
1/12Brazilian Journal of Biology, 2023, vol. 83, e271684 | https://doi.org/10.1590/1519-6984.271684

Original Article

THE INTERNATIONAL JOURNAL ON NEOTROPICAL BIOLOGY
THE INTERNATIONAL JOURNAL ON GLOBAL BIODIVERSITY AND ENVIRONMENT

ISSN 1519-6984 (Print)
ISSN 1678-4375 (Online)

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In recent years, more and more attention has been paid 
to the global problem of environmental pollution with 
heavy metals (HMs) and persistent organic pollutants. 
Due to growing industrialization and urbanization, 
the content of HMs in the environment has increased 
significantly over the past few decades, which has caused 
serious concern worldwide (Suman et al., 2018). HMs 
are a group of metal elements with a density greater 
than 5 g/cm3 and an atomic mass exceeding the mass of 
calcium (MW = 40) (Prieto et al., 2018). Most HMs are 
extremely toxic. They have a half-life of more than 20 
years and are very stable by nature (Asati et al., 2016; 
Kapoor and Singh, 2021) and so are not decomposed by 
any biological or physical process but are stored in the 
soil, which poses a long-term threat to the environment 
(Suman et al., 2018). In nature, HMs are divided into two 
categories: essential and nonessential. Metals such as 
cobalt (Co), copper (Cu), chromium (Cr), iron (Fe), nickel 
(Ni), manganese (Mn), and zinc (Zn) are essential for 

the physiological and biochemical processes of living 
organisms and are essential metals; however, they 
can become toxic if present in excess. Cadmium (Cd), 
mercury (Hg), and lead (Pb) are nonessential HMs that are 
extremely deadly to living organisms (Yan et al., 2020). 
HMs accumulate in the soil and cause serious health 
problems in humans, plants, and livestock. The pathways 
of HMs mainly occur through agricultural products, with 
accumulation in the human body, thereby posing a serious 
threat to health (Tchounwou et al., 2012). Therefore, it 
is necessary to find and take measures to eliminate the 
ingress of HMs into the soil, atmosphere, and aquatic 
environment. There have been a number of studies 
devoted to technologies for removing HMs from soil 
(Dhaliwal et al., 2020; Hashim et al., 2011; Yao et al., 2012), 
but only a few of them are effective (Liu et al., 2018). To 
date, various mechanical or physicochemical methods 
have been developed, based on burning and washing of 
the soil, excavation, electric fields, etc. (Liu et al., 2018). 
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on the basis of snow cover monitoring, is of great interest 
for the territory of northern Kazakhstan. Soil pollution 
in the Karaganda region is caused by waste from the 
coal mining and metallurgical industries. Metals are 
contained in most types of industrial, energy, and motor 
vehicle emissions to the atmosphere and are indicators 
of the anthropogenic impact of these emissions on the 
environment. In this region (Karaganda), there is the 
greatest accumulation of metals such as Pb, Cu, and As 
(Zhumalipov, 2011). A large quantity of HMs in the East 
Kazakhstan region, exceeding the maximum permissible 
concentration (MPC), has entered the soil as a result 
of emissions from mining and the metallurgical zinc 
plant. Citywide chemical contaminants are tin (Sn) 
and Pb; common are Cu, Zn, Cd; and prevalent locally 
are Cr, molybdenum (Mo), Ni, Mn, Co, bismuth (Bi), 
As, and strontium (Sr). In the degraded chernozems of 
the studied territory, the content of lead is 9.7–2,545.6 
mg/kg; zinc, 120–58,000 mg/kg; cadmium, 0.4–56.4 
mg/kg; and copper, 0.3–881.8 mg/kg (Sarkulova 2019). 
The large-scale development and production of 
hydrocarbon raw materials are mainly conducted in 
western Kazakhstan, which covers five regions: Aktobe, 
Atyrau, West Kazakhstan, Mangystau, and Kyzyl-Orda. 
Currently, more than 50 million tons of oil and 100 
billion m3 of gas are extracted from the subsoil annually, 
and their production volumes are increasing every 
year. Along with the extraction and transport of oil and 
gas, there is a tendency of increased environmental 
pollution due to waste from the oil industry. A study 
of the soil cover in different fields in Atyrau showed 
that the impact of oil and petroleum products leads to 
changes in the physicochemical and chemical properties 
of the soil. In oil-contaminated soils, nitrate nitrogen 
accumulation is 1.5–2.0-fold less, while the pH of the 
soil and the intensity of the enzyme activity in the soil 
decrease. Thus, oil entering the soil leads to significant, 
sometimes irreversible changes, while undesirable 
natural processes such as soil erosion, deflation, and 
cryogenesis are intensified (Diarov, 2003). Powerful 
human-made pollutants are mainly released from South 
Kazakhstan. The cities of Shymkent and Kentau are 
part of an area of increased HM contamination of the 
soil. The main concern in the city of Shymkent is the 
former Shymkent lead plant, which actively produced 
lead and zinc during the Soviet era (Kazorina, 2019). 
To date, the property of this plant has been confiscated, 
the enterprise is idle, and the amount of waste produced 
is 1,000,800 m3—a dump of lead sludge in the form of 
a mountain (the popular name is “Lead Mountain”) 
(Wikipedia, 2021). Despite the decision of the authorities 
to close the metallurgical plant, there has been a huge 
impact in terms of environmental pollution, affecting 
the health of residents, especially children. Therefore, 
there is a need to develop additional techniques to 
supplement the traditional methods of cleaning HMs. 
Thus, the activities of the mining, oil, and metallurgical 
industries are the main cause of severe land pollution 
in the central, eastern, and western parts of Kazakhstan 
(Nugumanova et al., 2017).

