Acessibilidade / Reportar erro

Life tables of the ladybird beetles Harmonia axyridis, Cycloneda sanguinea and Hippodamia convergens reared on the greenbug Schizaphis graminum

Tabelas de vida das joaninhas Harmonia axyridis, Cycloneda sanguinea e Hippodamia convergens alimentadas com o pulgão-verde Schizaphis graminum

Abstract

The Asian lady beetle Harmonia axyridis (Coleoptera: Coccinellidae) is a biological control agent that also may adversely impact other coccinellid species. Life table parameters were used to assess the population growth potential and the effects of interspecific competition between the invasive lady beetle H. axyridis and the native coccinellids Hippodamia convergens and Cycloneda sanguinea (Coleoptera: Coccinellidae) under laboratory conditions at 25 °C, using Schizaphis graminum (Hemiptera: Aphididae) as prey. The effects of the abiotic factors air temperature and humidity on these coccinellids by conducting a survey in a sorghum crop under average conditions of 18.1 °C and 53.5%, respectively, were also assessed. Fecundity was higher in C. sanguinea (1021.0 eggs per female) and H. axyridis (1029.2 eggs per female) than in H. convergens (484.5 eggs per female). The majority of the life table parameters showed no significant differences. The instantaneous rates of population increase (rm) of C. sanguinea, H. axyridis, and H. convergens were 0.195, 0.198, and 0.194 d–1, respectively. Based on the life table parameters obtained in this study, all three species of Coccinellidae showed a similar capacity to control a S. graminum population.

Keywords:
aphids; Asian lady beetle; biological control; Coccinellidae; interspecific competition; native species

Resumo

A joaninha asiática Harmonia axyridis (Coleoptera: Coccinellidae) é um agente de controle biológico que pode afetar negativamente outras espécies de coccinelídeos. Parâmetros da tabela de vida foram usados ​​para avaliar o potencial de crescimento populacional e os efeitos da competição interespecífica entre o coccinelídeo exótico H. axyridis e os coccinelídeos nativos Hippodamia convergens e Cycloneda sanguinea (Coleoptera: Coccinellidae) em condições de laboratório a 25 °C, usando Schizaphis graminum (Hemiptera: Aphididae) como presa. Também foram avaliados os efeitos dos fatores abióticos temperatura e umidade do ar sobre esses coccinelídeos por meio de levantamento em uma cultura de sorgo sob condições médias de 18,1 °C e 53,5%, respectivamente. A fecundidade foi maior em C. sanguinea (1021,0 ovos por fêmea) e H. axyridis (1029,2 ovos por fêmea) do que em H. convergens (484,5 ovos por fêmea). A maioria dos parâmetros da tabela de vida não apresentou diferenças significativas. As taxas intrínsicas de aumento (rm) de C. sanguinea, H. axyridis e H. convergens foram 0,195, 0,198 e 0,194 d–1, respectivamente. Com base nos parâmetros da tabela de vida obtidos neste estudo, as três espécies de Coccinellidae mostraram uma capacidade semelhante de controlar uma população de S. graminum.

Palavras-chave:
pulgões; joaninha asiática; controle biológico; Coccinellidae; competição interespecífica; espécies nativas

1. Introduction

Coccinellidae includes natural predators of agricultural pests such as aphids, coccids, whiteflies, psyllids, and mites (Hodek and Evans, 2012HODEK, I. and EVANS, E.W., 2012. Food relationships. In: I. HODEK, H.F. VAN EMDEN and A. HONĚK, eds. Ecology and behavior of the ladybird beetles (Coccinellidae). Chichester: Willey-Blackwell, pp. 141-274. http://dx.doi.org/10.1002/9781118223208.ch5.
http://dx.doi.org/10.1002/9781118223208....
). The lady beetles Hippodamia convergens (Guérin-Méneville, 1842), Harmonia axyridis (Pallas, 1773), and Cycloneda sanguinea (L., 1763) (Coleoptera: Coccinellidae) are placed in the tribe Coccinellini (Milléo and Meira, 2012MILLÉO, J. and MEIRA, W.V., 2012. Morfologia dos Coccinellini (Coleoptera: Coccinellidae) depositados na coleção entomológica dos Campos Gerais do Paraná, Ponta Grossa, Paraná. EntomoBrasilis, vol. 5, no. 2, pp. 146-163. http://dx.doi.org/10.12741/ebrasilis.v5i2.231.
http://dx.doi.org/10.12741/ebrasilis.v5i...
; Escalona et al., 2017ESCALONA, H.E., ZWICK, A., LI, H.-S., LI, J., WANG, X., PANG, H., HARTLEY, D., JERMIIN, L.S., NEDVĚD, O., MISOF, B., NIEHUIS, O., ŚLIPIŃSKI, A. and TOMASZEWSKA, W., 2017. Molecular phylogeny reveals food plasticity in the evolution of true ladybird beetles (Coleoptera: Coccinellidae: Coccinellini). BMC Evolutionary Biology, vol. 17, no. 1, p. 151. http://dx.doi.org/10.1186/s12862-017-1002-3. PMid:28651535.
http://dx.doi.org/10.1186/s12862-017-100...
) and are important biological control agents of aphids, a significant concern in crops worldwide (Blackman and Eastop, 2007BLACKMAN, R.L. and EASTOP, V.F., 2007. Taxonomic issues. In: H.F. VAN EMDEN and R. HARRINGTON, eds. Aphids as crop pests. Wallingford: CABI, pp. 1-29. http://dx.doi.org/10.1079/9780851998190.0001.
http://dx.doi.org/10.1079/9780851998190....
; Phoofolo et al., 2007PHOOFOLO, M.W., GILES, K.L. and ELLIOTT, N.C., 2007. Quantitative evaluation of suitability of the greenbug, Schizaphis graminum, and the bird cherry-oat aphid, Rhopalosiphum padi, as prey for Hippodamia convergens (Coleoptera: Coccinellidae). Biological Control, vol. 41, no. 1, pp. 25-32. http://dx.doi.org/10.1016/j.biocontrol.2006.12.017.
http://dx.doi.org/10.1016/j.biocontrol.2...
; Rocca et al., 2017ROCCA, M., RIZZO, E., GRECO, N. and SÁNCHEZ, N., 2017. Intra- and interspecific interactions between aphidophagous ladybirds: the role of prey in predator coexistence. Entomologia Experimentalis et Applicata, vol. 162, no. 3, pp. 284-292. http://dx.doi.org/10.1111/eea.12527.
http://dx.doi.org/10.1111/eea.12527...
). Intraguild predation is related to predation on a heterospecific competitor (Polis et al., 1989POLIS, G.A., MYERS, C.A. and HOLT, R.D., 1989. The ecology and evolution of intraguild predation potential competitors that eat each other. Annual Review of Ecology and Systematics, vol. 20, no. 1, pp. 297-330. http://dx.doi.org/10.1146/annurev.es.20.110189.001501.
http://dx.doi.org/10.1146/annurev.es.20....
). This process is observed among coccinellids, and the interactions involved can decrease the beetles' potential to inhibit the development of aphid populations (Vance-Chalcraft et al., 2007VANCE-CHALCRAFT, H.D., ROSENHEIM, J.A., VONESH, J.R., OSENBERG, C.W. and SIH, A., 2007. The influence of intraguild predation on prey suppression and prey release: a meta-analysis. Ecology, vol. 88, no. 11, pp. 2689-2696. http://dx.doi.org/10.1890/06-1869.1. PMid:18051635.
http://dx.doi.org/10.1890/06-1869.1...
; Grez et al., 2012GREZ, A.A., VIERA, B. and SOARES, A.O., 2012. Biotic interactions between Eriopis connexa and Hippodamia variegata, a native and an exotic coccinellid species associated with alfalfa fields in Chile. Entomologia Experimentalis et Applicata, vol. 142, no. 1, pp. 36-44. http://dx.doi.org/10.1111/j.1570-7458.2011.01202.x.). However, the defensive capability and larval dispersal observed in coccinellids can inhibit these ecological interactions (Rocca et al., 2017ROCCA, M., RIZZO, E., GRECO, N. and SÁNCHEZ, N., 2017. Intra- and interspecific interactions between aphidophagous ladybirds: the role of prey in predator coexistence. Entomologia Experimentalis et Applicata, vol. 162, no. 3, pp. 284-292. http://dx.doi.org/10.1111/eea.12527.
http://dx.doi.org/10.1111/eea.12527...
).

