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Abstract  -  This work investigated the combination of agitation and aeration conditions in a bench-bioreactor 
to identify the optimal biosurfactant production from substrate based on beet peel and glycerol from a biodiesel 
process. Thus, a central composite rotatable design (CCRD) and responses were evaluated by response surface 
methodology (RSM) modeling. The optimal operation values determined were 200 rpm (agitation) and 0.5 vvm 
(aeration), reaching values of 1931.2 mg/L of crude biosurfactant concentration and 28.37 mN/m of surface 
tension. For the development of a mathematical model based on an artificial neural network (ANN), the 
experimental data from each run (CCRD) of the bioreactor were used. The results indicated a topology of 6-6-1 
neurons with an excellent predictive capacity of biosurfactant concentration: dispersion plot with R2 of 0.995, 
and error criteria SSE of 0.31, MSE of 7.29×10-4 and RSME of 2.7×10-2. A soft sensor was then designed in an 
electronic spreadsheet, computing the biosurfactant production from secondary measurements. Furthermore, the 
produced biosurfactant showed the ability to remediate oil spreading, evaluated through the appearance of clear 
zones on the surface of water covered with oil, and also from high emulsification indexes obtained on most of the 
solvents tested, such as toluene (~65%).
Keywords: Artificial neural network; Response surface modelling; Soft sensor; Beet peel; Oil spreading.

INTRODUCTION

The development of modern techniques allows the 
monitoring and control of bioprocesses, particularly 
when the measurements require lab work involving 
long processing times and delays. Industrial plants 

are expected to show higher efficiencies and product 
quality through faster decision-making regarding 
process variables.

Usually in bioprocesses, the cost of downstream 
steps constitutes the major portion of the total production 
cost. The cost of biosurfactant production will vary 
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depending on the biosurfactant application (food/ 
pharmaceutical or pretroleum industry application). 
Determination of the most important variable during 
the production process, the biosurfactant concentration, 
would bring about cost reductions. However, this 
measurement is currently delayed because of the 
dependence on other lab methodologies. Its monitoring 
would thus enable the operator to make decisions in 
real time and consequently implement the appropriate 
actions towards a more efficient production rate.

Application of soft sensors for the estimation of hard-
to-measure process values is extremely interesting for 
the process industry, where usually a large number of 
values are measured continuously (Rogina et al., 2011). 
A soft sensor is a device that uses a mathematical model 
of the process, along with experimental measurements 
of one or more physical variables, to provide an in-line 
estimation of the product state and other variables of 
interest (Bosca and Fissore, 2011). Soft sensors have 
been studied extensively in recent years (Wang et al., 
2015; Kaneko and Funatsu, 2013; Ge et al., 2014; 
Khatibisepehr et al., 2013; Liu et al., 2012). Various 
techniques have been proposed to design a soft 
sensor. Ni et al. (2014) developed a soft sensor based 
on localised adaptive techniques, where the preset 
threshold for updating the local region of the process 
was re-calculated. The algorithm was used in a moving 
window to provide the local learning framework for the 
online prediction with the soft sensor. Jin et al. (2015) 
proposed a multi-model adaptive soft sensor modelling 
method, based on the local learning framework and 
online support vector regression, for nonlinear time-
variant batch processes.

Artificial intelligence provides mathematical 
models capable of predicting the dynamic behaviour 
of processes. Artificial neural networks (ANNs), 
an artificial intelligence technique, can learn from 
examples, are fault-tolerant, are able to deal with 
nonlinear problems, and, when trained, can predict 
quickly. Caldeira et al. (2011) studied the combined 
effect of incubation time and aspartic acid concentration 
on the predicted biomass concentrations, as well as the 
sporulation and anti-fungal activities of compounds, 
using Bacillus amyloliquefaciens as the study 
organism and ANNs modelling. Sivapathasekaran 
et al. (2010) developed a neural model to predict 
biosurfactant production, taking into account the four 
concentrations of the critical medium components 
glucose, urea, MgSO4, and SrCl2. Other ANN models 
were also developed by Singh et al. (2008), Rahimi 
et al. (2015), Fang et al. (2016), Albuquerque et al. 
(2008), Oroian (2015), Fang et al. (2016), Fu et al. 
(2013), Oladunjoye et al. (2016) and others.