However, there are limitations to such approaches: 
high cost, inefficiency at low metal concentrations, 
and irreversible changes in the physicochemical and 
biological properties of soils, which lead to deterioration 
of the soil ecosystem (Sidhu, 2016). Therefore, there is 
a need to develop effective and environmentally safe 
technologies for the restoration of soils contaminated 
with HMs. Phytoremediation technology, which, unlike 
traditional methods, is inexpensive, environmentally 
friendly, and generally available, is one of the most 
promising new methods for restoring the environment. 
Unlike physical and chemical treatments that irreversibly 
alter soil properties, phytoremediation generally 
improves the physical, chemical, and biological qualities 
of contaminated soils (Liu et al., 2018). In this review, 
we consider the main mechanisms of the absorption 
and movement of HMs in plants and characterize HM 
pollution in large industrial cities of Kazakhstan. Moreover, 
we provide an overview of current developments in the 
field of phytoremediation, including the use of genetic 
engineering to increase the productivity of plants for the 
accumulation of HMs.

2. HM pollution in large industrial cities of Kazakhstan

In Kazakhstan, as in other parts of the world, there has 
been an increase in urbanization and industry development 
processes, which has had negative effects on ecosystems 
(Kenessary et al., 2019). More than one-quarter of the 
Republic’s territory is unsuitable due to tests at military 
ranges, industrial enterprises that leave behind toxic 
industrial emissions after their activities, and agriculture 
that uses tons of poisonous chemicals to control 
weeds and insects (Almaganbetov and Grigoruk, 2008; 
Nurzhanova et al., 2010).

Kazakhstan has a territory of 2,724,900 km2, making 
it the ninth largest country in the world, about the same 
size as western Europe. Desertification of large areas is 
accompanied by soil pollution, surface and groundwater 
flooding, and a decrease in total regional biological capacity 
(Aiman et al., 2018). Most of Kazakhstan was affected by 
the activities of the nuclear test site, which was located 
on the territory of three regions: the East Kazakhstan, 
Karaganda, and Pavlodar regions (Grosche et al., 2015). 
Finding effective methods to restore anthropogenically 
contaminated soils is an important task in Kazakhstan. 
The relevance of the problem is related to soil pollution 
with HMs, particularly in the vicinity of metallurgical 
works (Alimbaev et al., 2020). The pollution of air, soil, 
plants, and water by HMs near large industrial centers has 
become one of the most acute environmental problems 
(Woszczyk et al., 2018).