Cycloneda sanguinea and H. convergens are native to the Americas (Vargas et al., 2013VARGAS, G., MICHAUD, J.P. and NECHOLS, J.R., 2013. Cryptic maternal effects in Hippodamia convergens vary with maternal age and body size. Entomologia Experimentalis et Applicata, vol. 146, no. 2, pp. 302-311. http://dx.doi.org/10.1111/eea.12027.
http://dx.doi.org/10.1111/eea.12027...
; Rocca et al., 2017ROCCA, M., RIZZO, E., GRECO, N. and SÁNCHEZ, N., 2017. Intra- and interspecific interactions between aphidophagous ladybirds: the role of prey in predator coexistence. Entomologia Experimentalis et Applicata, vol. 162, no. 3, pp. 284-292. http://dx.doi.org/10.1111/eea.12527.
http://dx.doi.org/10.1111/eea.12527...
). These coccinellids are widely distributed in South America and are abundant in many Brazilian agroecosystems (Sarmento et al., 2007SARMENTO, R.A., VENZON, M., PALLINI, A., OLIVEIRA, E.E. and JANSSEN, A., 2007. Use of odours by Cycloneda sanguinea to assess patch quality. Entomologia Experimentalis et Applicata, vol. 124, no. 3, pp. 313-318. http://dx.doi.org/10.1111/j.1570-7458.2007.00587.x.
http://dx.doi.org/10.1111/j.1570-7458.20...
; Medeiros et al., 2010MEDEIROS, M.A., RIBEIRO, P.A., MORAIS, H.C., BRANCO, M.C., SUJII, E.R. and SALGADO-LABORIAU, M.L., 2010. Identification of plant families associated with the predators Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) and Hippodamia convergens Guérin-Menéville (Coleoptera: Coccinellidae) using pollen grain as a natural marker. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 70, no. 2, pp. 293-300. http://dx.doi.org/10.1590/S1519-69842010005000011. PMid:20379654.
http://dx.doi.org/10.1590/S1519-69842010...
). Cycloneda sanguinea is one of the main aphidophagous native species in Brazil (Martins et al., 2009MARTINS, C.B.C., ALMEIDA, L.M., ZONTA-DE-CARVALHO, R.C., CASTRO, C.F. and PEREIRA, R.A., 2009. Harmonia axyridis: a threat to Brazilian Coccinellidae? Revista Brasileira de Entomologia, vol. 53, no. 4, pp. 663-671. http://dx.doi.org/10.1590/S0085-56262009000400018.
http://dx.doi.org/10.1590/S0085-56262009...
). The Asian lady beetle H. axyridis is native to central and eastern Asia (Zhang et al., 2016ZHANG, G.F., LÖVEI, G.L., WU, X. and WAN, F.H., 2016. Presence of native prey does not divert predation on exotic pests by Harmonia axyridis in its indigenous range. PLoS One, vol. 11, no. 7, p. e0159048. http://dx.doi.org/10.1371/journal.pone.0159048. PMid:27391468.
http://dx.doi.org/10.1371/journal.pone.0...
). In Brazil, H. axyridis was first recorded in 2002 in the state of Paraná, and is currently found in the south, southeast, and midwest regions (Martins et al., 2009MARTINS, C.B.C., ALMEIDA, L.M., ZONTA-DE-CARVALHO, R.C., CASTRO, C.F. and PEREIRA, R.A., 2009. Harmonia axyridis: a threat to Brazilian Coccinellidae? Revista Brasileira de Entomologia, vol. 53, no. 4, pp. 663-671. http://dx.doi.org/10.1590/S0085-56262009000400018.
http://dx.doi.org/10.1590/S0085-56262009...
; Koch et al., 2011KOCH, R.L., FERNANDES, M.G. and DUTRA, C.C., 2011. First confirmed record of Harmonia axyridis (Pallas, 1773) (Coleoptera: Coccinellidae) in the state of Mato Grosso do Sul, Brazil. Check List, vol. 7, no. 4, pp. 476-477. http://dx.doi.org/10.15560/7.4.476.
http://dx.doi.org/10.15560/7.4.476...
; Ducatti et al., 2020DUCATTI, R.D.B., TIRONI, S.P., MARIANO-DA-SILVA, S., RADÜNZ, A.L. and TRAMONTIN, M.A., 2020. First report of Coccinellid (Coleoptera: Coccinellidae) species found on citrus orchards from the central-west region of Santa Catarina, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 80, no. 2, pp. 482-484. http://dx.doi.org/10.1590/1519-6984.215567. PMid:31291408.
http://dx.doi.org/10.1590/1519-6984.2155...
). Climate matching with its native range is an essential factor that probably makes the southern region of South America suitable for H. axyridis (Koch et al., 2006KOCH, R.L., VENETTE, R.C. and HUTCHISON, W.D., 2006. Invasions by Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in the Western hemisphere: implications for South America. Neotropical Entomology, vol. 35, no. 4, pp. 421-434. http://dx.doi.org/10.1590/S1519-566X2006000400001. PMid:17061788.
http://dx.doi.org/10.1590/S1519-566X2006...
). In addition, besides being a strong intraguild predator, H. axyridis has certain characteristics such as large size, polyphagous feeding habit, good dispersal ability, short generation time, high immature survival, and high fecundity that contribute to its invasion success (Santos et al., 2009SANTOS, N.R.P., SANTOS-CIVIDANES, T.M., CIVIDANES, F.J., ANJOS, A.C.R. and OLIVEIRA, L.V.L., 2009. Aspectos biológicos de Harmonia axyridis alimentada com duas espécies de presas e predação intraguilda com Eriopis connexa. Pesquisa Agropecuária Brasileira, vol. 44, no. 6, pp. 554-560. http://dx.doi.org/10.1590/S0100-204X2009000600002.
http://dx.doi.org/10.1590/S0100-204X2009...
; Hodek and Evans, 2012HODEK, I. and EVANS, E.W., 2012. Food relationships. In: I. HODEK, H.F. VAN EMDEN and A. HONĚK, eds. Ecology and behavior of the ladybird beetles (Coccinellidae). Chichester: Willey-Blackwell, pp. 141-274. http://dx.doi.org/10.1002/9781118223208.ch5.
http://dx.doi.org/10.1002/9781118223208....
; Katsanis et al., 2013KATSANIS, A., BABENDREIER, D., NENTWIG, W. and KENIS, M., 2013. Intraguild predation between the invasive ladybird Harmonia axyridis and non-target European coccinellid species. BioControl, vol. 58, no. 1, pp. 73-83. http://dx.doi.org/10.1007/s10526-012-9470-2.
http://dx.doi.org/10.1007/s10526-012-947...
; Raak-van den Berg et al., 2018RAAK-VAN DEN BERG, C.L., JONG, P.W., GORT, G., MANLY, B.F.J. and VAN LENTEREN, J.C., 2018. Life histories of an invasive and native ladybird under field experimental conditions in a temperate climate. Entomologia Experimentalis et Applicata, vol. 166, no. 3, pp. 151-161. http://dx.doi.org/10.1111/eea.12658.
http://dx.doi.org/10.1111/eea.12658...
).

Indigenous aphidophagous guilds can successfully control invasive aphid species (Michaud, 2002MICHAUD, J.P., 2002. Invasion of the Florida citrus ecosystem by Harmonia axyridis (Coleoptera: Coccinellidae) and asymmetric competition with a native species, Cycloneda sanguinea. Environmental Entomology, vol. 31, no. 5, pp. 827-835. http://dx.doi.org/10.1603/0046-225X-31.5.827.
http://dx.doi.org/10.1603/0046-225X-31.5...
; Colares et al., 2015COLARES, F., MICHAUD, J.P., BAIN, C.L. and TORRES, J.B., 2015. Recruitment of aphidophagous arthropods to sorghum plants infested with Melanaphis sacchari and Schizaphis graminum (Hemiptera: aphididae). Biological Control, vol. 90, pp. 16-24. http://dx.doi.org/10.1016/j.biocontrol.2015.05.009.
http://dx.doi.org/10.1016/j.biocontrol.2...
). Therefore, a strategy for controlling invasive aphids should promote the use of native species of coccinellids before considering introductions of exotic coccinellids, which may pose environmental risks (Michaud, 2002MICHAUD, J.P., 2002. Invasion of the Florida citrus ecosystem by Harmonia axyridis (Coleoptera: Coccinellidae) and asymmetric competition with a native species, Cycloneda sanguinea. Environmental Entomology, vol. 31, no. 5, pp. 827-835. http://dx.doi.org/10.1603/0046-225X-31.5.827.
http://dx.doi.org/10.1603/0046-225X-31.5...
; Lanzoni et al., 2004LANZONI, A., ACCINELLI, G., BAZZOCCHI, G.G. and BURGIO, G., 2004. Biological traits and life table of the exotic Harmonia axyridis compared with Hippodamia variegata, and Adalia bipunctata (Col., Coccinellidae). Journal of Applied Entomology, vol. 128, no. 4, pp. 298-306. http://dx.doi.org/10.1111/j.1439-0418.2004.00847.x.
http://dx.doi.org/10.1111/j.1439-0418.20...
; Roy et al., 2011ROY, H.E., RHULE, E., HARDING, S., HANDLEY, L.-J.L., POLAND, R.L., RIDDICK, E.W. and STEENBERG, T., 2011. Living with the enemy: parasites and pathogens of the ladybird Harmonia axyridis. BioControl, vol. 56, no. 4, pp. 663-679. http://dx.doi.org/10.1007/s10526-011-9387-1.
http://dx.doi.org/10.1007/s10526-011-938...
). For example, introductions of H. axyridis in several countries negatively impacted agroecosystems because this coccinellid acted as a fruit pest and threatened non-target organisms (Koch et al., 2006KOCH, R.L., VENETTE, R.C. and HUTCHISON, W.D., 2006. Invasions by Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in the Western hemisphere: implications for South America. Neotropical Entomology, vol. 35, no. 4, pp. 421-434. http://dx.doi.org/10.1590/S1519-566X2006000400001. PMid:17061788.
http://dx.doi.org/10.1590/S1519-566X2006...
; Koch and Galvan, 2008KOCH, R.L. and GALVAN, T.L., 2008. Bad side of a good beetle: the North American experience with Harmonia axyridis. BioControl, vol. 53, no. 1, pp. 23-35. http://dx.doi.org/10.1007/s10526-007-9121-1.
http://dx.doi.org/10.1007/s10526-007-912...
; Roy et al., 2011ROY, H.E., RHULE, E., HARDING, S., HANDLEY, L.-J.L., POLAND, R.L., RIDDICK, E.W. and STEENBERG, T., 2011. Living with the enemy: parasites and pathogens of the ladybird Harmonia axyridis. BioControl, vol. 56, no. 4, pp. 663-679. http://dx.doi.org/10.1007/s10526-011-9387-1.
http://dx.doi.org/10.1007/s10526-011-938...
). Several authors (Michaud, 2002MICHAUD, J.P., 2002. Invasion of the Florida citrus ecosystem by Harmonia axyridis (Coleoptera: Coccinellidae) and asymmetric competition with a native species, Cycloneda sanguinea. Environmental Entomology, vol. 31, no. 5, pp. 827-835. http://dx.doi.org/10.1603/0046-225X-31.5.827.
http://dx.doi.org/10.1603/0046-225X-31.5...
; Katsanis et al., 2013KATSANIS, A., BABENDREIER, D., NENTWIG, W. and KENIS, M., 2013. Intraguild predation between the invasive ladybird Harmonia axyridis and non-target European coccinellid species. BioControl, vol. 58, no. 1, pp. 73-83. http://dx.doi.org/10.1007/s10526-012-9470-2.
http://dx.doi.org/10.1007/s10526-012-947...
; Brown and Roy, 2018BROWN, P.M.J. and ROY, H.E., 2018. Native ladybird decline caused by the invasive harlequin ladybird Harmonia axyridis: evidence from a long‐term field study. Insect Conservation and Diversity, vol. 11, no. 3, pp. 230-239. http://dx.doi.org/10.1111/icad.12266.
http://dx.doi.org/10.1111/icad.12266...
) have reported population declines and predation on native coccinellid species by H. axyridis in agroecosystems around the world. Harmonia axyridis is also associated with displacement of H. convergens and C. sanguinea in Brazilian agroecosystems (Martins et al., 2009MARTINS, C.B.C., ALMEIDA, L.M., ZONTA-DE-CARVALHO, R.C., CASTRO, C.F. and PEREIRA, R.A., 2009. Harmonia axyridis: a threat to Brazilian Coccinellidae? Revista Brasileira de Entomologia, vol. 53, no. 4, pp. 663-671. http://dx.doi.org/10.1590/S0085-56262009000400018.
http://dx.doi.org/10.1590/S0085-56262009...
).