The objectives of the current study include: 
identifying the factors allowing the optimal 
biosurfactant production by Bacillus subtilis in a batch 
bioreactor (7-L); in this case, an alternative waste 

source substrate (glycerol from biodiesel production 
and beet peel) without any medium synthetic basal 
supplements was used; modelling the process using 
an ANN to predict crude biosurfactant concentrations; 
applying the intelligent soft sensor and validating 
it; and employing the produced biosurfactant for oil 
spreading. The findings allow the implementation 
of strategies for the maximisation of biosurfactant 
production and enable future innovations with the use 
of intelligent sensors that may permit, in the short-
term, reduction of losses through the capacity to apply 
corrective actions on batch processes in real time. 

MATERIALS AND METHODS

Inoculum Preparation and Standardisation

The microorganism used in fermentation for 
biosurfactant production was Bacillus subtilis, available 
from the microorganism bank of the Research Centre 
for Chemistry, Biology and Agriculture (CPQBA/
Unicamp). The medium used for the preparation of 
the inoculums was nutrient broth. The microorganism 
was initially added for adaptation to 15 mL of nutrient 
broth (pre-inoculum), into a 50-mL Erlenmeyer flask, 
and was incubated in an orbital shaker for 24 h at 37 
°C. Then, the inoculum (150 mL of sterile nutrient 
broth in a 250-mL Erlenmeyer flask) received the pre-
inoculum culture and was incubated in an orbital shaker 
following the same conditions. The standardisation 
of the inoculum was performed using nutrient broth 
adjusted in a spectrophotometer Genesys 10S (625-nm 
wavelength) to an absorbance range from 0.08 to 0.1, 
according to McFarland’s method.

Measurement of Glucose Concentration

To determine the glucose concentration, a laboratory 
biochemical glucose test kit was used. 10 μL of the 
supernatant sample was collected and added to 1 μL 
of the reagent solution (supplied by the manufacturer) 
and then immersed in a water bath for 5 minutes at 37 
°C. The samples were taken to the spectrophotometer 
at 505 nm and then absorbance was read immediately. 
From the calibration curve, glucose concentration was 
found.

Measurement of Biomass and Analysis of Surface 
Tension

Cell growth was determined by measuring 
the optical density of samples, using a UV-VIS 
spectrophotometer (Genesys 10S) at 600 nm. Biomass 
concentration was confirmed by using the dry weight 
(g/L) after removal of cells by centrifugation (10 000 
rpm, 10 min, 4 ºC) from supernatant.
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Surface tension of the cell-free broths was measured 
by the plate method, using a digital tensiometer model 
K12 (Krüss GmbH, German) at 20ºC. The surface 
tension determination was replicated at least two times.

Recovery of the Crude Biosurfactant

To recover the biosurfactant, the cell-free 
supernatant from the fermentation culture was 
subjected to acid precipitation (pH 2.0) with 1 M 
HCl and incubated for 24 h at 7 ºC. The resultant 
solution was maintained at rest for 12 h to allow the 
biosurfactant to settle. The precipitate was collected 
by centrifugation (10 000 rpm, 17 min, 2 ºC). The 
supernatant was then discarded and the precipitate 
was washed with acidified water and stored. All assays 
were performed in duplicates.

Application of Crude Biosurfactant in Oil 
Spreading

According to the method described by Mouafi et 
al. (2016), oil spreading was evaluated by adding 20 
mL of distilled water to a Petri dish, followed by the 
addition of 50 µL of oil on its surface. Then, 40 µL of 
cell-free culture broth was dropped on top of the crude 
oil surface and the diameter of the clear zone produced 
on the oil surface was assessed and compared to a 
negative control (culture medium).

