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Abstract

The use of ecological niche models (ENM) to generate potential geographic distributions of species has rapidly
increased in ecology, conservation and evolutionary biology. Many methods are available and the most used are
Maximum Entropy Method (MAXENT) and the Genetic Algorithm for Rule Set Production (GARP). Recent studies
have shown that MAXENT perform better than GARP. Here we used the statistics methods of ROC — AUC (area un-
der the Receiver Operating Characteristics curve) and bootstrap to evaluate the performance of GARP and MAXENT
in generate potential distribution models for 39 species of New World coral snakes. We found that values of AUC
for GARP ranged from 0.923 to 0.999, whereas those for MAXENT ranged from 0.877 to 0.999. On the whole, the
differences in AUC were very small, but for 10 species GARP outperformed MAXENT. Means and standard devia-
tions for 100 bootstrapped samples with sample sizes ranging from 3 to 30 species did not show any trends towards
deviations from a zero difference in AUC values of GARP minus AUC values of MAXENT. Ours results suggest that
further studies are still necessary to establish under which circumstances the statistical performance of the methods
vary. However, it is also important to consider the possibility that this empirical inductive reasoning may fail in the
end, because we almost certainly could not establish all potential scenarios generating variation in the relative per-
formance of models.
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Quantos estudos ainda serao necessarios para avaliar modelos
de distribuicio geografica baseados em modelagem do nicho?
Um pensamento indutivo pode estar fadado ao fracasso

Resumo

A utilizagido de modelos de nicho ecolégico (ENM) para gerar distribui¢des geograficas potenciais de espécies tem
aumentado rapidamente nas dreas de ecologia, biologia da conservacio e biologia evolutiva. O Método de Mdxima
Entropia (MAXENT) e o Algoritmo Genético para Produgio de Conjunto de Regras (GARP) estdo entre os métodos
mais utilizados, e estudos recentes tém atribuido ao MAXENT um melhor desempenho no processo de modelagem
com relagdo ao GARP. Neste trabalho, foram utilizados os métodos estatisticos ROC — AUC (area under the Receiver
Operating Characteristics curve) e de reamostragem (bootstrap) para avaliar o desempenho do GARP e MAXENT
em gerar modelos de distribui¢do potencial para 39 espécies de cobras corais do Novo Mundo. Os resultados mos-
traram que os valores de AUC para o GARP variaram de 0,923 a 0,999, enquanto que para 0o MAXENT variaram de
0,877 a 0,999. Em geral, as diferencas de AUC entre os dois métodos foram pequenas, embora o GARP tenha apre-
sentado melhor desempenho que o MAXENT para 10 espécies. Valores de média e desvio padrdo de 100 amostras
variando de 3 a 30 espécies nao revelaram qualquer tendéncia de desvio em relagdo a diferenga zero entre valores de
AUC do GARP menos valores de AUC do MAXENT. Estes resultados sugerem que mais estudos serdo necessarios
para determinar sob quais circunstincias o desempenho estatistico dos modelos varia, embora seja importante con-
siderar também a possibilidade de que argumentagdes empirico-indutivas em favor de um ou outro método podem
falhar, ja que € quase impossivel estabelecer todos os cendrios potenciais causadores de variacdo no desempenho dos
modelos.

Palavras-chave: cobras corais, Elapidae, modelos de distribui¢do potencial, GARP, MAXENT.
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1. Introduction

Niche-based species distribution models, or eco-
logical niche models (ENM), today play a central role
in many areas of ecology, conservation and evolution-
ary biology, both because they can fill gaps in knowl-
edge and allow a better estimate of multiple components
of species diversity (Guisan and Zimmermann, 2000;
Aradjo and Guisan, 2006; Phillips et al., 2006). Also,
they can be used, under certain assumptions, to predict
the fate of biodiversity under ongoing climate change
processes (Guisan and Thuiller, 2005; Aratjo and New,
2007). Despite many challenges for the future (Aratjo
and Guisan, 2006), interest in these approaches is clearly
growing, and, as a consequence, many different methods
are now available to model a given species niche and, by
extrapolation, their geographic ranges.