Life tables provide information on insect fecundity and survival patterns and are essential tools to study population ecology (Price, 1984PRICE, P.W., 1984. Insect ecology. 2nd ed. New York: John Wiley, 607 p.). Life table studies of coccinellids also help to recognize the potential consequences of interspecific competition for the effectiveness of these predators as biological control agents (Dixon et al., 1997DIXON, A.F.G., HEMPTINNE, J.L. and KINDLMANN, P., 1997. Effectiveness of ladybirds as biological control agents: patterns and processes. Entomophaga, vol. 42, pp. 71-83. http://dx.doi.org/10.1007/BF02769882.
http://dx.doi.org/10.1007/BF02769882...
; Lanzoni et al., 2004LANZONI, A., ACCINELLI, G., BAZZOCCHI, G.G. and BURGIO, G., 2004. Biological traits and life table of the exotic Harmonia axyridis compared with Hippodamia variegata, and Adalia bipunctata (Col., Coccinellidae). Journal of Applied Entomology, vol. 128, no. 4, pp. 298-306. http://dx.doi.org/10.1111/j.1439-0418.2004.00847.x.
http://dx.doi.org/10.1111/j.1439-0418.20...
). Because records of H. axyridis in Brazil are relatively recent, no study has yet used age-specific life tables to compare this predator's population growth with H. convergens and C. sanguinea fed on green aphids. In the field, aphids are the primary food source for most species of the tribe Coccinellini (Milléo and Meira, 2012MILLÉO, J. and MEIRA, W.V., 2012. Morfologia dos Coccinellini (Coleoptera: Coccinellidae) depositados na coleção entomológica dos Campos Gerais do Paraná, Ponta Grossa, Paraná. EntomoBrasilis, vol. 5, no. 2, pp. 146-163. http://dx.doi.org/10.12741/ebrasilis.v5i2.231.
http://dx.doi.org/10.12741/ebrasilis.v5i...
; Escalona et al., 2017ESCALONA, H.E., ZWICK, A., LI, H.-S., LI, J., WANG, X., PANG, H., HARTLEY, D., JERMIIN, L.S., NEDVĚD, O., MISOF, B., NIEHUIS, O., ŚLIPIŃSKI, A. and TOMASZEWSKA, W., 2017. Molecular phylogeny reveals food plasticity in the evolution of true ladybird beetles (Coleoptera: Coccinellidae: Coccinellini). BMC Evolutionary Biology, vol. 17, no. 1, p. 151. http://dx.doi.org/10.1186/s12862-017-1002-3. PMid:28651535.
http://dx.doi.org/10.1186/s12862-017-100...
). Among aphid species, the greenbug, Schizaphis graminum (Rondani, 1856) (Hemiptera: Aphididae), is considered an essential food of H. convergens, H. axyridis, and C. sanguinea, that is, as a prey, S. graminum ensures completion of larval development, low mortality, and high fecundity, among other characteristics of these coccinellids (Michaud and Qureshi, 2006MICHAUD, J.P. and QURESHI, J.A., 2006. Reproductive diapause in Hippodamia convergens (Coleoptera: Coccinellidae) and its life history consequences. Biological Control, vol. 39, no. 2, pp. 193-200. http://dx.doi.org/10.1016/j.biocontrol.2006.04.004.
http://dx.doi.org/10.1016/j.biocontrol.2...
; Phoofolo et al., 2007PHOOFOLO, M.W., GILES, K.L. and ELLIOTT, N.C., 2007. Quantitative evaluation of suitability of the greenbug, Schizaphis graminum, and the bird cherry-oat aphid, Rhopalosiphum padi, as prey for Hippodamia convergens (Coleoptera: Coccinellidae). Biological Control, vol. 41, no. 1, pp. 25-32. http://dx.doi.org/10.1016/j.biocontrol.2006.12.017.
http://dx.doi.org/10.1016/j.biocontrol.2...
; Hodek and Evans, 2012HODEK, I. and EVANS, E.W., 2012. Food relationships. In: I. HODEK, H.F. VAN EMDEN and A. HONĚK, eds. Ecology and behavior of the ladybird beetles (Coccinellidae). Chichester: Willey-Blackwell, pp. 141-274. http://dx.doi.org/10.1002/9781118223208.ch5.
http://dx.doi.org/10.1002/9781118223208....
). Schizaphis graminum is distributed throughout Europe, Asia, Africa, and North and South America and feeds almost exclusively on members of Poaceae, being one of the most important pests of cereal crops (Blackman and Eastop, 2007BLACKMAN, R.L. and EASTOP, V.F., 2007. Taxonomic issues. In: H.F. VAN EMDEN and R. HARRINGTON, eds. Aphids as crop pests. Wallingford: CABI, pp. 1-29. http://dx.doi.org/10.1079/9780851998190.0001.
http://dx.doi.org/10.1079/9780851998190....
; Vakhide and Safavi, 2014VAKHIDE, N. and SAFAVI, S.A., 2014. Biology and fertility life table of the greenbug, Schizaphis graminum (Hemiptera: Aphididae) on the resistant winter wheat cultivar (Pishgam) in Iran. Archiv für Phytopathologie und Pflanzenschutz, vol. 47, no. 3, pp. 355-365. http://dx.doi.org/10.1080/03235408.2013.809909.
http://dx.doi.org/10.1080/03235408.2013....
). In this study, H. convergens, H. axyridis, and C. sanguinea were reared under laboratory conditions on S. graminum, with the objective of constructing and comparing life table parameters of these coccinellid species. The study also assessed the effects of abiotic factors on the populations of these coccinellids in a sorghum crop.

2. Material and Methods

2.1. Coccinellid rearing

The experiment was performed in the Laboratório de Ecologia at the Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil. The individuals of the coccinellid species and S. graminum used in this study were collected from leaves of grain sorghum, Sorghum bicolor (L.) Moench (Poaceae). The host-plant species was located in the farm fields (21°14′52″S, 48°16′04″W) of the FCAV. The aphids were kept in 45-cm sections of stalks of the sorghum cultivar BRS 310 in glass containers filled with 300 mL of water and sealed with polyvinyl chloride (PVC) film. The water and sorghum stalks were replaced weekly. Ten pairs of each coccinellid species were placed in cages consisting of 10 × 10-cm PVC tubes, lined on the inside with sulfite paper and sealed with voile mesh. The adult coccinellids were fed daily with eggs of Ephestia kuehniella Zeller, 1879 (Lepidoptera: Pyralidae) and a diet composed of brewer’s yeast and honey in a ratio of 2:1, according to Santos et al. (2009)SANTOS, N.R.P., SANTOS-CIVIDANES, T.M., CIVIDANES, F.J., ANJOS, A.C.R. and OLIVEIRA, L.V.L., 2009. Aspectos biológicos de Harmonia axyridis alimentada com duas espécies de presas e predação intraguilda com Eriopis connexa. Pesquisa Agropecuária Brasileira, vol. 44, no. 6, pp. 554-560. http://dx.doi.org/10.1590/S0100-204X2009000600002.
http://dx.doi.org/10.1590/S0100-204X2009...
. All containers were maintained in a climate-controlled room at 25 ± 1 °C and a 12-h photoperiod. Adult coccinellids were sexed according to the morphological characters of females and males described by Kovář (1996)KOVÁŘ, I., 1996. Morphology and anatomy. In: I. HODEK and A. HONĚK, eds. Ecology of Coccinellidae. Dordrecht: Kluwer Academic, pp. 1-18. http://dx.doi.org/10.1007/978-94-017-1349-8_1.
http://dx.doi.org/10.1007/978-94-017-134...
.

2.2. Life table studies

Egg development and survival were determined by taking 100 fresh eggs of each coccinellid species from the laboratory breeding stock and maintaining 3–4 egg batches in Petri dishes (9 cm in diameter). To obtain adult coccinellids for the study, 30 newly hatched larvae of each species were transferred to individual Petri dishes (9 cm in diameter) and were monitored until molting to adult stage. Nymphs and adults of S. graminum were offered ad libitum to each coccinellid larva. Ten pairs of each species were formed, and each pair was placed in a 350-mL clear plastic cup and fed daily with S. graminum. The eggs were counted and removed until the females died. Eggs, larvae, and adults were assessed daily and maintained in a climate-controlled chamber at a constant temperature of 25 ± 1 °C, 12-h photoperiod, and 70 ± 10% relative humidity.