Application of Crude Biosurfactant in 
Emulsification of Solvents

To analyze the emulsification (E24) in different 
solvents, the fermented medium was centrifuged (10 
000 rpm, 10 min, 4 ºC) to obtain cell-free supernatant. 
2 mL were collected from the supernatant to mix 
with 2 mL of solvents (diesel oil, gasoline, soy oil, 
heptane, hexane, toluene) in test tubes. It was stirred 
by vortexing for 2 min and the mixture was allowed to 
stand for 24 h. The E24 was calculated by Equation (1):

carried out to verify the combined effect of the agitation 
(X1) and aeration (X2) rates on the crude biosurfactant 
concentrations and surface tension reduction ratios during 
the biosurfactant production process. The experimental 
design was developed and analysed with the help of the 
STATISTICA 7 software; both the range and level of each 
factor are given in Table 1.

The experiments were conducted in a 7-L 
bioreactor (Bioflow 310 New Brunswick Scientific, 
USA) equipped with standard probes for temperature 
and dissolved oxygen, as well as auxiliary equipment, 
allowing a fermentation volume of 4 L, Figure 1. The 
composition of the alternative medium was determined 
as previously described Santos et al. (2014): 6% (v/v) 
of glycerol from biodiesel production and 7.5 % (v/v) 
of beet peel from restaurants. The pH was adjusted to 
around 7, using NaOH or HCl. Each batch was run for 
24 h and the sampling performed every 3 h.

A second-order polynomial regression (Equation 
2) was used in this study for the estimation of all main 
and joint effects while central and axial points were for 
providing replication and curvature terms in the model.

24
Height of the emulsion formed in 24h

Height of the solution
E =

Table 1. Values used in the experimental central composite rotatable design (CCRD).

Response Surface Methodology (RSM) Modelling

A 22 full factorial design with three assays at the 
central point and four axial points, totalling 11 runs were 
performed to optimize bioreactor conditions. Assays were 

2
0 j j ij i j jj jj i j j

y x x x x eb b b b
<

= + + + +∑ ∑ ∑

where x1and x2 are the input variables which are 
known to affect the response y and b0, bj, bij, bjj, are the 
relevant constants of the effects. Analysis of variance 
(ANOVA) was evaluated to validate the RSM model.

Modelling with ANN and Soft Sensor Design

The adopted ANNs were based on the multilayer 
perceptron, and the training algorithm used was 

Figure 1. Apparatus scheme used in the experiments 
representing bioreactor.

(1)

(2)
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the Levenberg-Marquardt based backpropagation 
algorithm, in conjunction with Bayesian regularisation. 
In the present study, the quantity of neurons in 
the input layer (any of this variables: microbial 
concentration, glucose concentration, dissolved 
oxygen concentration, surface tension, or dissolved 
surface tension in 10× and 100×) and the hidden layer 
were defined by parameters combination. This strategy 
may allow determining the best configurations, using 
one neuron in the output layer (crude biosurfactant 
concentration) in all the simulations.

Each neuron in the hidden layer calculates the 
summation of weighted outputs from previous neurons 
(n) and transforms it by the following activation 
function, to satisfy the feed forward sign. The 
activation functions used were (Equations 3 or 4):

RESULTS AND DISCUSSION

The procedures for the preparation and 
standardisation of the inoculum ensured reliable 
fermentation experiments, making sure that viable cells 
reached the same final concentrations in the different 
fermentation cultures. Biosurfactant production was 
reported earlier (Santos et al., 2014), using glycerol 
from a biodiesel process and beet peel from restaurants 
as culture broth, using an orbital shaker. Their results 
demonstrated that maximum crude biosurfactant 
concentration was 550 ± 85 mg/L in Erlenmeyer flasks 
with values of 6% (v/v) glycerol and 7.5 % (v/v) beet 
peel, established by CCRD, suggesting the feasibility 
of a batch bioreactor assay.

