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Abstract - There are numerous examples of the importance of small molecule migration in polymeric 
materials, such as in drying polymeric packing, controlled drug delivery, formation of films, and membrane 
separation, etc. The Chapman-Enskog kinetic theory of hard-sphere fluids with the Weeks-Chandler-
Andersen effective hard-sphere diameter (Enskog-WCA) has been the most fruitful in diffusion studies of 
simple fluids and mixtures. In this work, the ability of the Enskog-WCA model to describe the temperature 
and concentration dependence of the mutual diffusion coefficient, D, for a polystyrene-toluene system was 
evaluated. Using experimental diffusion data, two polymer model approaches and three mixing rules for the 
effective hard-sphere diameter were tested. Some procedures tested resulted in models that are capable of 
correlating the experimental data with the refereed system well for a solvent mass fraction greater than 0.3. 
Keywords: Polymer-solvent systems; mutual diffusion coefficients; Chapman-Enskog kinetic theory. 

 
 
 

INTRODUCTION 
 

There are numerous examples of the importance 
of small molecule migration in polymeric materials, 
such as in drying polymeric packing, controlled drug 
delivery, film formation, and membrane separation, 
etc. In general, mass transfer in these processes is 
strictly regarded as a diffusion-limited mechanism. 
Therefore, it would be useful if the diffusion 
coefficient of a molecule at a specific concentration 
and temperature could be easily determined without 
the necessity of experimental data measurements.  

Currently, the most frequently used approach for 
describing diffusion in polymer-solvent systems is 
the Vrentas/Duda model (Vrentas and Duda, 

1977a,b), which is based on the free-volume theory. 
One can observe from the literature that, in the 
predictive version, the model is capable of 
qualitatively representing the experimental data, but 
significant quantitative deviations are verified, 
mainly at low polymer concentrations (Reis et al., 
2001). However, it is possible to improve the results 
significantly when parameters are obtained from 
regression of experimental data (Reis et al., 2001). 
These deviations are associated with implicit 
shortcomings of the model as well as with the 
difficulties in obtaining accurate model parameters. 
Though the diffusion free-volume theory has been 
pointed to in the literature as a reference to estimate 
mutual diffusion coefficients as a function of 
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temperature and concentration for polymer systems, 
its theoretical formalism has reached such an 
advanced stage that improvements in its prediction 
capability seem to be possible only on a purely 
empirical basis. In this context, interest in 
developing models by using new approaches to 
improve the diffusion prediction as well as to 
interpret the diffusion mechanism better has grown 
rapidly. 

In terms of practical applications and theoretical 
studies, the Enskog kinetic theory of hard-sphere 
fluids has been the most fruitful (Dariva et al., 
1999a,b). In this theory, the transport properties are 
calculated by very simple equations relating particle 
mass, temperature, fluid density, particle size, and 
radial distribution function at contact. Based on 
smooth- or rough-hard-sphere theory, several 
empirical methods have been developed (Rocha et 
al., 1997). Diffusion coefficients for monatomic 
gases at low densities can be calculated at any 
temperature by using the kinetic theory (Reed and 
Gubbins, 1973). However, no rigorous model is 
available to evaluate diffusion coefficients for 
monatomic or polyatomic fluids at high densities in 
terms of a realistic description of molecular 
interactions (Yu and Gao, 1999). Simple semi-
theoretical methods based on statistical mechanics 
appear to be the most promising for engineering 
purposes. Liu et al. (1998) provided an extensive 
review of diffusion coefficient prediction and 
correlation methods, in which several diffusion 
models for simple fluids are compared. 

The effective hard-sphere diameter (EHSD) 
method has been widely used to calculate both 
equilibrium and transport properties. Various EHSD 
explicit equations have been proposed in the 
literature according to different criteria (Silva et al., 
1998). For example, Rocha et al. (1997) and Dariva 
et al. (1999a,b) successfully estimated diffusivities in 
dense real fluids and real fluid mixtures with the 
Weeks-Chandler-Andersen (WCA, Weeks et al., 
1971) effective hard-sphere diameter under sub and 
supercritical conditions. 