Many papers have compared the performance of sev-
eral available ENM algorithms in the last few years (e.g.,
Segurado and Aradjo, 2004; Elith et al., 2006; Pearson
et al., 2007; Tsoar et al., 2007), trying to establish which
of them are more statistically robust or appropriate to a
given situation, in terms of scale of environmental toler-
ance of species, sampling patterns (presence/absence or
presence-only data) and species dispersal ability generat-
ing non-equilibrium between geographic ranges and cli-
mate (Aradjo and Pearson, 2005). Recently, McPherson
and Jetz (2007) demonstrated that other ecological traits
of species may also be correlated with ENM perform-
ance.

It is usually difficult to achieve a consensus about the
performance of different algorithms, due to different rea-
sons. First of all, new methods and algorithms arise con-
tinuously, and some current papers did not compare all
available methods. Also, these studies are usually based
on particular datasets, so it may be difficult to judge the
generality of conclusions. Elith et al. (2006) recently
did a particularly broad and general evaluation of ENM
and showed that one of the most widely used methods,
GARP (Genetic Algorithm for Rule Set Production)
(Stockwell and Noble, 1992) performed poorly, whereas
the recently developed MAXENT (Maximum Entropy
Method) (Phillips et al., 2006) ranked among the best
methods (together with novel methods like boosted re-
gression trees [BRT], and regression- based methods
[GAM, GLM and MARS], which were previously sug-
gested as high-performance methods in most studies; see
also Segurado and Aradjo, 2004). Pearson et al. (2007)
recently compared MAXENT and GARP to predict
species distribution from small numbers of occurrence
records and found that MAXENT was better than GARP
when sample sizes were experimentally reduced to less
than 10 presence-records.

However, it is difficult to judge at which point the
conclusions by Elith et al. (2006) and from other stud-
ies are entirely independent of the particular charac-
teristics of the datasets used, since different methods
and algorithms may be vulnerable to different charac-

teristics of data used. For instance, it would not be dif-
ficult to find other datasets for which their overall con-
clusions do not hold. Here we modeled the geographic
distribution of 39 species of New World coral snakes
(genus Micrurus, Micruroides and Leptomicrurus) us-
ing GARP and MAXENT and compared their results.
Only these two methods were compared because just
presence data were available, but hopefully our com-
parison will be enough for illustrating our point, since
these two methods cover nearly the two extremes
of the ‘performance axis’ established by Elith et al.
(2006).

2. Material and Methods

2.1. Data

We modeled the geographic distribution of 39 spe-
cies of New World coral snakes (genus Micrurus,
Micruroides and Leptomicrurus, including 6 spe-
cies from North America, 7 from Central America and
26 from South America) for which at least 5 occurrence
records were available (Table 1). Occurrence data for
the species were compiled based on voucher specimens
held in North America (American Museum of Natural
History — New York, Field Museum of Natural History —
Chicago, Museum of Natural History — Los Angeles,
Museum of Natural Science — Louisiana, Museum of
Vertebrate Zoology — Berkeley, Smithsonian Institution —
Washington, and Texas Memorial Museum — Austin)
and South American museums (Colecdo Herpetoldgica
da Universidade de Brasilia — Brasilia, Coleccion
Herpetolégica Corrientes — Corrientes, Coleccion
Herpetoldgica de la Fundacién Miguel Lillo — Tucuman,
Coleccién Herpetoldgica de Zoologia de Vertebrados de
la Universidad Nacional de Rio Cuarto — Cérdoba, Museo
de Ciencias Naturales Bernardino Rivadavia — Buenos
Aires, Instituto Butantan — Sdo Paulo, Museo de Histéria
Natural Noel Kempff Mercado — Santa Cruz de la Sierra,
Museo Nacional de Historia Natural del Paraguay —
Asuncion, Museu Paraense Emilio Goeldi — Para, Museo
de La Plata — La Plata, Museu Nacional — Rio de Janeiro,
and Museu de Zoologia da Universidade de Sao Paulo —
Sdo Paulo). We supplemented our data sets with records
that could be georeferenced from Campbell and Lamar
(2004). The number of records for the 39 species studied
here varied from 5 to 217.