Central Composite Rotatable Design (CCRD)

The experiments in the batch bioreactor were carried 
out to provide the best conditions for fermentation 
by Bacillus subtilis and subsequent biosurfactant 
production, using only waste sources (glycerol from a 
biodiesel process and beet peel from restaurants). The 
influence of each factor on the biosurfactant production 
at determined levels is shown by the responses in 
the crude biosurfactant concentrations and surface 
tension reduction ratios (Table 2). Thus, the scenario 
of possibilities among the variables were performed 
in the experimental matrix of 22 central composite 
rotatable design (CCRD) in addition to three central 
points and four axial points, totalling 11 runs.

The CCRD matrix indicated biosurfactant 
production for all the studied factor combinations 
(different levels of agitation and aeration). Therefore, 
these levels yield different concentrations of crude 
biosurfactant and surface tension reduction ratios. 
When comparing these results with those previously 
obtained Santos et al. (2014), for which the optimum 
concentrations in the culture broth (based only on 
waste sources) were developed in Erlenmeyer flasks, 
an improvement was observed in crude biosurfactant 
concentrations uperward of 3-fold. Pereira et al. (2013) 
studied biosurfactant production by Bacillus subtilis 
using sucrose as synthetic carbon source (similar to 
the waste in this study) and reached 2158.5±240,1 
mg/L of crude biosurfactant concentration; this value 
is near that observed in this study.

Based on these results, the matrix was evaluated, 
enabling the calculation of a regression coefficient 
with a p-value limit of 0.1. Tables 3 and 4 show the 
scenarios of the regression coefficient for each one 
of the factors, represented by the linear and quadratic 
agitation (X1), the linear and quadratic aeration (X2), 
and their interactions, X1 x X2. The greatest factor 
value was the quadratic agitation (X1

2) in both models, 
revealing negative influences. Fermentation processes 
are quite difficult to study, owing to sources of variation, 

Thus, the simulations were made by blocks, where 
each scenario was investigated to reach the best values 
of correlation coefficient (R2), parameters of error 
(sum of square error (SSE), mean square error (MSE) 
and root mean square error (RMSE)), (Equations 5, 6, 
7), as well as linear and angular coefficients (A and B), 
from the dispersion plot. 

( ) ( )
1log

1 exp
sig n

n
=

+ −
(3)

( ) ( )
2tan 1

1 exp
sig n

n
= −

+ −
(4)

Once the neural network was created, it was trained 
to accurately model the given dynamic, using the 
experimental data in MATLAB version 7b (Mathworks 
Inc., US). All the data sets required to train, validate, 
and test the neural soft sensors were obtained from 
biosurfactant production experiments carried out using 
the bioreactor.

When the ANN model had been validated offline, the 
structure of the soft sensor was made in the electronic 
spreadsheet (Excel, Microsoft Office). In this way, the 
designed soft sensor received the information in the 
input layer and automatically calculated the output and 
the values were evaluated.

( )
1

n

observed predicted
i

SSE y y
=

= −∑ (5)
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n
observed predicted

i

y y
MSE

n=

−
= ∑ (6)

RMSE MSE= (7)
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especially when using waste substrates. By analysing 
the experimental results through RSM, it was possible 
to get an empirical model for the best response.

A statistical model was developed (Equations 
8 and 9 referring to Table 3 and 4, respectively), 
which describes the behaviour of crude biosurfactant 
concentration (mg/L) and surface tension reduction 
ratio (%), explaining the mathematical relationship 
between the selected predictors and the response. 
As seen in CCRD assays, the responses show large 
deviation due to errors occurred in the data acquisition 
system (accepted in bioprocesses). This justifies 
studying the process at a confidence level of 90% 
(p-value of 0.1). For practical purposes, the model 
was adjusted through re-parameterisation to make 
it as simple as possible, with the fewest possible 
parameters, without losing accuracy.

model to a level of 90 %. Table 5 shows the ANOVA 
results for those models, explaining 83.05 % of the 
crude biosurfactant concentration and surface tension 
reduction ratio behaviour, with Fcal larger than Ftab 
in both cases. These results are promising, because 
these polynomial models can enable the prediction 
of the responses in valid regions. Figure 2 presents 
the three-dimensional response surface and contour 
curve, which are the graphical representations of the 
equations entered in the optimisation tracks.