Taking into account the discussion above, the aim 
of this work is to study the potential of the Chapman-
Enskog theory together with the WCA effective 
hard-sphere diameter formalism to represent the 
temperature and concentration dependence of the 
mutual diffusion coefficient in polymeric systems. 
The results of different calculation procedures are 
reported, testing the mono- and polyatomic 
formalisms, different combining rules, and some 
parameter estimation strategies. Then the resulting 
models are used, either to predict mutual diffusion 

coefficients of the polystyrene-toluene system at 
110oC over almost the entire composition range (Liu, 
1980) or to predict mutual diffusion coefficients at 
infinite dilution of polystyrene in toluene as a 
function of temperature (Zielinski, 1996). The results 
obtained for each approach employed in this work 
are compared with experimental data. 
 
 

THEORY 
 

As discussed previously, large number of 
diffusion models has been advanced lately in order to 
improve the prediction capability of diffusivities in 
dense fluids as well as to provide a better 
interpretation of the diffusion mechanism. 
Accordingly, interest in the Chapman-Enskog 
transport theory has markedly increased due mainly 
to its well-based formalism, making it the backbone 
of transport treatment. In previous works (Dymond, 
1985; Speedy, 1987; Heyes, 1988; Erkey et al., 1990; 
Erpenbeck and Wood, 1991, Harris, 1992; Amoros, 
1994; Ruckenstein and Liu, 1997; Liu et al., 1998; 
Yu and Gao, 1999), some theoretical details and 
shortcomings, implicit in the original Enskog models 
for dense fluids (Chapman and Cowling, 1970) have 
been discussed and some changes have been 
proposed with the aim of making it possible to 
calculate diffusion coefficients for more complex 
fluids in wider ranges of temperatures and 
compositions. Nevertheless, to date the diffusion 
studies involving macromolecules show that 
applicability of the original Enskog model is still 
limited.  

Self-diffusion in hard-sphere fluids at low 
densities, D(ρ→0) or simply D0, can be described 
by the following equation (Reed and Gubbins, 
1973): 
 

1 / 2

0 2
3 kT

D
m8

 =  πρσ  
         (1) 

 
where k is the Boltzmann constant, T the absolute 
temperature, σ the molecular diameter, ρ the number 
density, and m the particle mass. 

For dense fluid, however, rigorous treatment is 
much more complicated. To overcome the inherent 
arising difficulties, Chapman and Enskog kept the 
binary collisions assumption and relaxed the 
molecular chaos consideration for velocities (but not 
for positions) to derive the following simple equation 
for a system formed of hard spheres (Reed and 
Gubbins, 1973): 
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where g(σ) is the radial distribution function at 
contact. 

Inspection of Eq. (2) shows that as density 
increases, diffusion approaches zero, whereas when 
ρ→0, g(σ)→1 and DE →D0.  

Recently, much attention has been dedicated to 
the study of properties of simple fluids, using models 
such as the hard-sphere (HD), square-well (SW), and 
Lennard-Jones (LJ) fluid models. In terms of 
transport properties, molecular dynamic simulations 
(MDS) have been carried out for these fluids as the 
technique makes use of a well-defined hypothesis 
and is rigorous within the physical limits established 
in the simulations. Thus MDS data obtained for 
simple fluids are used in the development of 
empirical correlations (high densities - Ruckenstein 
and Liu, 1997 and chain connectivity - Yu and Gao, 
1999) to correct the Enskog model for more complex 
fluids at wider density intervals.  

The radial distribution function at the interface 
used in this paper was proposed by Carnahan and 
Starling (1969): 
 

( )
( )3
1 0.5

g
1

− η
σ =

− η
                      (3) 

 
where 
 

31 1
*

6 6
η = πρ = πρσ                      (4) 

 
Concerning the effective hard-sphere diameter, 

the present approach is based on an idea of Schrodt 
and Davis (1974), whereby the requirement that the 
pair-potential function has a hard-sphere core cut-off 
is eliminated. Their results for excess pressure are 
essentially the same as those of the Weeks-Chandler-
Andersen (Andersen et al., 1971) perturbation theory 
of liquids, and hence they postulated that the 
properties of a real system obey the kinetic equation 
of a hard-sphere system of diameter d. The WCA 
theory predicts very well the equilibrium structure as 
given by the radial distribution function, especially 
for liquids and dense fluids. Thus, all the σ in the 
diffusion coefficient equations are replaced by the 
WCA hard-sphere diameter, d. In this work, the 
accurate proposal of Souza and Ben-Amotz is chosen 
(1993), 