Most of the waste comes from mining and processing 
in the Aktobe, Pavlodar, Karaganda, East Kazakhstan, 
Zhambyl, West Kazakhstan, and Atyrau regions, which 
are engaged in the extraction of coal and ferrous metals. 
The land of the East Kazakhstan region is contaminated 
with a combination of Cu, Zn, Cd, Pb, and arsenic (As). 
As shown by Zhumalipov (2011), the study of the behavior 
and distribution of HMs in all environments, especially 
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3. Toxicity of HMs

HM pollution is one of the most serious environmental 
problems worldwide, as it has become a source of health 
risks and causes serious diseases (Briggs, 2003; Landrigan 
and Fuller, 2015; Pandey and Singh, 2019). The accumulation 
of high concentrations of HMs can have a detrimental effect 
on the environment. Moreover, when used by a person for 
a long time, water and agricultural products containing 
HMs can cause diseases of the gastrointestinal tract, 
cardiovascular and nervous systems, as well as chronic 
kidney failure. It is known that exposure to HMs can lead 
to fatal outcomes (Hajeb et al., 2014; Järup, 2003; Kumar 
and Gayathri, 2009; Kyzas et al., 2018; Peng et al., 2017; 
Shyam et al., 2013).

According to the World Health Organization (WHO), 
according to the degree of environmental impact, when 
exceeding the maximum permissible concentrations, 
among all pollutants, dangerous chemicals are HMs, 
such as As, Cd, Cr, Cu, Zn, Co, Pb, antimony (Sb), Bi, Hg, 
Ni, Sn (Tchounwou et al., 2012; WHO 2021). In biological 
processes, HMs such as Fe, Cu, Zn, Ni, Mo, and boron (B) 
are important requirements for the functioning of all 
living organisms (plants, animals, and humans), but are 
harmful when their concentrations exceed acceptable 
concentrations (Morkunas et al., 2018).

Most HM pollution is caused by industrial wastewater, 
gas emissions, extraction of minerals, nonferrous 
metal smelting, weathering of rocks and minerals, and 
erosion processes (Ali et al., 2016; Krishnamurti et al., 
2005; Masindi and Muedi, 2018; Vallero, 2014). HMs 
not only pollute the soil but also affect the production 
and quality of food (Hajeb et al., 2014; Morgan, 1999; 
Rai et al., 2019). Some HMs are toxic to plants even at 
very low concentrations, while other HMs can accumulate 
in plant tissues, without obvious side effects or reduced 
yields (Shah et al., 2010; Yadav, 2009). Growing plants in 
regions contaminated with HMs leads to changes in their 
metabolic, physiological, and biochemical processes, as 
well as to the accumulation of metals, further reducing 
plant growth and biomass (Amari et al., 2017; Chibuike 
and Obiora, 2014). Today, several methods are used to 
clean soil contaminated by HMs. The main methods 
are environmental methods and physicochemical 
methods (Kapahi and Sachdeva, 2019; Mosa et al., 2016; 
Rulkens et al., 1995; Shah and Daverey, 2020). The use of 
physical and chemical methods of soil cleaning, namely, 
leaching, chemical oxidation, and reduction, often leads 
to the accumulation of secondary pollutants and requires 
additional manipulations related to the removal of 
contaminated soil cover and subsequent waste collection.

4. Manipulation to clean up the environment

4.1. Environmental manipulation

The environmental method includes the removal of 
the top layer of soil in contaminated areas and replacing 
it with fresh, noncontaminated soil layers. Subsequently, 
the contaminated soil is disposed of in specially designated 
locations (Barakat, 2011; Kurniawan et al., 2006). 