According to each plot, the effect of two independent 
variables was diversified within the experimental range 
for optimal values. Thus, it was possible to suggest the 
type of interactions between variables and establish 
the best operation conditions. Agitation was set at 
the middle level, 200 rpm, and aeration was set at the 
lower level, 0.5 vvm. For validation, experiments were 
performed with the optimised conditions and values 
were obtained of 1780.60 ± 80.50 mg/L for crude 
biosurfactant concentration and 45.03 ± 4.80 % for 
surface tension reduction ratio (~28mN/m), showing 
good agreement with the models. When compared 
with the previous study, the crude biosurfactant 
concentration was enhanced three-fold, confirming 

Table 2. Experimental central composite rotatable design (CCRD) runs, corresponding crude biosurfactant 
concentrations, and surface tension reduction ratios. 

Table 3. Regression coefficient for the crude biosurfactant concentration model.

Table 4. Regression coefficient for the surface tension reduction ratio model.

( ) 2 2
1 2 2Crude biosurfactant / 1034.41 347.93 108.15 176.61mg L X X X= − − +

( ) 2
1 1Surface tensio reduction ratio % 41.32 4.44 9.01X X= − −

Analysis of variance (ANOVA) was performed 
to ensure confidence of the generated second-order 

(8)

(9)
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the importance of the optimisation of operating 
parameters, such as agitation and aeration.

It is important to understand the experimental 
characteristics of this process. All responses used 
in the CCRD corresponded to high values reached 
in batch (around 9h of 24h). The 24 hours for batch 
duration were chosen by observing the behaviour of 
the process using only waste in fermentation. 

The biosurfactant production was made evident 
in the first 9h by the accentuated fall in surface 
tension from 53 to 28.37 mN/m and increase of crude 
biosurfactant concentration to 1931.2 mg/L. After this 
period, the production of biosurfactant was reduced 
in the medium, resulting in an increase in surface 
tension. Barros et al. (2008) showed similar behaviour 
that could be associated with the exponential growth 
and, consequently, with the synthesis of compounds 
of interest. The substrate was consumed over time 
and the biosurfactant produced may have been used 
to facilitate the maintenance of the microorganism for 
survival in the fermentation. This theory is reinforced 
when the graph of kinetics of microbial concentration 
(g/L), glucose concentration (g/L) and dissolved 
oxygen was analyzed (Figure 4).

It is possible to observe in Figure 3, that as, 
biosurfactant concentration increases in the culture 

Table 5. Analysis of variance (ANOVA) for the crude biosurfactant concentration and surface tension reduction 
ratio.

Crude biosurfactant (CB): F3;7;0,10 = 3.07; correlation coefficient: R2 = 83.96.
Surface tension reduction ratio (ST): F2;8;0,10 = 3.11; correlation coefficient: R2 = 75.75.

Figure 2. Response surface and curve contour: (A) 
crude biosurfactant concentration; and (B) surface 
tension reduction ratio.

Figure 3. Kinetics of biosurfactant production: Surface 
tension (mN/m) and crude biosurfactant concentration 
(mg/L).

medium, lower values of surface tension are achieved 
up to a minimum value.

The microbial concentration increases in 
fermentation as the dissolved oxygen and glucose 
concentration fall. The consumption of micronutrients 
results in a critical medium (approximately 11h) for 
the microorganism and the microbial growth was 
not harmed because of the presence of biosurfactant. 
Microorganisms have adapted to living in these 
challenging environments, surviving as free-living 
as is mentioned by Kennedy at al. (2011). Oliveira 
et al. (2013) working with Bacillus subtilis, grown 
in clarified cashew apple juice, report that the 
biosurfactant tested exhibited excellent surface 
activity, reducing the tension of water from 58 to 
30 mN/m in 24h and then increasing from 30 to 45 
mN/m in 72h. As biosurfactant production increases 
the surface tension of the medium decreases up to 
a certain value and then becomes almost constant 
due to the interface saturation with the biosurfactant 
molecules. The authors attributed the contradiction to 
the low purity of the preparation, since it was extracted 
from the culture medium.