( )
( )

( )

1/ 61 / 2* *2 *4
2 31/ 6

* *2 *3
1 4 5 6

T a T a T
d , t 2 1

a 1 a a a

−
  + +  ρ = σ +  + ρ + ρ + ρ   

                                           (5) 

 
where T*(≡T/(ε/k)) is the reduced temperature, ε is 
the Lennard-Jones energy parameter and a1=1.5001, 
a2=-0.03367, a3=0.0003935, a4=-0.09835, a5=0.04937, 
a6=-0.1415 are constants. Rocha et al. (1997), 
Ruckenstein and Liu (1997), and Yu and Gao (1999) 
found that the energy parameter, ε , is insensitive to 
the experimental self-diffusion data; therefore it was 
assumed that the molecular energy is the sum of all 
the LJ segment energies. Analogous to the LJ fluid, 
the relation obtained from viscosity data (Reid et al., 
1987) was employed to determine the energy 
parameters, as follows:  
 

( ) CT
N / k

1.2593
ε =               (6) 

 
where CT  is the critical temperature. The chain 
segment critical temperature was calculated using the 
Joback group contribution method (Reid et al., 
1987). 
 
Binary Systems 
 

For a binary mixture, the mutual diffusion 
coefficient is obtained straightforwardly by replacing 

d by d12, the cross hard-sphere diameter; ρ by ρm, the 
mixture density, and m by m12 (≡m1m2/(m1+m2)), the 
reduced mass of solute 1 and solvent 2: 
 

( )

1 / 2

12 2
12 12m 12

3 kT 1
D

2 m g d8 d

 
=  πρ  

                          (7) 

 
The combining rules used for d12 will be 

commented on later. The radial distribution function 
at contact, g(d12), is calculated by using the 
Carnahan-Starling equation extended to mixtures by 
Mansoori et al. (1971): 
 

i j 2
ij 2

3 i j 3

2 2
i j 2

3
i j 3

3d d1
g(d )

1 d d (1 )

d d
2

d d (1 )

ξ
= + +

− ξ + − ξ

  ξ
+   + − ξ 

        (8) 

 
where 

N
s

i i
s

i 1

d
6

=

π
= ρξ ∑ ,    s = 0, 1, 2, 3          (9) 
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Throughout this work, the reduced density of 
mixture, m*ρ , is calculated by 
 

N
3

m i i
i 1

* d
=

ρ = ρ∑                   (10) 

 
where ρi is the density of component i in mixture 
(xiρm). 

It is believed that, during the process of diffusion in 
polymeric systems, a series of phenomena not 
considered in the original Enskog model occurs, which 
makes its use prohibitive for these systems from a 
practical point of view. Effects caused by molecular 
asymmetry (highly nonspherical molecules), chain 
connectivity, entanglement of polymeric segments, etc. 
may be mentioned as examples. Recently, Reis (2001) 
proposed a correction term for high densities and used 
a chain connectivity expression in the original Enskog 
model. The resulting equation was applied to the 
polystyrene-toluene system at 110oC in a wide range of 
compositions. The results were compared to 
experimental data (Liu, 1980) and to those obtained 
from the models of Yu and Gao (1999) and Enskog-
WCA (Rocha et al., 1997). It was verified that there is a 
concentration range where all the studied models have 
very similar performances and represent the 
experimental mutual diffusion coefficient data 
qualitatively well. The influence of chain connectivity 
was observed to be more significant at higher polymer 
concentrations where disagreement between 
experiment and theory is evident. Thus, according to 
the results shown in Figure 1, the upgrade proposed for 
the Enskog model did not contribute in fact towards an 
understanding of the diffusion mechanism in 
concentrated polymeric systems. 

In the present work, a systematic study of the 
original Enskog model is presented for dense fluids 
by testing some combining rules for the cross EHSD, 
using mono and polyatomic expressions and 
different data fitting strategies. 

 
 

CALCULATION PROCEDURES 
 

For the cross EHSD, d12, the following combining 
rule (Eq. (11)) and two mixing rules (Eqs. (12) and 
(13)) are tested: 
 

(a) 1 2 2
12

d n d
d

2
+

= ;                           (11) 

 
(b) 12 1 1 2 2 2d x d x n d= + ;              (12) 

(c) 12 1 1 2 2 2d d n d= φ + φ .                    (13) 
 
where di is the effective diameter of component i, n2 
the number of polymer segments, xi the molar 
fraction of component i, and φi the volume fraction 
of component i. 