This method also includes soil washing, which minimizes 
the level of HM contamination in heavily polluted soil. 
This process can be applied using cleaning solutions 
such as surfactants, chelating agents, organic acids, and 
co-solvents. The flushing fluid containing surfactants is 
washed in bioreactors with an inert substrate. The use of 
strong acids can destroy the crystalline structure of the 
soil, so natural and low-molecular-weight acids such as 
oxalic, fumaric, acetic, formic, and lactic acids are used in 
this process. However, this method is costly and requires 
proper treatment after the use of detergent solutions 
(Rulkens et al., 1995; Wang et al., 2005). In addition, the 
type of soil is equally important, since soil washing is more 
effective in sandy compared to clay types. With a clay-type 
soil, there is a problem with the separation of solid and 
liquid for flushing. In addition, physicochemical cleaning 
methods are based on the use of special reagents that are 
not always safe for the environment (Sharma et al., 2018).

4.2. Biological manipulation

Biological remediation is a set of water and soil 
purification methods using microorganisms, algae, and 
plants (Bertan et al., 2020; Freitas et al., 2018; Kapahi and 
Sachdeva, 2019). Recently, bioremediation with the help 
of microorganisms and plants, has become widespread 
for the purification of HMs in the environment. The main 
advantage of bioremediation technology is associated 
with the ability of organisms to metabolize large 
amounts of organic matter (Chibuike and Obiora, 2014). 
The greatest efficiency of bioremediation of microorganisms 
is observed when using several strains compared to one. 
Kang et al. (2016) investigated the combined effect of 
bacterial mixtures (Viridibacillus arenosi B-21, Sporosarcina 
soli B-22, Enterobacter cloacae KJ-46, and E. cloacae KJ-47) on 
the bioremediation of Cd, Cu, and Pb in contaminated soils. 
They noted that bacterial mixtures showed high resistance 
and efficiency in the purification of HMs in comparison with 
cultures with a single strain (Kang et al. 2016).

Algae have a high rate of absorption of HMs. Rhodophyta 
(red algae) are effective biosorbents of HMs because their 
structures consist of large amounts of amorphous matrix 
polysaccharides, which can bind metal. It was shown that the 
algae Chlorella vulgaris, Cladophora crispate, Anabaena sp., and 
Synechococcus sp. could absorb Cr through their cell walls. 
The blue-green alga Phormidium laminosum is capable of 
accumulating CuII, FeII, NiII, and ZnII. Green algae are more 
efficient at absorbing the metals Cr, aluminum (Al), and Fe 
in contrast to brown and red algae (Kang et al., 2016). The 
main disadvantages of microorganisms and algae are their 
applicability being mainly for the purification of wastewater, 
oil, and oil products. One of the most promising areas of 
bioremediation techniques is phytoremediation technology, 
which uses living plants. Phytoremediation plants, unlike 
microorganisms and algae, can absorb toxic HMs (Lee, 2013).

4.2.1. Phytoremediation

Phytoremediation implies the use of “green and living” 
plants to remove contaminants from the environment and can 
be used in addition to the known methods of cleaning the soil 
of excess HMs (Andereazza et al., 2015; Garbisu et al., 2002). 
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Phytoremediation technology is considered economically 
profitable, efficient, and ecological because it is based 
on the use of metalaccumulating plants to remove 
toxic metals, including radionuclides, as well as for 
petroleum hydrocarbons, pesticides (Nurzhanova et al., 
2013; Silva et al., 2015), explosive or toxic gases, organic 
pollutants, and several industrial byproducts (Wan et al., 
2016; Zodrow 1999). Therefore, it is necessary to use 
hyperaccumulating plants that can absorb high levels of 
pollution (Macnair 2003; Verbruggen et al., 2009). The 
main advantage of this technology is that the plant mass 
can be easily collected and burned, and the resulting 
ashes can be buried or used as secondary raw materials 
(Shrestha et al., 2019).