Six climatic variables were used for both GARP and
MAXENT: annual mean temperature, temperature sea-
sonality (coefficient of variation), mean temperature of
driest quarter, annual precipitation, precipitation season-
ality (coefficient of variation) and precipitation of warm-
est quarter, derived from the WorldClim interpolated map
database (Hijmans et al., 2005), and three topographic
variables (altitude, aspect and slope), derived from the
U.S. Geological Survey’s Hydro-1K data set (USGS,
2001). All variables were reduced to a grid resolution of
0.0417° for the analysis.
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Table 1. List of 39 species of coral snakes ranked by number
of records (in parentheses), and AUC values obtained for
MAXENT and GARP.

Species (records)

MAXENT GARP

M. frontalis (217) 0.9961 0.9969
Duméril, Bibron and Duméril, 1854

M. altirostris (165) Cope, 1860 0.9957 0.9982
M. tener (150) Baird and Girard, 1853  0.9888 0.9884
M. nigricinctus (130) Girard, 1854 0.9889 0.9526
M. diastema (119) 0.9935 0.9878
Duméril, Bibron and Duméril, 1854

M. lemniscatus lemniscatus (108) 0.9769 0.9416
Linnaeus, 1758

M. pyrrhocryptus (108) Cope, 1862 0.9926 0.9905
M. surinamensis (107) Cuvier,1817 0.9832 0.9554
M. fulvius (103) Linnaeus, 1766 0.9947 0.9983
M. mipartitus (91) 0.9900 0.9578
Duméril, Bibron and Duméril, 1854

M. spixii (84) Wagler, 1824 0.9853 0.9235
M. alleni (72) Schmidt, 1936 0.9973 0.9933
Micruroides euryxanthus (59) 0.9972 0.9877
Kennicott, 1860

M. filiformis (52) Giinther, 1859 0.9911 0.9676
M. corallinus (50) Merrem, 1820 0.9909 0.9853
M. annellatus (49) Peters, 1871 0.9900 0.9589
M. dumerilii (49) Jan, 1858 0.9897 0.9591
M. hemprichii (48) Jan, 1858 0.9839 0.9519
M. decoratus (42) Jan, 1858 0.9982 0.9982
M. lemniscatus carvalhoi (39) 0.9943 0.9851
Roze, 1967

M. baliocoryphus (38) Cope, 1862 0.9982 0.9979
M. ibiboboca (35) Merrem, 1820 0.9902 0.9662
M. distans (32) Kennicott, 1860 0.9974 0.9891
M. multifasciatus (32) Jan, 1858 0.9837 0.9717
M. ancoralis (25) Jan, 1872 0.9939 0.9963
M. dissoleucus (25) Cope, 1860 0.9892 0.9511
M. isozonus (24) Cope, 1860 0.9953 0.9762
M. browni (22) 0.9971 0.9946
Schmidt and Smith, 1943

M. laticollaris (22) Peters, 1870 0.9989 0.9971
M. tricolor (20) Hoge, 1956 0.9962 0.9954
L. scutiventris (16) Cope, 1869 0.9987 0.9911
M. brasiliensis (9) Roze, 1967 0.8955 0.9913
M. hippocrepis (9) Peters, 1862 0.8766 0.9866
M. putumayensis (9) Lancini, 1962 0.9973 0.9991
L. collaris (8) Schlegel, 1837 0.9700 0.9905
M. mertensi (8) Schmidt, 1936 0.9964 0.9932
M. bocourti (7) Jan, 1872 0.9966 0.9758
M. bernadi (6) Cope, 1887 0.9244 0.9968
M. peruvianus (5) Schmidt, 1936 0.9991 0.9995