Regarding the structure of the components, the 
solvent is always treated as a single hard sphere, 
whereas, for polymer molecules, two possibilities are 
tested, resulting in the following systems: 
§ System (1): the solvent and polymer molecules 
are single hard spheres (n2=1);  
§ System (2): the solvent molecule is a hard sphere 
and the polymer is treated as a group of hard spheres 
without any connectivity restriction. 

For the following are the experimental data fitting 
used:  
§ Data source (i): mutual diffusion coefficient data at 
infinite dilution of polystyrene in toluene as a 
function of temperature (Zielinski, 1996); 
§ Data source (ii): mutual diffusion coefficient data 
for polystyrene-toluene, as a function of 
composition, obtained at 110oC by Liu (1980). 

In addition, for the procedures involving System 
(2), different parameter estimation strategies were 
adopted. In strategy 1, the polymer segment 
diameter, σ2, is adjusted while the number of 
segments (n2) is taken as the ratio of polymer 
molecular weight to its monomeric unit molecular 
weight (for polystyrene, n2 = 2875 segments). In 
strategy 2, the number of segments is adjusted and 
the segment (monomer) diameter is calculated by the 
following equation (Dariva et al., 1999b): 
 

1 /3
C,segment

segment solvent
C,solvent

V

V

 
σ = σ  

 
       (14) 

 
where Vc,i is the molar critical volume of component 
i. The chain segment critical volume was calculated 
using the Joback group contribution method (Reid et 
al., 1987). In strategy 3, both parameters are adjusted. 

The adjusted parameter values, from a given data 
source, were employed in model extrapolations for 
comparison with the other data source. The least-
squares method was used for all parameter estimations. 

A summary of the adopted strategies is presented 
in Table 1. It should be emphasized that, for all 
procedures listed in this table, the radial distribution 
function of the monomer-monomer type was used; 
 therefore restrictions of chain connectivity were not 
introduced. 
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Figure 1: Comparison of calculated and experimental (Liu, 1980) mutual diffusion coefficients for the 
polystyrene-toluene system at 110oC as a function of toluene mass fraction. 

 
Table 1: Summary of calculation procedures employed in this work. 

 
Procedure System1 Combining rule2 Data Source3 Remarks4 

1 (1) (a) (i) strategy 1 
2 (1) (b) (i) strategy 1 
3 (1) (c) (i) strategy 1 
4 (1) (a) (ii) strategy 1 
5 (1) (b) (ii) strategy 1 
6 (1) (c) (ii) strategy 1 
7 (2) (a) (i) strategy 1 
8 (2) (a) (i) strategy 2 
9 (2) (a) (i) strategy 3 
10 (2) (b) (i) strategy 1 
11 (2) (b) (i) strategy 2 
12 (2) (b) (i) strategy 3 
13 (2) (c) (i) strategy 1 
14 (2) (c) (i) strategy 2 
15 (2) (c) (i) strategy 3 
16 (2) (a) (ii) strategy 1 
17 (2) (a) (ii) strategy 2 
18 (2) (a) (ii) strategy 3 
19 (2) (b) (ii) strategy 1 
20 (2) (b) (ii) strategy 2 
21 (2) (b) (ii) strategy 3 
22 (2) (c) (ii) strategy 1 
23 (2) (c) (ii) strategy 2 
24 (2) (c) (ii) strategy 3 

1Systems:  (1) - the solvent and polymer molecules are single hard spheres (n2=1); (2) - the solvent molecule is a hard sphere and the 
polymer is treated as a group of hard spheres without any connectivity restriction; 2(a) combining rule: Eq. (11); (b) mixing rule: Eq. 
(12); (c) mixing rule: Eq (13); 3Data source (i): Zielinski (1996); (ii): Liu (1980); 4strategy 1: σ2 is adjusted using only the data source 
indicated on the same line in Table 1 (n2=2875); strategy 2: n2 is adjusted using only the data source indicated on the same line in 
Table 1 (σ2=5.7774Å); strategy 3: both parameters are adjusted using only the data source indicated on the same line in Table 1. 
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RESULTS AND DISCUSSION 
 

The results for the mutual diffusion coefficient 
for polystyrene at infinite dilution in toluene as a 
function of temperature are shown in Figure 2 while, 
a comparison between the experimental and the 
calculated mutual diffusion coefficient of the 
polystyrene-toluene system at 110oC as a function of 
composition is depicted in Figure 3. 