The parameters for the life tables were obtained according to Price (1984)PRICE, P.W., 1984. Insect ecology. 2nd ed. New York: John Wiley, 607 p., as follows: specific fecundity (mx) is the number of descendants produced per female at age x and that resulted in females; survival rate (lx ) is the life expectancy to age x, expressed as a fraction of an initial population of one female); net replacement rate RO=(mx.lx is the number of daughters that replace an average female over a generation; mean generation time T= (mx.lx.x/ (mx.lx) is the average of the period during which the progeny are produced; instantaneous rate of population increase (rm=lnRO/T); finite rate of population increase (λ=erm); and population doubling time DT=ln2/rm. The parameters of the life tables were analyzed using the Jackknife technique (Meyer et al., 1986MEYER, J.S., INGERSOLL, C.G., MCDONALD, L.L. and BOYCE, M.S., 1986. Estimating uncertainty in population growth rates: jackknife vs. bootstrap techniques. Ecology, vol. 67, no. 5, pp. 1156-1166. http://dx.doi.org/10.2307/1938671.
http://dx.doi.org/10.2307/1938671...
). The means were compared through the t-test at 5% probability, using the software package Lifetable SAS (Maia et al., 2000MAIA, A.H.N., LUIZ, A.J.B. and CAMPANHOLA, C., 2000. Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. Journal of Economic Entomology, vol. 93, no. 2, pp. 511-518. http://dx.doi.org/10.1603/0022-0493-93.2.511. PMid:10826207.
http://dx.doi.org/10.1603/0022-0493-93.2...
).

2.3. Field study

A survey was conducted to determine the relationship between abiotic factors and the populations of C. sanguinea, H. convergens, and H. axyridis in a field of Bolivian giant sorghum AGRI 002E, S. bicolor, cultivated in the experimental area of the Instituto Biológico (21°10'26”S, 47°51'04”W), Ribeirão Preto, northeastern São Paulo. The regional climate is considered in the Köppen system as Aw climate, tropical rainy with dry winter (Rolim et al., 2007ROLIM, G.S., CAMARGO, M.B.P., LANIA, D.G. and MORAES, J.F.L., 2007. Classificação climática de Köppen e de Thornthwaite e sua aplicabilidade na determinação de zonas agroclimáticas para o estado de São Paulo. Bragantia, vol. 66, no. 4, pp. 711-720.).

Sorghum was sown on 15 March 2021 in an area of 4 ha, with 0.90-m row spacing and a density of 12 plants/m2. No pesticide was applied during the survey. Adult coccinellids were sampled by visual examination, by randomly selecting ten plants in the crop interior. Sampling was done two or three times a week in June and July 2021, totaling ten sampling dates. Exemplars of H. convergens, H. axyridis, and C. sanguinea were collected from the plants and identified according to Kovář (1996)KOVÁŘ, I., 1996. Morphology and anatomy. In: I. HODEK and A. HONĚK, eds. Ecology of Coccinellidae. Dordrecht: Kluwer Academic, pp. 1-18. http://dx.doi.org/10.1007/978-94-017-1349-8_1.
http://dx.doi.org/10.1007/978-94-017-134...
. The relationship between temperature and humidity and the coccinellid abundance was examined by means of the Pearson correlation. The analysis was based on the total number of individual coccinellids found on each sampling date. Regarding abiotic factors, the sum of the rainfall intensity (mm) and the means of the maximum and minimum air temperature (°C) and relative humidity (%), recorded in the seven days before the sampling date were used. Data analysis was conducted with SAS (2002)SAS INSTITUTE INC. – SAS, 2002. SAS/STAT user’s guide: version 8.02 - TS level 2MO [software]. Cary: SAS Institute Inc.. statistical software.

3. Results

3.1. Survival and fecundity

Females of C. sanguinea started to lay eggs 3–4 days after emergence, which occurred on day 13 (Figure 1). The oviposition period was observed throughout the entire adult stage and extended from day 18 to 105, with a peak on day 24 (17.6 eggs). During most of this period, the specific fecundity remained constant, and the total fecundity was 1021.0 eggs per female. The adult survival rate gradually declined beginning approximately on day 33, and adults reached maximum survival at day 92.

Figure 1
Survival rate (lx) and specific fecundity (mx) of three species of Coccinellidae fed on Schizaphis graminum.

The oviposition period of H. axyridis occurred from day 20 to 114, with a peak on day 22 (16.1 eggs) (Figure 1). Females started laying eggs 3–4 days after emergence (day 17) and maintained until the age of 114 days, reaching a total fecundity of 1029.2 eggs per female. The adult survival rate remained constant until approximately day 78, followed by a gradual decline until day 165, at which point the rate remained stable up to the maximum survival at day 213.

Oviposition of H. convergens started 1–2 days after emergence on day 16. The species showed a linear decrease in fecundity from the beginning of the oviposition period to approximately day 60, when the females ceased egg laying, with a total fecundity of 484.5 eggs per female (Figure 1). The oviposition period occurred between the 18th and the 60th day, with a peak of 8.7 eggs per female at the age of 8 days. Adult survival remained constant up to day 80, decreased until day 92, and then remained constant until day 152. After this period, adult survival decreased linearly and reached a maximum survival of 183 days.

3.2. Life table parameters

The net replacement rate (R0 = 401.49 female offspring) of H. axyridis was significantly higher than the R0 = 136.31 female offspring of H. convergens; while C. sanguinea showed a similar R0 (R0 = 278.24 female offspring) to both species (Table 1). These values resulted in 1.8 and 2.9 times greater R0 for H. axyridis than C. sanguinea and H. convergens, respectively. Similar values of mean generation time (T), population doubling time (DT), instantaneous rate of population increase (rm), and finite rate of population increase (λ) were observed in all three species.

Table 1
Estimated laboratory life table parameters for three species of coccinellids fed on Schizaphis graminum.

3.3. Field study

The survey carried out revealed greater abundance of H. axyridis than H. convergens and C. sanguinea in the sorghum crop (Table 2). The species of aphid observed infesting sorghum was Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae). The correlation analysis indicated a significant positive relationship between the minimum air temperature and the number of individuals of H. convergens (r = 0.71; p = 0.02) and H. axyridis (r = 0.68; p = 0.03); these coccinellids exhibited no significant correlation with the maximum air temperature (Table 2). There was no significant correlation between C. sanguinea and the abiotic factors.

Table 2
Pearson correlation coefficients (r) for the relationship of coccinellid abundance to temperature and humidity in a sorghum crop.

4. Discussion

The increase and decrease in the oviposition rate (age-specific fecundity) during the adult periods of H. axyridis, C. sanguinea, and H. convergens followed Omkar and Mishra (2005)OMKAR and MISHRA, G., 2005. Mating in aphidophagous ladybirds: costs and benefits. Journal of Applied Entomology, vol. 129, no. 8, pp. 432-436. http://dx.doi.org/10.1111/j.1439-0418.2005.00996.x.
http://dx.doi.org/10.1111/j.1439-0418.20...
, who documented the oviposition rate for short- and long-lived female coccinellids. Short-lived coccinellids reproduce uniformly (almost constantly) during their lifetime, as observed for C. sanguinea (Figure 1). Milléo et al. (2014)MILLÉO, J., FERNANDES, F.S. and GODOY, W.A.C., 2014. Comparative demography of the exotic Harmonia axyridis with other aphidophagous coccinellids reared on artificial diet. Pesquisa Agropecuária Brasileira, vol. 49, no. 1, pp. 1-10. http://dx.doi.org/10.1590/S0100-204X2014000100001.
http://dx.doi.org/10.1590/S0100-204X2014...
also reported an almost constant oviposition rate for C. sanguinea fed on E. kuehniella eggs. In contrast, long-lived females show a significant and rapid increase in reproductive activity, followed by progressive lessening, a characteristic shown by H. axyridis and H. convergens, in this study.

Aphids have features that make them suitable or challenging as prey for coccinellids. Aphid populations often occur in high densities in discrete patches in a crop field and tend to be ephemeral and unpredictable (Kindlmann and Dixon, 1993KINDLMANN, P. and DIXON, A.F.G., 1993. Optimal foraging in ladybird beetles (Coleoptera: Coccinellidae) and its consequences for their use in biological control. European Journal of Entomology, vol. 90, no. 4, pp. 443-450.; Hodek and Evans, 2012HODEK, I. and EVANS, E.W., 2012. Food relationships. In: I. HODEK, H.F. VAN EMDEN and A. HONĚK, eds. Ecology and behavior of the ladybird beetles (Coccinellidae). Chichester: Willey-Blackwell, pp. 141-274. http://dx.doi.org/10.1002/9781118223208.ch5.
http://dx.doi.org/10.1002/9781118223208....
). According to the authors, when a prey patch becomes unsuitable for oviposition, a female coccinellid must search for other favorable patches (Kindlmann and Dixon, 1993KINDLMANN, P. and DIXON, A.F.G., 1993. Optimal foraging in ladybird beetles (Coleoptera: Coccinellidae) and its consequences for their use in biological control. European Journal of Entomology, vol. 90, no. 4, pp. 443-450.; Hodek and Evans, 2012HODEK, I. and EVANS, E.W., 2012. Food relationships. In: I. HODEK, H.F. VAN EMDEN and A. HONĚK, eds. Ecology and behavior of the ladybird beetles (Coccinellidae). Chichester: Willey-Blackwell, pp. 141-274. http://dx.doi.org/10.1002/9781118223208.ch5.
http://dx.doi.org/10.1002/9781118223208....
). Therefore, aphidophagous predators must have beneficial features that help them to successfully exploit this type of prey. Female coccinellids tend to disperse as a strategy to disperse their eggs widely in the area where they live (Evans, 2003EVANS, E.W., 2003. Searching and reproductive behavior of female aphidophagous ladybirds (Coleoptera: Coccinellidae): a review. European Journal of Entomology, vol. 100, no. 1, pp. 1-10. http://dx.doi.org/10.14411/eje.2003.001.
http://dx.doi.org/10.14411/eje.2003.001...
). Although the dynamics of searching behavior of coccinellids is not sufficiently understood (Pervez and Yadav, 2018PERVEZ, A. and YADAV, M., 2018. Foraging behavior of predaceous ladybird beetles: a review. European Journal of Environmental Sciences, vol. 8, no. 2, pp. 102-108. http://dx.doi.org/10.14712/23361964.2018.14.
http://dx.doi.org/10.14712/23361964.2018...
), the present findings indicated that the almost constant reproductive activity that continues through the entire adult stage of C. sanguinea may favor this native coccinellid in distributing eggs throughout its adult life.