2.2. Running GARP and MAXENT

GARP models were developed using the desktop ver-
sion (see Pereira, 2002). GARP works with sets of rules
of logic inference that indicate the presence or absence
of a species in a region (Stockwell and Noble, 1992).
Specifically, half of the data is randomly selected for the
development of the rules (training data), whereas the oth-
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er half is used to evaluate the accuracy of the rules (test
data) (Peterson, 2001; Peterson et al., 2006). Through
an iterative process of rule selection, evaluation, testing
and incorporation or rejection, a method is chosen from
a set of possibilities (e.g., logistic regression, bioclimat-
ic rules, negated range rules) and applied to the train-
ing data to develop or evolve a rule (see Stockwell and
Peters, 1999; Peterson, 2001 and Peterson et al., 2006,
2007 for details). For the analyses performed here, we
implemented the best-subset model selection procedure
(see Stockwell and Noble, 1992; Stockwell and Peters,
1999; Peterson, 2001). We generated 200 models, set-
ting the convergence limit to 0.001, a 0% extrinsic omis-
sion error, 10% commission error, and 2000 maximum
iterations. After that, we selected the 20 best models (i.e.,
the best subset) and summed them to make a composite
GARP prediction.

Maxent is a machine learning method based on the
principle of maximum entropy (see Phillips, 2006 and
Phillips et al., 2006). It estimates the probability distri-
bution of maximum entropy (i.e. that is closest to uni-
form) of each environmental variable across the study
area. This distribution is calculated with the constraint
imposed by the information available regarding the ob-
served distribution of the species and environmental con-
ditions across the study area (Phillips et al., 2006). Here
we ran the iterative algorithm for 2000 rounds, or until
the change in the objective function on a single round
fell below 107°. For the regularisation parameter (j3), we
used 10,

Both methods were compared using the area under
the Receiver Operating Characteristics curve (ROC -
AUC), an approach extensively used in species distri-
bution modeling (see Allouche et al., 2006; Elith et al.,
2006). To use this analytical approach without sam-
ple-records of true absence points, Phillips et al. (2006)
generated a sample of 10,000 pseudo-absence points
to join to the training sample and estimate AUC of the
MAXENT procedure. We repeat the same procedure
with the GARP predictions allowing the proper compari-
son of those methods. The AUC varies from O to 1, where
a score of 1 indicates perfect discrimination between ar-
eas where a species is present, versus those where it is
absent. Although AUC have recently been criticised (see
Lobo et al., 2008; Peterson et al., 2008), it can provide
at least a preliminary indication of the usefulness of the
distribution models for identifying suitable areas of oc-
currence for particular species (Elith et al., 2006). We
also recorded, for each species, the area of occurrence
predicted by GARP and MAXENT, using the threshold
generated to “cut” the potential distribution.

Differences between MAXENT and GARP AUC
values were bootstrapped for different sample sizes (i.e.,
number of species studied) to evaluate how random com-
bination of species, forming simulated ‘studies’ with in-
creasing number of species will tend to support one or
other method.
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3. Results

Values of AUC for GARP ranged from 0.923 to
0.999 for the species analysed, whereas for MAXENT
they ranged from 0.877 to 0.999 (Table 1), higher than
those obtained by Elith et al. (2006). Taking into ac-
count the AUC values, we found that GARP does not
work always worse than MAXENT, on the contrary
that would be expected by considering the ‘perform-
ance axis’ suggested by Elith et al. (2006). Indeed, in
25.6% of the analyses (i.e., 10 species) GARP outper-
formed MAXENT, and in all cases differences in AUC
were very small. We also found some relationship be-
tween the differences in the relative performance of the
two methods and sample sizes. When sample-records are
large (i.e., N > 140 records), the two models converge to
similar situations, but when sample sizes are small (i.e,
N < 10) or spatially clumped, GARP performed better
than MAXENT in six out of eight species (see Table 1).
In some intermediate situations (i.e., 15 < N < 100),
MAXENT frequently achieved better results (AUC) than
GARP (Figure 1a), but the difference was not as accentu-
ated as illustrated in Elith et al. (2006).

We compared differences in the area of occurrence
predicted for the species, for each method (Figure 1b).
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Figure 1. Means and standard deviations of AUC values for
different classes of sample size (a), and percentage of area
predicted as present vs sample size (b), comparing GARP
and MAXENT.