Thus, when plants are used to extract HMs using 
phytoremediation technology, the following mechanisms 
are used: phytoextraction, phytostabilization, rhizofiltration, 
and phytovolatilization (Freitas et al., 2018; Naz et al., 2022; 
Rezania et al., 2016; Shackira and Puthur, 2019; Suman et al., 
2018; Verma et al., 2006). Figure 1 shows the various 
mechanisms involved in the phytoremediation of HMs.

4.2.2. Phytoextraction

This refers to the use of plants capable of extracting HMs in 
contaminated areas using the root system and concentrating 
them in the aboveground biomass. This phytoremediation 
method is especially useful for removing metals from soil. 
It also provides the ability to extract metals by burning plants, 
a process called phytomining (Suman et al., 2018).

4.2.3. Phytostabilization

This refers to using plants to immobilize pollutants 
in the soil, which can reduce the concentrations of 
pollutants in the environment, thereby preventing the 
further migration of pollutants in the soil or groundwater 
(Shackira and Puthur, 2019). This method also includes 
the uptake of contaminants by the roots and adsorption 
to the root surface. Moreover, it involves the production of 
biochemicals by the plant, which are then released into the 
soil or groundwater around the roots. Biochemicals have 
the ability to isolate, precipitate, or otherwise immobilize 
nearby contaminants (Mang and Ntushelo, 2019).

4.2.4. Rhizofiltration

This refers to the use of the root system of plants to 
absorb sediment and concentrate pollutants from surface 
water and wastewater. For rhizofiltration, the root system 
of plants must be sufficiently developed, and plants must 
have fast-growing roots capable of removing toxic metals 
from solution. This technology is especially effective for 
treating surface and groundwater containing relatively 
low concentrations of toxic metals (Verma et al., 2006).

4.2.5. Phytovolatilization

This refers to the use of plants to extract pollutants from 
water, which are then dispersed into the atmosphere by 
evaporation from the leaf surfaces. This process is capable 
of absorbing pollutants into plants and releasing pollutants 

Figure 1. Various mechanisms involved in phytoremediation of HMs.
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into the atmosphere. While using phytovolatilization, 
unlike other phytoremediation technologies, it is 
impossible to control the migration of contaminants 
that enter the environment during phytoevaporation. 
Therefore, phytovolatilization is the most controversial 
phytoremediation technology (Rezania et al., 2016).

The limiting factor of phytoremediation is the 
low rate of metal purification and insufficient 
metabolism of autotrophic plants, which lack the enzyme 
exchange mechanism that is necessary to achieve 
complete purification, thereby limiting the progress of 
phytoremediation (Chaudhry et al., 2002; Favas et al., 
2014). This leads to the accumulation of toxic metabolites 
in plant tissues, which can enter the environment and 
the food chain. Genetic engineering of plants has the 
potential to overcome these problems (Fasani et al., 2018; 
Kärenlampi et al., 2000; Kumar et al., 2017).

4.3. Genetic manipulation

The use of genetic engineering for phytoremediation is 
considered a promising area in the application of model 
plants expressing genes that enhance resistance to HMs and 
their accumulation (Yan et al., 2020; Zhang et al., 2006). 
In a study by Gisbert et al. (2003), the wheat gene TaPCS1, 
which codes for phytochelatin synthase, was inserted 
in the plant Nicotiana glauca using genetic engineering. 
Phytochelatin synthase is an enzyme that binds metal 
ions (Gisbert et al., 2003). The use of this gene gave plants 
increased resistance to Pb and Cd. The authors analyzed 
various lead concentrations: 0, 0.4, 0.8, and 1.2 mM. As 
a result, root growth significantly improved and leaves 
were much larger and greener in transformed plants at 
the 0.8 mM lead concentration. Higher lead tolerance 
was achieved in a range of lead concentrations up to 1 
mM. All plant lines containing the gene TaPCS1 had better 
developed leaf and root systems compared to wild-type 
plants. Subsequently, the transgenic plants were grown 
in soil containing 1,572 mg/kg of lead. As a result, they 
accumulated twice as much Pb and Cd as nonmodified 
wild plants (Gisbert et al., 2003).