In comparison to the fecundity values found for the coccinellids in the current study, Arshad et al. (2020)ARSHAD, M., ULLAH, M.I., SHAHID, U., TAHIR, M., KHAN, M.I., RIZWAN, M., ABRAR, M. and NIAZ, M.M., 2020. Life table and demographic parameters of the coccinellid predatory species, Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae) when fed on two aphid species. Egyptian Journal of Biological Pest Control, vol. 30, no. 1, p. 79. http://dx.doi.org/10.1186/s41938-020-00280-7.
http://dx.doi.org/10.1186/s41938-020-002...
reported lower values for H. convergens fed on the aphids Aphis gossypii Glover (251.0 eggs per female) and Lipaphis erysimi (Kalt.) (319.7 eggs per female) (Hemiptera: Aphididae). In contrast, higher fecundity was observed for C. sanguinea (998.0 eggs per female), H. axyridis (4453.5 eggs per female), and H. convergens (1189.4 eggs per female) reared on E. kuehniella eggs (Milléo et al., 2014MILLÉO, J., FERNANDES, F.S. and GODOY, W.A.C., 2014. Comparative demography of the exotic Harmonia axyridis with other aphidophagous coccinellids reared on artificial diet. Pesquisa Agropecuária Brasileira, vol. 49, no. 1, pp. 1-10. http://dx.doi.org/10.1590/S0100-204X2014000100001.
http://dx.doi.org/10.1590/S0100-204X2014...
) and for H. axyridis (1565.7 eggs per female) on pollen and E. kuehniella eggs (Zazycki et al., 2015ZAZYCKI, L.C.F., SEMEDO, R.E.S., SILVA, A., BISOGNIN, A.Z., BERNARDI, O., GARCIA, M.S. and NAVA, D.E., 2015. Biology and fertility life table of Eriopis connexa, Harmonia axyridis and Olla v-nigrum (Coleoptera: Coccinellidae). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 75, no. 4, pp. 969-973. http://dx.doi.org/10.1590/1519-6984.03814. PMid:26675915.
http://dx.doi.org/10.1590/1519-6984.0381...
) and A. gossypii (1375.79 eggs per female) (Dargazani and Sahragard, 2020DARGAZANI, B. and SAHRAGARD, A., 2020. Life table and predation rate of Harmonia axyridis spectabilis (Col., Coccinellidae), fed on Aphis gossypii (Hem., Aphididae). Archiv für Phytopathologie und Pflanzenschutz, vol. 53, no. 5-6, pp. 282-297. http://dx.doi.org/10.1080/03235408.2020.1743537.
http://dx.doi.org/10.1080/03235408.2020....
). Higher fecundity was also reported for H. convergens (729.15 eggs per female) reared on Aphis craccivora Koch, 1854 (Hemiptera: Aphididae) (El-Heneidy et al., 2008EL-HENEIDY, A.H., HAFEZ, A.A., SHALABY, F.F. and EL-DIN, I.A.B., 2008. Comparative biological aspects of two coccinellid species; Coccinella undecimpunctata L. and Hippodamia convergens Guer. under laboratory conditions. Egyptian Journal of Biological Pest Control, vol. 18, no. 1, pp. 51-59.). The causes of variation in the fecundity of coccinellids are diverse and depend on several factors such as temperature, photoperiod, age of the parents, length of the oviposition period, and quality and quantity of food (Nedvěd and Honěk, 2012NEDVĚD, O. and HONĚK, A., 2012. Life story and development. In: I. HODEK, H.F. VAN EMDEN and A. HONĚK, eds. Ecology and behavior of the ladybird beetles (Coccinellidae). Chichester: Wiley-Blackwell, pp. 54-109. http://dx.doi.org/10.1002/9781118223208.ch3.; D’Ávila et al., 2016D’ÁVILA, V.A., AGUIAR-MENEZES, E.L., GONÇALVES-ESTEVES, V., MENDONÇA, C.B.F., PEREIRA, R.N. and SANTOS, T.M., 2016. Morphological characterization of pollens from three Apiaceae species and their ingestion by twelve-spotted lady beetle (Coleoptera: Coccinellidae). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 76, no. 3, pp. 796-803. http://dx.doi.org/10.1590/1519-6984.07615. PMid:27097091.
http://dx.doi.org/10.1590/1519-6984.0761...
; Lima et al., 2018LIMA, M.S., MELO, J.W.S. and BARROS, R., 2018. Alternative food sources for the ladybird Brumoides foudrasii (Mulsant) (Coleoptera: Coccinellidae). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 78, no. 2, pp. 211-216. http://dx.doi.org/10.1590/1519-6984.02816. PMid:28793028.
http://dx.doi.org/10.1590/1519-6984.0281...
).

The net replacement rate (R0) and the population doubling time (DT) of C. sanguinea, H. axyridis, and H. convergens differed from those in earlier studies (Abdel-Salam and Abdel-Baky, 2001ABDEL‐SALAM, A.H. and ABDEL‐BAKY, N.F., 2001. Life table and biological studies of Harmonia axyridis Pallas (Col., Coccinellidae) reared on the grain moth eggs of Sitotroga cerealella Olivier (Lep., Gelechiidae). Journal of Applied Entomology, vol. 125, no. 8, pp. 455-462. http://dx.doi.org/10.1046/j.1439-0418.2001.00574.x.
http://dx.doi.org/10.1046/j.1439-0418.20...
; Lanzoni et al., 2004LANZONI, A., ACCINELLI, G., BAZZOCCHI, G.G. and BURGIO, G., 2004. Biological traits and life table of the exotic Harmonia axyridis compared with Hippodamia variegata, and Adalia bipunctata (Col., Coccinellidae). Journal of Applied Entomology, vol. 128, no. 4, pp. 298-306. http://dx.doi.org/10.1111/j.1439-0418.2004.00847.x.
http://dx.doi.org/10.1111/j.1439-0418.20...
; Milléo et al., 2014MILLÉO, J., FERNANDES, F.S. and GODOY, W.A.C., 2014. Comparative demography of the exotic Harmonia axyridis with other aphidophagous coccinellids reared on artificial diet. Pesquisa Agropecuária Brasileira, vol. 49, no. 1, pp. 1-10. http://dx.doi.org/10.1590/S0100-204X2014000100001.
http://dx.doi.org/10.1590/S0100-204X2014...
; Arshad et al., 2020ARSHAD, M., ULLAH, M.I., SHAHID, U., TAHIR, M., KHAN, M.I., RIZWAN, M., ABRAR, M. and NIAZ, M.M., 2020. Life table and demographic parameters of the coccinellid predatory species, Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae) when fed on two aphid species. Egyptian Journal of Biological Pest Control, vol. 30, no. 1, p. 79. http://dx.doi.org/10.1186/s41938-020-00280-7.
http://dx.doi.org/10.1186/s41938-020-002...
). Milléo et al. (2014)MILLÉO, J., FERNANDES, F.S. and GODOY, W.A.C., 2014. Comparative demography of the exotic Harmonia axyridis with other aphidophagous coccinellids reared on artificial diet. Pesquisa Agropecuária Brasileira, vol. 49, no. 1, pp. 1-10. http://dx.doi.org/10.1590/S0100-204X2014000100001.
http://dx.doi.org/10.1590/S0100-204X2014...
, using a diet consisting of E. kuehniella eggs, found higher R0 values for H. axyridis (2226.89 female offspring), C. sanguinea (499.0 female offspring), and H. convergens (450.15 female offspring) than the values found in this study. The authors reported DTs of 5.73, 4.99, and 4.35 days, respectively, for C. sanguinea, H. axyridis, and H. convergens, which demonstrates that the coccinellids required at least 1.4 times longer than in this study for their populations to double in size. Abdel-Salam and Abdel-Baky (2001)ABDEL‐SALAM, A.H. and ABDEL‐BAKY, N.F., 2001. Life table and biological studies of Harmonia axyridis Pallas (Col., Coccinellidae) reared on the grain moth eggs of Sitotroga cerealella Olivier (Lep., Gelechiidae). Journal of Applied Entomology, vol. 125, no. 8, pp. 455-462. http://dx.doi.org/10.1046/j.1439-0418.2001.00574.x.
http://dx.doi.org/10.1046/j.1439-0418.20...
reported R0 values of 289.11 and 234.96 female offspring and DTs of 4.53 and 5.72 days for H. axyridis reared respectively on fresh and frozen eggs of Sitotroga cerealella Olivier, 1819 (Lepidoptera: Gelechiidae). Lanzoni et al. (2004)LANZONI, A., ACCINELLI, G., BAZZOCCHI, G.G. and BURGIO, G., 2004. Biological traits and life table of the exotic Harmonia axyridis compared with Hippodamia variegata, and Adalia bipunctata (Col., Coccinellidae). Journal of Applied Entomology, vol. 128, no. 4, pp. 298-306. http://dx.doi.org/10.1111/j.1439-0418.2004.00847.x.
http://dx.doi.org/10.1111/j.1439-0418.20...
found an R0 value of 26.27 female offspring for H. axyridis reared on the green peach aphid, Myzus persicae (Sulzer, 1776) (Hemiptera: Aphididae). Castro-Guedes et al. (2016)CASTRO-GUEDES, C.F., ALMEIDA, L.M., PENTEADO, S.R.C. and MOURA, M.O., 2016. Effect of different diets on biology, reproductive variables and life and fertility tables of Harmonia axyridis (Pallas) (Coleoptera, Coccinellidae). Revista Brasileira de Entomologia, vol. 60, no. 3, pp. 260-266. http://dx.doi.org/10.1016/j.rbe.2016.03.003.
http://dx.doi.org/10.1016/j.rbe.2016.03....
reported a similar DT, but a significantly higher R0 for H. axyridis reared on Brevicoryne brassicae (L., 1758) (R0 = 320.5 female offspring) and Cinara atlantica (Wilson, 1919) (R0 = 373.77 female offspring) (Hemiptera: Aphididae) than on frozen eggs of E. kuehniella (R0 = 277.43 female offspring). R0 values for H. convergens differed significantly when the species was reared on L. erysimi (R0 = 159.85 female offspring) and A. gossypii (R0 = 87.85 female offspring) (Arshad et al., 2020ARSHAD, M., ULLAH, M.I., SHAHID, U., TAHIR, M., KHAN, M.I., RIZWAN, M., ABRAR, M. and NIAZ, M.M., 2020. Life table and demographic parameters of the coccinellid predatory species, Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae) when fed on two aphid species. Egyptian Journal of Biological Pest Control, vol. 30, no. 1, p. 79. http://dx.doi.org/10.1186/s41938-020-00280-7.
http://dx.doi.org/10.1186/s41938-020-002...
). In addition to fecundity, other biological traits of coccinellids such as survival, longevity, and consequently life table parameters can be affected by the quality and quantity of food (Hodek and Evans, 2012HODEK, I. and EVANS, E.W., 2012. Food relationships. In: I. HODEK, H.F. VAN EMDEN and A. HONĚK, eds. Ecology and behavior of the ladybird beetles (Coccinellidae). Chichester: Willey-Blackwell, pp. 141-274. http://dx.doi.org/10.1002/9781118223208.ch5.
http://dx.doi.org/10.1002/9781118223208....
; Nedvěd and Honěk, 2012NEDVĚD, O. and HONĚK, A., 2012. Life story and development. In: I. HODEK, H.F. VAN EMDEN and A. HONĚK, eds. Ecology and behavior of the ladybird beetles (Coccinellidae). Chichester: Wiley-Blackwell, pp. 54-109. http://dx.doi.org/10.1002/9781118223208.ch3.; Arshad et al., 2020ARSHAD, M., ULLAH, M.I., SHAHID, U., TAHIR, M., KHAN, M.I., RIZWAN, M., ABRAR, M. and NIAZ, M.M., 2020. Life table and demographic parameters of the coccinellid predatory species, Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae) when fed on two aphid species. Egyptian Journal of Biological Pest Control, vol. 30, no. 1, p. 79. http://dx.doi.org/10.1186/s41938-020-00280-7.
http://dx.doi.org/10.1186/s41938-020-002...
). These potentially influencing factors help to clarify the differences in the values for net replacement rate (R0) and population doubling time (DT) observed in the above-mentioned studies.