In general, MAXENT predicted a larger proportion of
the area than GARP when the sample size was lower
than 10 records. For large sample sizes (i.e. N > 20),
GARP frequently predicts larger potential distributional
areas when compared to MAXENT. When sample sizes
were >150, the area predicted was similar for the two
methods. In general, there is a significant correlation be-
tween the areas predicted by the two methods (r = 0.652;
n=37; P <0.01), but only if two outlier species were re-
moved (MAXENT generated very large extents for these
two species with very small sample sizes).

Means and standard deviations for 100 bootstrapped
samples with sample sizes ranging for 3 to 30 species
(each one can be considered as a simulated ‘study’) did
not show any trends towards deviations from a zero dif-
ference in AUC values between GARP and MAXENT
when increasing the number of replications (i.e., species
within studies) (Figure 2). Of course, it is possible to ob-
serve a decrease in the variance, revealing that all boot-
strap samples are converging to the same zero difference
at large sample sizes (i.e., ‘studies’ with more species).
At the same time, this shows that, when studying only a
few species, averages among ‘studies’ (i.e., combination
of species) can vary a lot, so in some of them GARP
will outperform MAXENT, whereas in some studies the
other way around can be observed.

4. Discussion

What can we claim based on these results? The
first and obvious issue to discuss is that the analysis
of this particular dataset is not in agreement with Elith
et al. (2006), regarding the performance of GARP and
MAXENT. According to these authors, MAXENT be-
longs to the highest-performing group of methods, with
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Figure 2. Relationship between differences in AUC val-
ues (MAXENT — GARP) and accumulation of species
studies, based on 100 bootstrapped samples (simulated
‘studies’) with sample sizes ranging from 3 to 30 species
evaluated in each one. The differences between mean del-
ta across samples sizes was not significant according to a

one-way ANOVA using bootstrapped values as replications
(F=0.341; P=0.915).
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AUC values usually near 1.0 (i.e., a “very good” ability
of a model to discriminate between sites where a spe-
cies is present, versus those where it is absent), whereas
GARP belongs to the group of models that performed
relatively poorly, with low AUC values. Here we have
found that GARP did not differ, on average, from
MAXENT, and both methods have high AUC values for
most species. Our results also differ from the recent ones
by Pearson et al. (2007), since they found that results for
GARP at very low sample sizes (i.e., n < 10) were worse
than MAXENT.

These conflicting results are in accordance to the
recent discussions in the literature about the relative
power and predictive ability of GARP (McNyset, 2005;
McNyset and Blackburn, 2006; Stockman et al., 2006;
White and Kerr, 2006; Fitzpatrick et al., 2007; Tsoar
et al., 2007). Also, as recently pointed out by Peterson
et al. (2008), the tests by Elith et al. (2006) were actually
performed using high-quality data and designed to evalu-
ate ENMs in a situation of fine-scale modeling of species
distribution details. However, in some circumstances it is
necessary to project distributions into large and unknown
regions in which samples are sparse or non-existent (i.e.,
transferability). Because of the relatively poor sampling
in the Neotropics and the large extent of the domain ana-
lysed here, our results strongly support the conclusions
by Peterson et al. (2007), i.e., that GARP was more suc-
cessful in predicting species distributions in broad un-
sampled regions (as evidenced here by the percentage of
area predicted as present) than MAXENT.

However, perhaps a more general discussion is to es-
tablish how one can provide guidelines on the statistical
performance of the ENM algorithms generalising from
particular situations (i.e., a given taxonomic group, with
variable life-histories, dispersal abilities or distributed
in different ways in environmental space, subjected to
different historical stochastic phenomena). The question
that follows is: how many studies are necessary to show
that a given method is ‘robust’, or behaves ‘better’ than
others? As pointed out by Pickett et al. (1994), “...the
relative youth of ecology suggests that many patterns are
not yet to be discerned from. Accumulating and evaluat-
ing the generality of patterns by quantitative, statistical
and inductive process is still a major need in ecology”.
However, this empirical and inductive approach and its
future success are strictly conditioned to some important
issues.