In another study, Bhuiyan et al. (2011) obtained transgenic 
plants of B. juncea with the AtATM3 gene inserted that belongs 
to a family of ATP-binding cassette transporters (ABC) localized 
in the mitochondrial membrane of Arabidopsis thaliana. 
Overexpression of this gene not only improved the tolerance 
of the transgenic plants to Cd and Pb, but also increased metal 
transport to shoots by 1.5–2.5-fold compared to the wild 
type, thereby improving the potential for phytoremediation 
(Bhuiyan et al., 2011).

In addition, there were studies on enhancing polyamine 
synthesis. Polyamines play an important role in reducing 
cellular oxidative stress. For that reason, a transgenic 
pear, Pyrus communis L. (Ballad), with the overexpression 
of the apple spermidine synthase gene MdSPDS1 was 
produced. After exposure to HMs (cadmium and zinc), the 
transgenic plants responded with enhanced synthesis and 
accumulation of polyamines compared to wild-type plants. 
Favorable outcomes were associated with the antioxidant 
activity of spermidine and its ability to bind free metal ions 
(Wen et al., 2010).

Under stress conditions, plants produce and accumulate 
various products of metabolism, including amino acids, 
such as proline and phenolic compounds (Díaz et al., 2001; 
Grace and Logan, 2000; Sakihama and Yamasaki, 2002). 
Many researchers have studied the accumulation of free 
proline as a response to oxidative and biotic stresses under 
the conditions of high salinity, drought, intensive light, 
ultraviolet radiation, and HMs (Choudhary et al., 2005; 
Fabro et al., 2004; Haudecoeur et al., 2009; Yang et al., 2009). 
Not only does proline participate in protein synthesis, but 
it also positively correlates with stress resistance in plants. 
Proline supports osmotic pressure and reduces the loss of 
electrolytes through membrane stabilization, protection 
from oxidative stress, and reduction of reactive oxygen 
species (ROS) (Hayat et al., 2012; Xu et al., 2009).

A strong correlation between the cellular proline 
content and HM concentration was demonstrated in 
hyperaccumulating artichoke plants (Cynara scolymus L.) 
(Tripathi and Gaur, 2004). Gohari and co-authors showed that 
proline concentration in rapeseed roots (Brassica napus L.) 
increased when the plants were exposed to high lead 
concentrations (100–400 µM) (Gohari et al., 2012). However, 
proline accumulation in aboveground plant organs was not 
as noticeable as that in roots. The accumulation of proline 
in roots rather than in shoots is common in studies on 
different plants exposed to Pb and Cd, including Brassica 
juncea L. (Favas et al., 2014).

In another study on sal tree shoots (Shorea robusta), 
it was established that cadmium, lead, and arsenic were 
strong proline inducers (Pant et al., 2011). Kumar and 
Gayathri (2009) showed that Cu is a stronger proline inducer 
than zinc in wheat germ (Kumar and Gayathri, 2009). 
Rastgoo and Alemzadeh (2011) studied the influence 
of equal amounts of HMs, such as Cd, Co, Pb, and silver 
(Ag), on gouan plants (Aeluropus littoralis) (Rastgoo and 
Alemzadeh, 2011). The study showed that the highest 
proline accumulation was achieved when the plants 
were treated with Cd. Zengin and Kirbag (2007) showed 
the strong influence of Hg, Cd, Cu, Pb on the amount of 
proline in sunflower shoots (Helianthus annuus L.) (Zengin 
and Kirbag, 2007). All of these studies show that proline 
accumulation depends on the concentration of the metal 
and its specific features.

4.3.1. Metallothioneins

Metallothioneins (МТ) are low molecular weight 
(5–10 kDa) metal-binding proteins with high cysteine 
content, widely spread in living organisms (Bundy et al., 2014; 
Leszczyszyn et al., 2013). Plants produce metal-chelating 
proteins, such as MT, to overcome the toxic effects of HMs. 
However, only a limited number of transgenic plant species 
have been studied for high tolerance to HMs using various 
cloned MT genes (Eapen and D’Souza, 2005).