According to Raak-van den Berg et al. (2018)RAAK-VAN DEN BERG, C.L., JONG, P.W., GORT, G., MANLY, B.F.J. and VAN LENTEREN, J.C., 2018. Life histories of an invasive and native ladybird under field experimental conditions in a temperate climate. Entomologia Experimentalis et Applicata, vol. 166, no. 3, pp. 151-161. http://dx.doi.org/10.1111/eea.12658.
http://dx.doi.org/10.1111/eea.12658...
, the short generation time (T) characteristically found in H. axyridis contributes to its rapid population growth and consequently its invasion success. In the current study, C. sanguinea and H. convergens showed generation times (T) significantly similar to H. axyridis, indicating that the three coccinellids may have comparably short generation times when S. graminum is present, improving the effectiveness of these coccinellid species as biological-control agents (Dixon et al., 1997DIXON, A.F.G., HEMPTINNE, J.L. and KINDLMANN, P., 1997. Effectiveness of ladybirds as biological control agents: patterns and processes. Entomophaga, vol. 42, pp. 71-83. http://dx.doi.org/10.1007/BF02769882.
http://dx.doi.org/10.1007/BF02769882...
). A low T for H. convergens (38.34 d) in comparison to H. axyridis (55.49 d) was reported by Milléo et al. (2014)MILLÉO, J., FERNANDES, F.S. and GODOY, W.A.C., 2014. Comparative demography of the exotic Harmonia axyridis with other aphidophagous coccinellids reared on artificial diet. Pesquisa Agropecuária Brasileira, vol. 49, no. 1, pp. 1-10. http://dx.doi.org/10.1590/S0100-204X2014000100001.
http://dx.doi.org/10.1590/S0100-204X2014...
.

The instantaneous rate of population increase (rm) refers to the maximum population growth rate under optimal space, food, and intraspecific influence, and is considered the most useful life table parameter for comparing the growth rates of different populations (Price, 1984PRICE, P.W., 1984. Insect ecology. 2nd ed. New York: John Wiley, 607 p.). The rm values found for C. sanguinea, H. convergens, and H. axyridis in this study are higher than those reported in previous studies (Lanzoni et al., 2004LANZONI, A., ACCINELLI, G., BAZZOCCHI, G.G. and BURGIO, G., 2004. Biological traits and life table of the exotic Harmonia axyridis compared with Hippodamia variegata, and Adalia bipunctata (Col., Coccinellidae). Journal of Applied Entomology, vol. 128, no. 4, pp. 298-306. http://dx.doi.org/10.1111/j.1439-0418.2004.00847.x.
http://dx.doi.org/10.1111/j.1439-0418.20...
; Milléo et al., 2014MILLÉO, J., FERNANDES, F.S. and GODOY, W.A.C., 2014. Comparative demography of the exotic Harmonia axyridis with other aphidophagous coccinellids reared on artificial diet. Pesquisa Agropecuária Brasileira, vol. 49, no. 1, pp. 1-10. http://dx.doi.org/10.1590/S0100-204X2014000100001.
http://dx.doi.org/10.1590/S0100-204X2014...
; Zazycki et al., 2015ZAZYCKI, L.C.F., SEMEDO, R.E.S., SILVA, A., BISOGNIN, A.Z., BERNARDI, O., GARCIA, M.S. and NAVA, D.E., 2015. Biology and fertility life table of Eriopis connexa, Harmonia axyridis and Olla v-nigrum (Coleoptera: Coccinellidae). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 75, no. 4, pp. 969-973. http://dx.doi.org/10.1590/1519-6984.03814. PMid:26675915.
http://dx.doi.org/10.1590/1519-6984.0381...
; Arshad et al., 2020ARSHAD, M., ULLAH, M.I., SHAHID, U., TAHIR, M., KHAN, M.I., RIZWAN, M., ABRAR, M. and NIAZ, M.M., 2020. Life table and demographic parameters of the coccinellid predatory species, Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae) when fed on two aphid species. Egyptian Journal of Biological Pest Control, vol. 30, no. 1, p. 79. http://dx.doi.org/10.1186/s41938-020-00280-7.
http://dx.doi.org/10.1186/s41938-020-002...
). The high values of rm shown by these coccinellids here demonstrated that S. graminum is a suitable essential prey for them (Hodek and Evans, 2012HODEK, I. and EVANS, E.W., 2012. Food relationships. In: I. HODEK, H.F. VAN EMDEN and A. HONĚK, eds. Ecology and behavior of the ladybird beetles (Coccinellidae). Chichester: Willey-Blackwell, pp. 141-274. http://dx.doi.org/10.1002/9781118223208.ch5.
http://dx.doi.org/10.1002/9781118223208....
). Consequently, C. sanguinea, H. axyridis, and H. convergens have good potential for controlling S. graminum (Phoofolo et al., 2007PHOOFOLO, M.W., GILES, K.L. and ELLIOTT, N.C., 2007. Quantitative evaluation of suitability of the greenbug, Schizaphis graminum, and the bird cherry-oat aphid, Rhopalosiphum padi, as prey for Hippodamia convergens (Coleoptera: Coccinellidae). Biological Control, vol. 41, no. 1, pp. 25-32. http://dx.doi.org/10.1016/j.biocontrol.2006.12.017.
http://dx.doi.org/10.1016/j.biocontrol.2...
). Several species of aphidophagous coccinellids (kept under similar conditions to this study, that is, in the laboratory at 25 °C, but fed on other aphid species than S. graminum) showed a lower instantaneous rate of increase (rm) than those obtained here: Adalia bipunctata (L.) (rm = 0.081 d–1; Lanzoni et al., 2004LANZONI, A., ACCINELLI, G., BAZZOCCHI, G.G. and BURGIO, G., 2004. Biological traits and life table of the exotic Harmonia axyridis compared with Hippodamia variegata, and Adalia bipunctata (Col., Coccinellidae). Journal of Applied Entomology, vol. 128, no. 4, pp. 298-306. http://dx.doi.org/10.1111/j.1439-0418.2004.00847.x.
http://dx.doi.org/10.1111/j.1439-0418.20...
), Ceratomegilla undecimnotata Schneider, 1792 (rm = 0.142 d–1), and Propylea quatuordecimpunctata (L., 1758) (rm = 0.166 d–1) (Kontodimas et al., 2008KONTODIMAS, D.C., MILONAS, P.G., STATHAS, G.J., PAPANIKOLAOU, N.E., SKOURTI, A. and MATSINOS, Y.G., 2008. Life table parameters of the aphid predators Coccinella septempunctata, Ceratomegilla undecimnotata and Propylea quatuordecimpunctata (Coleoptera: Coccinellidae). European Journal of Entomology, vol. 105, no. 3, pp. 427-430. http://dx.doi.org/10.14411/eje.2008.054.
http://dx.doi.org/10.14411/eje.2008.054...
), Hippodamia variegata (Goeze, 1777) (rm = 0.156, 0.181, and 0.183 d–1; Golizadeh and Jafari-Behi, 2012GOLIZADEH, A. and JAFARI-BEHI, V., 2012. Biological traits and life table parameters of variegated lady beetle, Hippodamia variegata (Coleoptera: Coccinellidae) on three aphid species. Applied Entomology and Zoology, vol. 47, no. 3, pp. 199-205. http://dx.doi.org/10.1007/s13355-012-0108-8.
http://dx.doi.org/10.1007/s13355-012-010...
), Coccinella novemnotata Herbst, 1793 (rm = 0.171 and 0.184 d–1; Ugine and Losey, 2014UGINE, T.A. and LOSEY, J.E., 2014. Development times and age-specific life table parameters of the native lady beetle species Coccinella novemnotata (Coleoptera: Coccinellidae) and its invasive congener Coccinella septempunctata (Coleoptera: Coccinellidae). Environmental Entomology, vol. 43, no. 4, pp. 1067-1075. http://dx.doi.org/10.1603/EN14053. PMid:25182621.
http://dx.doi.org/10.1603/EN14053...
), and Cheilomenes sexmaculata (F., 1781) (rm = 0.166 d–1; Zhao et al., 2015ZHAO, J., LI, S., GAO, X.W., ZHANG, F. and WANG, S., 2015. Comparison of life tables of Cheilomenes sexmaculata (Coleoptera: Coccinellidae) under laboratory and greenhouse conditions. Journal of Economic Entomology, vol. 108, no. 4, pp. 1700-1707. http://dx.doi.org/10.1093/jee/tov178. PMid:26470311.
http://dx.doi.org/10.1093/jee/tov178...
).