Comparative studies can provide guidelines for us-
ing the methods in the current time, but the problem
is that they cannot be understood as final solutions to
the problem if there are conflicting results, as we show
here when comparing GARP and MAXENT (see also
Peterson et al., 2008). First of all, the basic idea of ac-
cumulating results from multiple studies is that they
must be directly comparable, both in terms of ENMs
used and their evaluation criterion. Lobo et al. (2008)
and Peterson et al. (2008), for instance, discussed many
problems with ROC curves and AUC statistics used by
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Elith et al. (2006, and many other studies, including this
one) that could partially take into account variations in
performance rank among methods. So, a first critical step
would be establishing an accurate and unequivocal rank
of relative performance of ENMs.

More importantly, the empirical inductive approach
will work only if clear trends towards convergence in
model performance will appear as long as future stud-
ies are accumulated. The bootstrap did not reveal any
trends towards deviations from a zero difference in AUC
values between GARP and MAXENT when increasing
the number of species within studies, although there
are trends in variances. This same approach can be eas-
ily extended for comparison among multiple studies
in the future, by using species or studies as replicates,
and quantitative “neo-inductive” approaches, such as
Bayesian statistics, to better evaluate if there are trends
in the accumulation of information in time. Notice that
this argument also holds for any other statistic obtained
in empirical studies, including for example the relation-
ship between ENM performance rank and dataset (or
species) characteristics, such as sample sizes and their
spatial configuration. Indeed, if relative rank between
ENM varies in different studies, a promising research
line would be to show in which particular situations dif-
ferent methods may perform differently. Here, for in-
stance, we found variations in sample sizes (i.e., GARP
outperforms MAXTENT when modelling restricted dis-
tributed species - but see Pearson et al., 2007, for an op-
posite result), and future research may also include com-
parisons of the predictive success to model fine details
of species distributions across landscapes (see Peterson
et al., 2007).

Still following the inductive reasoning, it is then
important to stress that our main message here is not to
directly criticise the recent paper by Elith et al. (2006),
or other previous papers comparing niche-based meth-
ods (Segurado and Aradjo, 2004; Phillips et al., 2006;
Pearson et al., 2007), or even emphasise which of the
two methods compared is better. Instead, we reinforce
that results like ours suggest that many more studies, us-
ing standardised model evaluation criterion and ENM
algorithms, would be necessary to try establishing under
which circumstances the rank of statistical performance
of the methods vary, so one could safely advise the use
of a particular modelling technique, or at least of a group
of techniques. Simulation studies using known species
distributions can only partially account for this problem
since it is very difficult to envision all possible realistic
scenarios for modeling species geographic distribution,
although they can still be very useful to test model per-
formance under controlled, “quasi’-experimental, situ-
ations.

However, it is also important to consider the pos-
sibility that this empirical inductive reasoning may fail
in the end, because almost certainly we could not estab-
lish all potential scenarios generating variation in the
relative performance of models, especially considering
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non-equilibrium (historical contingencies and dispersal
processes) situations (see Aragjo et al., 2004; Aratdjo and
Pearson, 2005). The current lack of agreement among
the relative few studies conducted so far suggests that
this possibility must be seriously considered. If, as point-
ed out by Peterson et al. (2008; see also Levins 1966),
precision must be sacrificed by generality when using
ENM algorithms, perhaps the rank of algorithms will
be strongly idiosyncratic and data dependent, and a fi-
nal solution can never show up. So, we advise that, for
forthcoming research projects, a given model rank may
be better viewed as a working hypothesis to be tested as a
prediction in another particular context, not easily gener-
alised and thus not a final recommendation for practical
enterprises.

Under this more “pessimistic” scenario, for any
practical reason the choice among ENMs will prob-
ably be based on a statistical criterion (after a consensus
about this is achieved) or, if all methods prove to work
relatively well for particular datasets, choose the ENM
algorithm by other subjective reasons (such as computa-
tional facility). Alternatively, perhaps a better approach
for prediction would be the recent idea championed by
Aradjo and New (2007), by combining a large number
of models and scenarios to produce robust ensembles of
species distributions and deal with uncertainty at various
hierarchical levels. Although more powerful and faster
algorithms and computer skills would be necessary to
achieve this endeavour, perhaps this is safer and will lead
us out of the pitfalls of comparing niche-based methods
without knowing the particular situations we can face in
the future.
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