It was noted that the glucose concentration increased 
from time 0 to 3 hours. The reason for this phenomenon is 
the primary carbon source, sucrose. Increasing microbial 
concentration also increases enzyme production to 
convert sucrose into glucose and fructose. Thus, there 
is an increase of glucose concentration to 5.5 g/L at 3 
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hours-time. From this moment, the concentration starts 
decreasing until vanishing. 

Considering the relationship of the main variables, 
the process displays a strong nonlinear behavior, 
difficult to model from first principles phenomena 
(Figure 5). This fact justifies the use of artificial neural 
network modeling.

Design of a Soft Sensor with Artificial Neural 
Network (ANN) Modelling

The first approach to design a soft sensor is to 
develop a mathematic model. This study uses an 

artificial neural network (ANN) as the inferential 
model. This artificial intelligence technique needs 
process examples to learn its behaviour. Therefore, 
the database from the eight runs (dynamic behaviour 
of available points) in the batch bioreactor was 
used to train and test the ANN (corresponding to 9 
experimental points).

The data sets required to train and test the neural soft 
sensors were obtained from biosurfactant production 
experiments carried out using substrate based on 
combinations of glycerol from a biodiesel process and 
peel beet in a 7-L bioreactor, under different agitation 
and aeration conditions specified in the CCRD. The 

Figure 4. Kinetics of dissolved oxygen (mg/L), glucose concentration (g/L) and microbial concentration (g/L).

Figure 5. Relationship between biosurfactant production (crude biosurfactant) and dissolved oxygen, surface 
tension, glucose and microbial concentration.
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experimental data sets were smoothed and expanded by 
interpolation using piecewise cubic spline smoothing. 
The smoothing expanded each data set (from 8 runs) 
from 9 to 25 data. As each data set was performed in 
duplicate, then the database transitioned to having 600 
data from the original 216 data points.

The variables assessed from the bioreactor through 
sampling were microbial concentration (MC), glucose 
concentration (GC), dissolved oxygen concentration 
(OD), surface tension (ST), dissolved surface tension 
(10×(ST-1) and 100×(ST-2)), and crude biosurfactant 
concentration; sampling was carried out every 3 
h. The choice of the variables was according to 
availability and time for measurement, with some of 
them being measured by analytical methods (glucose 
concentration). The microbial concentration was 
measured using optical density and a gravimetric 
method as well. The optical density measurement was 
chosen to provide ANN input data because it is faster 
than the gravimetric methodology. It is important to 
highlight that the crude biosurfactant concentration 

(output neuron in the ANN model) variable takes 
about 48 h to measure. The strategy was to build a soft 
sensor that could analyse this variable in real time. 
The database was separated into two parts: 75% for 
training and 25% for testing.

The simulation was performed to seek the best 
scenario of neural topologies. Table 6 shows the 
simulations in blocks with combinations of neurons in 
the input layer, activation functions and neurons in the 
output layer.

For each simulation by blocks, neurons in the 
hidden layer were diversified as for the neuron quantity 
in the input layer. The activation functions used for 
the hidden layer were logistic (logsig) and hyperbolic 
tangent (tansig), while linear for the output layer. 
For all cases, the learning algorithm was Levenberg-
Marquardt with Bayesian regularisation (trainbr).

The analysis of the simulation is presented in Table 
7. The values of correlation coefficients (R2), error 
parameters (SSE, MSE, and RMSE), and linear and 
angular coefficients (from the equation of the line), 

*MC - Microbial concentration; GC - Glucose concentration; OD- Dissolved oxygen concentration; ST - Surface tension; ST-1 - Dissolved surface tension 10×; 
ST-2 - Dissolved surface tension 100×; CB – Crude biosurfactant concentration.