Many factors are thought to contribute to the success of aphidophagous coccinellids in a habitat. Besides climatic conditions (Ameixa et al., 2019AMEIXA, O.M.C.C., ŠIPOŠ, J., BURDA, M., SOARES, A.M.V.M. and SOARES, A.O., 2019. Factors influencing the introduction and spread of Harmonia axyridis in the Iberian Peninsula. Biological Invasions, vol. 21, no. 2, pp. 323-331. http://dx.doi.org/10.1007/s10530-018-1841-x.
http://dx.doi.org/10.1007/s10530-018-184...
), other important factors are microclimate, mainly insolation (Honěk, 1985HONĚK, A., 1985. Habitat preferences of aphidophagous coccinellids (Coleoptera). Entomophaga, vol. 30, no. 3, pp. 253-264. http://dx.doi.org/10.1007/BF02372226.
http://dx.doi.org/10.1007/BF02372226...
); type of crop; high plant density; adjacent habitats (Vandereycken et al., 2013VANDEREYCKEN, A., BROSTAUX, Y., JOIE, E., HAUBRUGE, E. and VERHEGGEN, F.J., 2013. Occurrence of Harmonia axyridis (Coleoptera: Coccinellidae) in field crops. European Journal of Entomology, vol. 110, no. 2, pp. 285-292. http://dx.doi.org/10.14411/eje.2013.042.
http://dx.doi.org/10.14411/eje.2013.042...
); and aphid species (Hodek and Evans, 2012HODEK, I. and EVANS, E.W., 2012. Food relationships. In: I. HODEK, H.F. VAN EMDEN and A. HONĚK, eds. Ecology and behavior of the ladybird beetles (Coccinellidae). Chichester: Willey-Blackwell, pp. 141-274. http://dx.doi.org/10.1002/9781118223208.ch5.
http://dx.doi.org/10.1002/9781118223208....
). Among the climatic factors, temperature is the most important because of its strong influence on the development, survival, and distribution of insects (Messenger, 1959MESSENGER, P.S., 1959. Bioclimatic studies with insects. Annual Review of Entomology, vol. 4, no. 1, pp. 183-206. http://dx.doi.org/10.1146/annurev.en.04.010159.001151.
http://dx.doi.org/10.1146/annurev.en.04....
; Campbell et al., 1974CAMPBELL, A., FRAZER, B.D., GILBERT, N., GUTIERREZ, A.P. and MACKAUER, M., 1974. Temperature requirements of some aphids and their parasites. Journal of Applied Ecology, vol. 11, no. 2, pp. 431-438. http://dx.doi.org/10.2307/2402197.
http://dx.doi.org/10.2307/2402197...
; Omkar and Pervez, 2016OMKAR and PERVEZ, A., 2016. Ladybird beetles. In: OMKAR, ed. Ecofriendly management for food security. San Diego: Academic Press, pp. 281-310. http://dx.doi.org/10.1016/B978-0-12-803265-7.00009-9.
http://dx.doi.org/10.1016/B978-0-12-8032...
). Hippodamia convergens and H. axyridis are warm-adapted species (Nedvěd and Honěk, 2012NEDVĚD, O. and HONĚK, A., 2012. Life story and development. In: I. HODEK, H.F. VAN EMDEN and A. HONĚK, eds. Ecology and behavior of the ladybird beetles (Coccinellidae). Chichester: Wiley-Blackwell, pp. 54-109. http://dx.doi.org/10.1002/9781118223208.ch3.). Also, the thermal requirements of H. axyridis are comparable to those of H. convergens in warm temperatures (Miller, 1992MILLER, J.C., 1992. Temperature-dependent development of the convergent lady beetle (Coleoptera: Coccinellidae). Environmental Entomology, vol. 21, no. 1, pp. 197-201. http://dx.doi.org/10.1093/ee/21.1.197.
http://dx.doi.org/10.1093/ee/21.1.197...
; LaMana and Miller, 1998LAMANA, M.L. and MILLER, J.C., 1998. Temperature-dependent development in an Oregon population of Harmonia axyridis (Coleoptera: Coccinellidae). Environmental Entomology, vol. 27, no. 4, pp. 1001-1005. http://dx.doi.org/10.1093/ee/27.4.1001.
http://dx.doi.org/10.1093/ee/27.4.1001...
), which indicates that both of these coccinellids can potentially survive under similar thermal environmental conditions (Messenger, 1959MESSENGER, P.S., 1959. Bioclimatic studies with insects. Annual Review of Entomology, vol. 4, no. 1, pp. 183-206. http://dx.doi.org/10.1146/annurev.en.04.010159.001151.
http://dx.doi.org/10.1146/annurev.en.04....
; Campbell et al., 1974CAMPBELL, A., FRAZER, B.D., GILBERT, N., GUTIERREZ, A.P. and MACKAUER, M., 1974. Temperature requirements of some aphids and their parasites. Journal of Applied Ecology, vol. 11, no. 2, pp. 431-438. http://dx.doi.org/10.2307/2402197.
http://dx.doi.org/10.2307/2402197...
; LaMana and Miller, 1998LAMANA, M.L. and MILLER, J.C., 1998. Temperature-dependent development in an Oregon population of Harmonia axyridis (Coleoptera: Coccinellidae). Environmental Entomology, vol. 27, no. 4, pp. 1001-1005. http://dx.doi.org/10.1093/ee/27.4.1001.
http://dx.doi.org/10.1093/ee/27.4.1001...
; Jarošík et al., 2015JAROŠÍK, V., KENIS, M., HONĚK, A., SKUHROVEC, J. and PYŠEK, P., 2015. Invasive insects differ from non-invasive in their thermal requirements. PLoS One, vol. 10, no. 6, p. e0131072. http://dx.doi.org/10.1371/journal.pone.0131072. PMid:26090826.
http://dx.doi.org/10.1371/journal.pone.0...
). The results of the coccinellid survey conducted in northeastern São Paulo support this supposition. The correlation analysis in the study demonstrated that H. convergens and H. axyridis both increased in abundance when the minimum air temperature was higher, and that these coccinellids were not affected by the maximum air temperature. This information suggests that H. convergens and H. axyridis can survive under similar thermal environmental conditions, as previously reported.

