 
 

Under normal circulation conditions in CMC 
drilling, the SPP is non-zero, a kick can be detected 
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CONCLUSIONS 
 

A new mathematical model for the unsteady flow 
during CMC drilling was developed in this study to 
simulate the annular after-flow and BHP after a circu-
lation break. The following conclusions are drawn: 

1. The mathematical model was verified using 
experimental obtained from U-tube flow. This veri-
fication indicated that the model is accurate, with a 
maximum average error of 3.56% for the flow 
velocity.  

2. Based on the new mathematical model, a 
method of early kick detection during the unsteady 
flow was formulated. This method identifies abnor-
malities in the mudflow by comparing the model-
calculated and measured return flow in the annulus. 
If the real-time measured flow trend differs from the 
model-calculated trend, a kick or loss of circulation 
can be detected in time. This approach will help to 
overcome the current difficulty of early kick detec-
tion during the connection of pipes. Accordingly, 
drillers can take well control actions in a timely man-
ner to prevent well blowout. 

3. Sensitivity analysis of various parameters indi-
cate that the velocity of continuous flow in the annu-
lus is directly proportional to the water depth, mud 
density, drill string size, and nozzle size and in-
versely proportional to the well depth and mud vis-
cosity. The time required for the unsteady flow to 
reach equilibrium is directly proportional to the wa-
ter depth, well depth, mud density, mud viscosity, 
drill string size and inversely proportional to the 
nozzle size.  

4. The water depth, mud density and drill string 
size were identified to be three major factors affect-
ing the fluctuation in the BHP after a circulation 
break. Whereas the water depth cannot be controlled, 
the mud density and drill string size should be care-
fully selected to minimize the risk of well blowout. 
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NOMENCLATURE 
 
AAnn  Cross-sectional area of annulus (m2) 
ADC  Cross-sectional area of drill string (m2)
G Gravitational acceleration (m/s2) 
HL  Left-liquid height (mm) 

HR  Right-liquid height (mm) 
hw  Water depth (m) 
ID Inner diameter 
LAnn  Length of mud column in the annulus (m) 
LDC Length of mud column inside the drill  

string (m)
Lwell Well depth below the Kelly bushing (m) 
N Time node
OD Outside diameter
PAnn, 0  Boundary pressure of mud level in the 

annulus (Pa) 
Pb Bottom hole pressure (Pa) 
Pbit Friction pressure loss in drill bit (Pa) 
PDC, 0  Boundary pressure of mud level inside  

the drilling string (Pa) 
Pf, Ann Friction pressure loss in the annulus (Pa)
Pf, DC, 0  Friction pressure loss in the drill  

string (Pa)
PI Productivity index (m3/(Pa·s)) 
Pp  Pore pressure (Pa) 
Q Reservoir inflow rate (m3/s) 
U0 Mud flow velocity in drill string before  

the surface pump is shut down (m/s) 
UAnn  Average flow velocity of fluid in the 

annulus (m/s) 
UDC  Average flow velocity of fluid inside  

the drill string (m/s)  
ρ Density of mud (kg/m3)  
ρ

w
  Seawater density (kg/m3) 
t Unit time step (s)
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trol surface velocity at the surface element dA ; n
represents the outward-pointing unit normal vector 
associated with dA ; CV denotes the control volume; 
CS represents the surface area of the control volume. 

According to the Reynolds transport theorem of a 
deforming control volume, the mass balance equa-
tion for the drill string can be written as follows: 
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The momentum balance equation for the annulus 

can be written as follows:  
 

2

,

( )
( )DC DC DC

DC DC DC B

DC f DC DC DC DC

A L U
A U U U

t

PA P A L A g







  



  
 (A2) 

 
where  is the density of the mud in kg/m3; ADC is 
the cross-sectional area of the drill string in m2; UDC 
is the fluid velocity in the drill string in m/s; LDC is 
the length from the bottom to the fluid level in the 
drill string in m; UB2 is the average velocity of the 
lower boundary of the control volume in m/s (when 
the lower boundary is fixed, the velocity is 0 m/s); 

,DCfP  is the friction pressure loss in the drill string in 

Pa; g is the gravitational acceleration in m/s2. P  is 
the pressure difference between two boundaries of the 
control volume in Pa ( 2 1B BP P P   , 1 ,0B DCP P ); 

,0DCP  is the atmospheric pressure in Pa because the 

drill string is open at the surface after the surface 
pump is shut down 2( )B DCP P ; and DCP  is the 
bottom hole pressure in the drill string in Pa. 

Expanding the time derivative of the momentum 
balance equation and combining Equations (A1) and 
(A2) yields the following expression for the momen-
tum balance equation of the drill string: 
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Similarly, the momentum balance equation for the 
annulus can also be obtained: 
 

,,0 f AnnAnn AnnAnn
Ann Ann

PP PU
L L g

t  


   


 (A4) 

 
where LAnn is the length from the bottom to the fluid 
level in the annulus in m; UAnn is the average flow 
velocity of the fluid in the annulus in m/s; PAnn, 0 is 
the atmospheric pressure because the annulus is open 
at the surface. PAnn is the bottom hole pressure in the 

annulus in Pa; ,f AnnP  is the friction pressure loss in 

the annulus in Pa. 
Combining the drill string and annulus momen-

tum balance Equations, (A3) and (A4), yields the 
following expression for the momentum balance 
equation for the fluid in the entire well: 
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    (A5) 

 
The wellbore mud is incompressible; therefore, 

the volumetric flow is conserved, which implies that 
the rate of volumetric change over time is the same 
inside the drill string and the annulus: 
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According to the energy balance equation, the fol-

lowing formula can be obtained:  
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where AAnn is the cross-sectional area of annulus in 
m2; bitP  is the friction pressure loss in the drill bit in 
Pa. The friction pressure loss calculation is well es-
tablished, and the detailed method used to calculate 

,f DCP , ,f AnnP  and bitP  can be obtained from the 

literature (Ochoa, 2006).  
According to Equations (A5) (A6) (A7), DCU  is 

eliminated, and the equation governing the liquid flow 
velocity in the annulus can be derived as follows: 
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Thus, the final expression for the motion equation 

for the length of mud column AnnL  in the annulus can 
be obtained: 
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