A MT gene IlMt2a was successfully identified in 
an iris plant (Iris lactea) (93). Further insertion of this 
gene into the genome of Arabidopsis has led to a higher 
tolerance in transgenic plants exposed to Cd and Cu 
(Gu et al., 2014, 2015). Tolerance to HMs is apparently 
connected to the decreased production of ROS, which 
indicates a highly efficient antioxidant defence system. 
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Such mechanisms have led to an increase of HM tolerance 
in transgenic tobacco with the insertion of SbMt2 gene 
from Salicornia spp. (for example Salicornia brachiata) 
(Chaturvedi et al., 2014). The transgenic plants were able to 
maintain cellular homeostasis through ROS detoxification. 
Furthermore, it was established that the overexpression 
of SbMt2 enhances zinc translocation in shoots, which in 
turn may be a good sign of the increase in stress resistance 
and the effectiveness of phytoremediation using genetic 
engineering (Chaturvedi et al., 2014). Table 1 presents 
different genes used in transgenic plants.

5. Increasing bioavailability of HMs

HMs in soil are not always available for bioaccumulation. 
Only a small part of the total content of HMs in the soil 

is in a soluble and light form for absorption by plants 
(Petruzzelli et al., 2020). The bioavailability of HMs 
is influenced by a number of factors, including soil 
properties, the environment, and plant characteristics 
(Kim et al., 2015). A peculiarity of plants is that they can 
use different strategies to increase the bioavailability of 
HMs. For example, carbon-emitting compounds from 
the root system of plants have the ability to acidify the 
rhizosphere, reducing the pH of the soil. The pH change 
(natural or anthropogenic) appears to be the most 
important factor influencing the mobility of metals. 
The pH reduction contributes to the mobility of HMs, in 
particular by dissolving metal salts or breaking down the 
retention phase. At a higher pH, retention occurs and the 
solubility of HMs decreases (Lone et al., 2008). In addition, 
a number of sources have reported the availability of 
microorganisms in the rhizosphere, which significantly 

Table 1. Different genes used in transgenic plants.

Gene Origin Target plant species Effect* References

OASTL Tobacco Resistance of cadmium (Cd) up to 300 
mM, Selenium (Se)- 250 mM, nickel 
(Ni) up to 500 mM higher biomass is 

produced

(Kawashima et al., 2004)

TaPCS1 Wheat Tobacco High tolerance to lead (Pb) (1 mM) and 
cadmium (Cd) (50 mM)

(Gisbert et al., 2003)

TaPCS1 Triticum aestivum N. glauca Good root formation on medium 
containing 800 µM of lead (Pb) and 

50 µM of cadmium (Cd)

(Martinez et al., 2006)

YCF1 Yeast Arabidopsis, poplar Increases resistance to lead (Pb) 
and cadmium (Cd) and increases 
the accumulative capacity in lead 

(Pb) and cadmium (Cd) vacuoles in 
transgenic plants

(Song et al., 2003)

ZntA E. coli Arabidopsis Resistance of the transgenic plant to lead 
(Pb) 0.7 mM and cadmium (Cd) 70 µM

(Lee et al., 2003)

ABCC1 A. thaliana A. thaliana Overexpression of AtABCC1 increases 
the accumulation of cadmium (Cd)

(Park et al., 2012)

MTP3 A. thaliana A. thaliana Overexpression of the MTP3 gene 
increases the accumulation of zinc (Zn) 

in roots and leaves

(Arrivault et al., 2006)

NRAMP1 O. sativa A. thaliana Expression of the OsNRAMP1 gene 
in Arabidopsis increases tolerance 
and accumulation of arsenic (As) 
and cadmium (Cd), increases the 

accumulation of Iron (Fe) and 
Manganese (Mn) in shoots, increases 
the genes expression of the AtABCC1, 