In these figures, results for the other procedures 
are not presented, since they do not aggregate 
important new information and would just make 
graph analysis very confusing. The results obtained 
with procedures 7 and 8 for both illustrations are 
similar to the ones obtained with procedure 1. 
Procedures 15, 17 and 14 give results very similar to 
those of 12, 16 and 23, respectively. Also, 
procedures 1, 12, 16, 18, and 23 provide results 
similar to those of procedures 8, 15, 17, 7, and 22, 
respectively. Results for the diffusion coefficient at 

infinite dilution obtained with procedure 13 are 
similar to those obtained with procedure 1, while for 
mutual diffusion, procedure 13 provided values 
smaller than 10-10 cm2/s in the whole concentration 
range. Other procedures not mentioned or not shown 
in Figures 2 and 3 resulted in numerical problems 
and as a consequence they are not included in the 
analysis. 

It can be observed from Figure 2 that, of the 
proposed procedures, only procedures 1 and 18 
acceptably represent the experimental data. In Figure 
3, one can see that procedures 1 and 18 can describe 
the experimental data for solvent mass fractions 
greater than 0.3 qualitatively well, since both models 
show deviations that are smaller than one order of 
magnitude, a result considered satisfactory in 
diffusion studies involving polymeric systems. Not 
only is poor agreement observed for all models at 
higher polymer concentrations but in addition an 
opposite trend in the experimental data is found.  

 
 
 
 

 

 T(K) 

D
 (c

m
2 /s

) 

 
Figure 2: Diffusion coefficient of polystyrene at infinite dilution in toluene as a function of 
temperature. Experimental data from Zielinski (1996). Fitted parameters in Procedure 1 - 

( 2σ = 52.3Å ± 0.9Å; 2n = 1); Procedure 11 - ( 2σ = 5.7774Å; 2n =  99.9 ± 6x104);  
Procedure 12 - ( 2σ = 0.2Å ± 71Å; 2n = 9999.76 ± 3x107). Parameters employed  

in Procedure 16 - ( 2σ = 0.74Å ± 0.7Å; 2n = 2875); Procedure  
18 - ( 2σ = 0.033Å ± 33Å; 2n = 6406±7x106); Procedure  

23 - ( 2σ = 5.7774Å; 2n = 163± 106). 
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Figure 3: Mutual diffusion coefficient for polystyrene-toluene system as a function of  toluene mass fraction at 
110oC. Experimental data from Liu (1980). Parameters employed in Procedure 1 - ( 2σ = 52.3Å ± 0.9Å; 2n = 1); 

Procedure 11 - ( 2σ = 5.7774Å; 2n =  99.9 ±6x104); Procedure 12 - ( 2σ = 0.2Å ± 71Å; 2n = 9999.76 ±3x107). 
Fitted parameters in Procedure 16 - ( 2σ = 0.74Å ± 0.7Å; 2n = 2875); Procedure 18 - ( 2σ = 0.033Å ± 33Å; 

2n = 6406±7x106); Procedure 23 - ( 2σ = 5.7774Å; 2n = 163± 106). 
 
 
In that concentration region (mass fraction of 

toluene smaller than 30%), a sharp decrease in the 
mutual diffusion coefficient is observed, which is not 
foreseen by most of the models. One should note that 
despite the large quantitative deviation with 
procedure 12, it seems to be the only model that had 
a correct qualitative trend for higher polymer 
concentrations. However, as this model provided 
highly correlated parameters with unacceptable 
parametric uncertainties, application of procedure 12 
did not result in a statistically significant model. 
According to Nyström and Roots (1991), this fast 
decrease at low solvent concentrations is associated 
with steric impediments resulting from entanglement 
of the polymeric chains. Polymer molecules are 
intertwined allowing very frequent collisions of a 
solvent molecule with the same polymer molecule 
due to the restrictions of chain connectivity, a 
physically significant situation not considered in 
the model. The Enskog model merely states that 
diffusion of small hard spheres among bigger 
ones will always be greater than the opposite 
situation.  