Table 6. Scenarios of ANN topologies.

Table 7. Performances of simulation blocks.
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refer to testing data. Ideally, the values of R2 should 
be close to 1, the values of error indices (SSE, MSE, 
RMSE) should be close to 0, and linear and angular 
coefficients (A and B) should be 0 and 1, respectively. 
These results indicate that the model describes well the 
relationship between the input and output parameters.

The simulations with the neural model were quite 
different depending on each block. Block I was the 
worst simulation scenario, even with high amounts of 
effective parameters. The R2 did not reach values higher 
than 0.6, the sum of square error (SSE) decreased from 
13.69 to 7.30 (from low- to high-parameter values), 
and so did the mean square error (MSE; from 3.22E-02 
to 1.71E-02) and the root mean square error (RMSE; 
from 1.79E-01 to 1.31E-01). However, the linear and 
angular coefficients (A and B) were balanced.

Block II was not different from block I, because the 
only difference between both scenarios was the change 
in the activation function, from logsig to tansig.

For blocks III and IV, we observed improved 
values. The R2 reached values around 0.9 and the 
error parameters (SSE, MSE, and RMSE) decreased 
markedly (around 0.1, 3.9E-04, and 2E-02, 
respectively). The linear coefficient reached values 
lower than those observed before, but the angular 
coefficient showed values close to one (better than 
seen before).

The last blocks of simulations (V and VI) gave 
the best results, with nearly all the values showing 
improvement. More particularly, block VI showed 
the best simulation outcomes. The condition with six 
neurons in the hidden layer was the best scenario of 
all, showing a R2 of 0.995 (hence very close to one), 
the lowest error values (SSE of 0.31, MSE of 7.29E-
04, and RMSE of 2.70E-02), and linear and angular 
coefficients of -0.38 and 0.99, respectively.

The performance of the ANN model for the 
prediction of crude biosurfactant concentration in 
block VI (with six neurons in the input layer) was also 
evaluated through a graph of dispersion (Figure 6). 
The comparison between the ANN model prediction 
and the observed values is illustrated in Figure 7. This 
process is important to understand the precision of the 
developed ANN model.

The results show that the ANN model accurately 
estimated the variation in real crude biosusurfactant 
concentration values. This leads to the conclusion 
that the topology 6-6-1 (Figure 8) could be used, 
because the model achieved a good agreement with 
few parameters (49). A neural model with a large set 
of parameters can cause overfitting, leading to large 
errors in performance for prediction. Small-size neural 
networks are important for real-time applications, 
due to their better generalization capability and less 
computational effort (Albuquerque et al., 2008). 
Thus, the developed neural model can be applied to 
predict dynamic behaviour in batch bioreactors for 

Figure 6. Dispersion plot of crude biosurfactant 
production (mg/L).

Figure 7. Comparison between observed and predicted 
values of crude biosurfactant concentrations in the test 
data set performed by the ANN model.

biosufactant production, enabling faster actions for 
adjustment.

Kashkouli et al. (2011) used ANN modelling in 
fermentation parameters for biosurfactant production 
by Bacillus subtilis using sugar cane molasses. The 
topology reached was 3 neurons in the input layer, 6 in 
the hidden layer and 1 in the output layer and a network 
was trained by Levenberg-Marquardt algorithm. The 
authors observed MSE of 1.33E-06 and R2 of 0.997.

Application of the Soft Sensor Using an Electronic 
Spreadsheet

The soft sensor was based on the neural model 
(with optimised weight and bias) and its structure was 
entered into an electronic spreadsheet. Consequently, 
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information (corresponding to measured variables) 
was continuously updated in the neurons of the input 
layer, and the predicted values of crude biosurfactant 
concentration were calculated automatically. 
Thereby, the electronic spreadsheet became the soft 
sensor. Figure 9 shows the predicted values of crude 
biosurfactant concentration, monitoring the system 
after measurement of secondary variables.