AtABCC2, and AtHMA4

(Tiwari et al., 2014 )

AtPCS1 A. thaliana B. juncea Increase in the root of the medium-
containing cadmium (Cd) in the 

concentration of 100 µM and arsenic 
(As) 500 µM

(Gasic and Korban, 2007)

HvNAS1 Hordeum vulgare Arabidopsis Gives increased resistance to high 
concentrations of metals, in particular to 

nickel (Ni)

(Kim et al., 2005)

NAAT Barley Rice Transgenic plants grew better on iron-
deficient soils

(Takahashi et al., 2001)
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increases the availability of HMs and absorption by 
plants (Wu et al., 2006). These microorganisms include 
several strains of Bacillus and Pseudomonas, which 
increased Cd accumulation in Brassica juncea seedlings 
(Salt et al., 1995). Another widely considered strategy 
for increasing the bioavailability of HMs is chelating 
agents. Chelating agents increase the diffusion of metals 
in a soil solution and keep them in plant-available forms 
by generating larger, less reactive ions, increasing the 
concentration of these larger chelated ions in solution, 
and reducing the ability of free ions to react with the 
soil (Olaniran et al., 2013). In practice, various chelating 
agents are used, including synthetic and organic chelating 
agents. Synthetic chelating agents such as ethylenedia-
minetetraacetic acid (EDTA), ethylene glycol tetraacetic 
acid (EGTA), and diethylene-triaminepentaacetic acid 
(DTPA) can effectively increase the bioavailability of HMs 
and promote plant uptake (Gupta et al., 2008). However, 
the poor biodegradability of synthetic chelating agents 
leads to their persistence in the soil, which raises serious 
concerns about metal leaching and harmful effects on the 
environment (Olaniran et al., 2013). Alternatively, it has 
been shown that organic chelating agents such as citric 
acid, malic acid, acetic acid, and oxalic acid effectively 
form HM complexes and increase the bioavailability of 
HMs (Sarwar et al., 2017). These organic chelators are of 
natural origin and readily biodegrade in the soil, which 
means they may pose less of a risk to the environment 
than synthetic chelators (Dolev et al., 2020); therefore, 
it is more promising to use organic chelating agents for 
chelated phytoextraction.

6. Conclusions

In this review, we discussed in detail the methods and 
technologies of cleaning soil contaminated with HMs. It is 
widely known that Kazakhstan is polluted with human-made 
waste, especially HMs, which poses a great danger to the 
ecological health of the region. In this regard, the search 
for highly effective technologies for cleaning contaminated 
areas is relevant. It is known that phytoremediation is 
one of the key elements of cleaning technogenically 
contaminated areas and is used in combination with 
physicochemical methods. Phytoremediation technology 
appears to be a less destructive, more economical, and 
more environmentally friendly cleaning technology. 
The use of HM hyperaccumulators is the simplest 
approach to phytoremediation, and hundreds of 
hyperaccumulator plants have been identified to 
date. However, phytoremediation using these natural 
hyperaccumulators still has some limitations, as it 
is time-consuming to clean soil contaminated with 
HMs, especially in areas with moderate to severe 
contamination. This may partly be due to the slow growth 
and low biomass production of these hyperaccumulators. 
Thus, increasing plant productivity is an important step in 
developing highly efficient phytoremediation techniques. 
With the development of genetics, the ability of 
plants that accumulate and tolerate HMs and are used 
in phytoremediation can be significantly improved. 

In addition, chelating agents and microorganisms can 
be used either to increase the bioavailability of HMs, 
thereby contributing to the accumulation of HMs in plants, 
or to improve soil health and further stimulate plant 
growth and adaptability. In practice, a single approach 
is insufficient for effective cleaning of soil contaminated 
with HMs. A combination of different approaches, 
including genetic engineering, microbial, and chelation 
approaches, is important for effective and comprehensive 
phytoremediation in the future.
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