Some additional comments on the strategies 
employed in this work should be made. First, 
simultaneous fitting of the two polymer parameters  

(σ2, n2) was shown to be inadequate due to the high 
parametric correlation observed. The mixing rule 
based on the molar fraction, Eq. (12), did not result 
in a statistically significant model. Models obtained 
with the procedures assuming the polymer to be a 
polysegmented molecule and fitting the parameters 
from mixing data were also found to be inadequate, 
since the parameter standard deviations were on the 
same order of magnitude as the parameters. One 
should also note that application of procedure 1 
resulted in a polymer diameter larger by one order or 
more of magnitude than the diameters obtained with 
all other procedures. This is an expected and 
reasonable result, since it reflects the fact that the 
polymer is not being treated as a polysegmented 
molecule. 

Certainly, a more extensive study must be 
conducted using a larger amount of experimental 
data and other polymeric systems for more reliable 
conclusions. Furthermore, the effect of chain 
entanglements on diffusion requires more detailed 
study to be able to incorporate it into the modified 
Enskog model discussed in this work. These topics, 
including experimental measurement and molecular 
dynamic simulation are in progress within our 
research group. 
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CONCLUSIONS 
 

In this work, the performance of the Enskog 
model to estimate the mutual diffusion coefficient of 
polymer-solvent systems was studied. For this 
purpose, we adopted various calculation procedures 
involving different combining and mixing rules for 
the cross EHSD, two kinds of experimental data set, 
some parameter estimation strategies, and the use of 
mono and polyatomic approaches. It was shown that, 
in general, the behavior of the resulting models was 
similar and these  models can provide a satisfactory 
representation of the mutual diffusion data only 
within a certain concentration range. Beyond a 
limiting solvent concentration value, agreement 
between experiment and theory deteriorates fast as 
the solution is enriched with polymer. The results 
reported here might be useful for those interested in 
the development of a challenging research area of 
great industrial appeal. 
 
 

ACKNOWLEDGEMENTS 
 

The authors thank CAPES (Coordenação de 
Aperfeiçoamento de Pessoal de Nível Superior), 
CNPq (Conselho Nacional de Desenvolvimento 
Científico e Tecnológico), and PRONEX for 
providing a scholarship and supporting this research. 

 
 

NOMENCLATURE 
 

D self-diffusion 
coefficient  

(cm2/s) 

D0 self-diffusion 
coefficient at low 
densities, D(ρ→0),  

 
(cm2/s) 

D12  mutual diffusion 
coefficient  

 
(cm2/s) 

DE  self-diffusion 
coefficient at high 
densities  

 
(cm2/s) 

T  temperature  (K) 
T* reduced temperature,  T/(εLJ/k) 
VC, segment molar critical volume of 

the segment  
 

(cm3/mol) 
VC, solvent molar critical volume of 

the solvent  
 

(cm3/mol) 
ai  constants of Eq. (5) (-) 
d  effective hard-sphere 

diameter  
 

(Å) 
d12  cross effective hard-

sphere diameter  
 

(Å) 

g(σ) radial distribution 
function at contact 

 
(-) 

k  Boltzmann constant  (J/(molecK)) 
m particle mass  (Kg) 
m12 reduced mass of mixing (-) 
nc  number of polymer 

segments 
 

(-) 
xi molar fraction of 

component i 
 

(-) 
 
Greek Letters 
 
ε  Lennard-Jones energy 

parameter  
 

(J) 
φI volume fraction of 

component i 
 

(-) 
η packing factor (-) 
π constant (3,1415...) (-) 
ρi number density of 

component i  
 

(molecules/cm3) 
ρm mixture number density  (molecules/cm3) 
ρ*  reduced density (-) 
σ molecular diameter  (Å) 
σsolvent solvent molecular 

diameter  
 

(Å) 
σsegment polymer segment 

molecular diameter  
 

(Å) 
 
Symbols 
 
EHSD  effective hard-sphere 

diameter 
HS  hard sphere 
LJ  Lennard-Jones 
MDS  molecular dynamics 

simulations 
SW  square well 
WCA  Weeks-Chandler-

Andersen 
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