The analysis of these results demonstrated that 
neural modelling (by Figure 10) is a useful tool for 
accurate and cost-effective modelling of biosurfactant 
production processes. For this reason, the soft sensor 
designed in the present work, can be used for the 
monitoring (supervision and understanding) of all 
batches of biosurfactant production. 

Application of the Produced Biosurfactant

The crude biosurfactant was applied in oil 
spreading, as a bioremediation agent. Figure 11 shows 
the clear zones produced when the crude biosurfactant 
(from the supernatant) was added onto the surface of 
oil on water.

The results showed that, when the negative control 
was added onto the surface of oil on water (Figure 
11A), a small clear zone appeared, whereas when 
crude biosurfactant was added (Figure 11B), a much 
larger clear zone was observed. This suggests that 
the supernatant (after fermentation) contained a high 
concentration of biosurfactant, supporting the idea of an 
application for reducing damages caused by oil spills.

The biosurfactant-containing cell-free broth was 
able to emulsify many solvents, as seen in Figures 
12 and 13. The emulsification index of culture 
supernatant was found to be the least with soy oil (0.0 

Figure 8. Topology chosen for the soft sensor. 
Microbial concentration (MC), glucose concentration 
(GC), dissolved oxygen concentration (OD), surface 
tension (ST), dissolved surface tension in 10× (ST-1) 
and 100× (ST-2).

Figure 9. Neural model implemented in an electronic spreadsheet to monitor biosurfactant production.

Figure 10. Performance of the soft sensor when data 
was inserted in the electronic spreadsheet.
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52%. The emulsification index values of Bacillus 
subtilis K1 culture supernatant (Pathak et al., 2013) for 
hexane was 33.3% and heptane was 40%. In this study, 
the emulsification index obtained is in accord with that 
observed in other papers, indicating its application, for 
instance, in environmental contamination.

CONCLUSION

The biosurfactant produced by Bacillus subtilis 
fermentation could be followed in a batch bioreactor 
with an alternative substrate from waste, without the 
addition of any synthetic supplements. Through the 
statistical model, the optimum points were reached 
by analysis of response surface methodology to 
define the operation parameters, yielding a good 
agreement between the values for crude biosurfactant 
concentration (~1931.2) and surface tension reduction 
ratio (~46.4). To our knowledge this is first report on the 
use of beet peel for biosurfactant production in a batch 
bioreactor. The use of alternative substrate from waste 
(beet peel from restaurants and glycerol from biodiesel 
production) as culture medium would have a huge 
impact on biosurfactant production costs. Thus, the 
application of an ANN-based approach with hyperbolic 
tangent activation function and trainbr training 
algorithm was able to accurately model (R2 = 0.9955) 
the desired dynamic behaviour of crude biosurfactant 
concentrations. These results allowed the development 
of a soft sensor aided by Excel to monitor and infer 
actions. The biosurfactant produced was applied in 
Petri dishes containing an oil layer on water and showed 
promising potential (observation of clear zones) in 
remediation applications of oil spill. The values of 
the emulsification index observed in organic solvents, 
such as gasoline (41.6%), heptane (56.4%) and toluene 
(65.5%), suggest its application in industrial processes.
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Figure 11. Crude biosurfactant application: (A) Petri 
dish before (left) and after (right) addition of negative 
control. (B) Petri dish before (left) and after (right) 
addition of crude biosurfactant.

Figure 12. Emulsifying index (%) in different solvents 
such as diesel oil, gasoline, soy oil. heptane, hexane, 
toluene.

Figure 13. Emulsifying index using diesel oil, gasoline, soy oil, heptane and hexane.

%) and maximum with toluene (65.5 %). It is known 
the biosurfactants interact with hydrocarbons and form 
emulsions with the aqueous medium.

Al-Wahaibi et al. (2014) reported biosurfactant 
production by Bacillus subtilis that emulsified various 
hydrocarbons, among them hexane 48% and heptane 
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