Knowledge of the biological traits of coccinellids is necessary to evaluate the potential rate of population increase. These attributes also enable us to estimate the potential for competition among these predators and to estimate the success of an invasive species (Lanzoni et al., 2004LANZONI, A., ACCINELLI, G., BAZZOCCHI, G.G. and BURGIO, G., 2004. Biological traits and life table of the exotic Harmonia axyridis compared with Hippodamia variegata, and Adalia bipunctata (Col., Coccinellidae). Journal of Applied Entomology, vol. 128, no. 4, pp. 298-306. http://dx.doi.org/10.1111/j.1439-0418.2004.00847.x.
http://dx.doi.org/10.1111/j.1439-0418.20...
; Raak-van den Berg et al., 2018RAAK-VAN DEN BERG, C.L., JONG, P.W., GORT, G., MANLY, B.F.J. and VAN LENTEREN, J.C., 2018. Life histories of an invasive and native ladybird under field experimental conditions in a temperate climate. Entomologia Experimentalis et Applicata, vol. 166, no. 3, pp. 151-161. http://dx.doi.org/10.1111/eea.12658.
http://dx.doi.org/10.1111/eea.12658...
). The present study revealed that H. convergens, H. axyridis, and C. sanguinea have similar life table traits when fed on S. graminum. Based on their instantaneous rates of population increase (rm), all three species of Coccinellidae have the potential to act as biological-control agents of S. graminum. Harmonia axyridis showed high fecundity and a net replacement rate (R0) significantly higher than the values recorded for H. convergens and similar to those for C. sanguinea. These biological traits, together with those previously described, such as large size, and good dispersal ability, among others (Santos et al., 2009SANTOS, N.R.P., SANTOS-CIVIDANES, T.M., CIVIDANES, F.J., ANJOS, A.C.R. and OLIVEIRA, L.V.L., 2009. Aspectos biológicos de Harmonia axyridis alimentada com duas espécies de presas e predação intraguilda com Eriopis connexa. Pesquisa Agropecuária Brasileira, vol. 44, no. 6, pp. 554-560. http://dx.doi.org/10.1590/S0100-204X2009000600002.
http://dx.doi.org/10.1590/S0100-204X2009...
; Hodek and Evans, 2012HODEK, I. and EVANS, E.W., 2012. Food relationships. In: I. HODEK, H.F. VAN EMDEN and A. HONĚK, eds. Ecology and behavior of the ladybird beetles (Coccinellidae). Chichester: Willey-Blackwell, pp. 141-274. http://dx.doi.org/10.1002/9781118223208.ch5.
http://dx.doi.org/10.1002/9781118223208....
; Katsanis et al., 2013KATSANIS, A., BABENDREIER, D., NENTWIG, W. and KENIS, M., 2013. Intraguild predation between the invasive ladybird Harmonia axyridis and non-target European coccinellid species. BioControl, vol. 58, no. 1, pp. 73-83. http://dx.doi.org/10.1007/s10526-012-9470-2.
http://dx.doi.org/10.1007/s10526-012-947...
; Raak-van den Berg et al., 2018RAAK-VAN DEN BERG, C.L., JONG, P.W., GORT, G., MANLY, B.F.J. and VAN LENTEREN, J.C., 2018. Life histories of an invasive and native ladybird under field experimental conditions in a temperate climate. Entomologia Experimentalis et Applicata, vol. 166, no. 3, pp. 151-161. http://dx.doi.org/10.1111/eea.12658.
http://dx.doi.org/10.1111/eea.12658...
), may contribute to the invasion success of H. axyridis. Cycloneda sanguinea is less sensitive to minimum temperature changes than H. convergens and H. axyridis, and the pattern of its oviposition rate may provide this native coccinellid with a potential advantage in distributing its eggs throughout its adult life.

Acknowledgements

We are grateful to Professor José C. Barbosa for his assistance with statistical analyses. We also thank the Fundação de Amparo à Pesquisa do Estado de São Paulo for financial support (grant 2007/07348-1) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico for providing a scholarship to the second author (grant 301735/2012-3).

References

  • ABDEL‐SALAM, A.H. and ABDEL‐BAKY, N.F., 2001. Life table and biological studies of Harmonia axyridis Pallas (Col., Coccinellidae) reared on the grain moth eggs of Sitotroga cerealella Olivier (Lep., Gelechiidae). Journal of Applied Entomology, vol. 125, no. 8, pp. 455-462. http://dx.doi.org/10.1046/j.1439-0418.2001.00574.x
    » http://dx.doi.org/10.1046/j.1439-0418.2001.00574.x
  • AMEIXA, O.M.C.C., ŠIPOŠ, J., BURDA, M., SOARES, A.M.V.M. and SOARES, A.O., 2019. Factors influencing the introduction and spread of Harmonia axyridis in the Iberian Peninsula. Biological Invasions, vol. 21, no. 2, pp. 323-331. http://dx.doi.org/10.1007/s10530-018-1841-x
    » http://dx.doi.org/10.1007/s10530-018-1841-x
  • ARSHAD, M., ULLAH, M.I., SHAHID, U., TAHIR, M., KHAN, M.I., RIZWAN, M., ABRAR, M. and NIAZ, M.M., 2020. Life table and demographic parameters of the coccinellid predatory species, Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae) when fed on two aphid species. Egyptian Journal of Biological Pest Control, vol. 30, no. 1, p. 79. http://dx.doi.org/10.1186/s41938-020-00280-7
    » http://dx.doi.org/10.1186/s41938-020-00280-7
  • BLACKMAN, R.L. and EASTOP, V.F., 2007. Taxonomic issues. In: H.F. VAN EMDEN and R. HARRINGTON, eds. Aphids as crop pests Wallingford: CABI, pp. 1-29. http://dx.doi.org/10.1079/9780851998190.0001
    » http://dx.doi.org/10.1079/9780851998190.0001
  • BROWN, P.M.J. and ROY, H.E., 2018. Native ladybird decline caused by the invasive harlequin ladybird Harmonia axyridis: evidence from a long‐term field study. Insect Conservation and Diversity, vol. 11, no. 3, pp. 230-239. http://dx.doi.org/10.1111/icad.12266
    » http://dx.doi.org/10.1111/icad.12266
  • CAMPBELL, A., FRAZER, B.D., GILBERT, N., GUTIERREZ, A.P. and MACKAUER, M., 1974. Temperature requirements of some aphids and their parasites. Journal of Applied Ecology, vol. 11, no. 2, pp. 431-438. http://dx.doi.org/10.2307/2402197
    » http://dx.doi.org/10.2307/2402197
  • CASTRO-GUEDES, C.F., ALMEIDA, L.M., PENTEADO, S.R.C. and MOURA, M.O., 2016. Effect of different diets on biology, reproductive variables and life and fertility tables of Harmonia axyridis (Pallas) (Coleoptera, Coccinellidae). Revista Brasileira de Entomologia, vol. 60, no. 3, pp. 260-266. http://dx.doi.org/10.1016/j.rbe.2016.03.003
    » http://dx.doi.org/10.1016/j.rbe.2016.03.003
  • COLARES, F., MICHAUD, J.P., BAIN, C.L. and TORRES, J.B., 2015. Recruitment of aphidophagous arthropods to sorghum plants infested with Melanaphis sacchari and Schizaphis graminum (Hemiptera: aphididae). Biological Control, vol. 90, pp. 16-24. http://dx.doi.org/10.1016/j.biocontrol.2015.05.009
    » http://dx.doi.org/10.1016/j.biocontrol.2015.05.009
  • D’ÁVILA, V.A., AGUIAR-MENEZES, E.L., GONÇALVES-ESTEVES, V., MENDONÇA, C.B.F., PEREIRA, R.N. and SANTOS, T.M., 2016. Morphological characterization of pollens from three Apiaceae species and their ingestion by twelve-spotted lady beetle (Coleoptera: Coccinellidae). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 76, no. 3, pp. 796-803. http://dx.doi.org/10.1590/1519-6984.07615 PMid:27097091.
    » http://dx.doi.org/10.1590/1519-6984.07615
  • DARGAZANI, B. and SAHRAGARD, A., 2020. Life table and predation rate of Harmonia axyridis spectabilis (Col., Coccinellidae), fed on Aphis gossypii (Hem., Aphididae). Archiv für Phytopathologie und Pflanzenschutz, vol. 53, no. 5-6, pp. 282-297. http://dx.doi.org/10.1080/03235408.2020.1743537
    » http://dx.doi.org/10.1080/03235408.2020.1743537
  • DIXON, A.F.G., HEMPTINNE, J.L. and KINDLMANN, P., 1997. Effectiveness of ladybirds as biological control agents: patterns and processes. Entomophaga, vol. 42, pp. 71-83. http://dx.doi.org/10.1007/BF02769882
    » http://dx.doi.org/10.1007/BF02769882
  • DUCATTI, R.D.B., TIRONI, S.P., MARIANO-DA-SILVA, S., RADÜNZ, A.L. and TRAMONTIN, M.A., 2020. First report of Coccinellid (Coleoptera: Coccinellidae) species found on citrus orchards from the central-west region of Santa Catarina, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 80, no. 2, pp. 482-484. http://dx.doi.org/10.1590/1519-6984.215567 PMid:31291408.
    » http://dx.doi.org/10.1590/1519-6984.215567
  • EL-HENEIDY, A.H., HAFEZ, A.A., SHALABY, F.F. and EL-DIN, I.A.B., 2008. Comparative biological aspects of two coccinellid species; Coccinella undecimpunctata L. and Hippodamia convergens Guer. under laboratory conditions. Egyptian Journal of Biological Pest Control, vol. 18, no. 1, pp. 51-59.
  • ESCALONA, H.E., ZWICK, A., LI, H.-S., LI, J., WANG, X., PANG, H., HARTLEY, D., JERMIIN, L.S., NEDVĚD, O., MISOF, B., NIEHUIS, O., ŚLIPIŃSKI, A. and TOMASZEWSKA, W., 2017. Molecular phylogeny reveals food plasticity in the evolution of true ladybird beetles (Coleoptera: Coccinellidae: Coccinellini). BMC Evolutionary Biology, vol. 17, no. 1, p. 151. http://dx.doi.org/10.1186/s12862-017-1002-3 PMid:28651535.
    » http://dx.doi.org/10.1186/s12862-017-1002-3
  • EVANS, E.W., 2003. Searching and reproductive behavior of female aphidophagous ladybirds (Coleoptera: Coccinellidae): a review. European Journal of Entomology, vol. 100, no. 1, pp. 1-10. http://dx.doi.org/10.14411/eje.2003.001
    » http://dx.doi.org/10.14411/eje.2003.001
  • GOLIZADEH, A. and JAFARI-BEHI, V., 2012. Biological traits and life table parameters of variegated lady beetle, Hippodamia variegata (Coleoptera: Coccinellidae) on three aphid species. Applied Entomology and Zoology, vol. 47, no. 3, pp. 199-205. http://dx.doi.org/10.1007/s13355-012-0108-8
    » http://dx.doi.org/10.1007/s13355-012-0108-8
  • GREZ, A.A., VIERA, B. and SOARES, A.O., 2012. Biotic interactions between Eriopis connexa and Hippodamia variegata, a native and an exotic coccinellid species associated with alfalfa fields in Chile. Entomologia Experimentalis et Applicata, vol. 142, no. 1, pp. 36-44. http://dx.doi.org/10.1111/j.1570-7458.2011.01202.x.
  • HODEK, I. and EVANS, E.W., 2012. Food relationships. In: I. HODEK, H.F. VAN EMDEN and A. HONĚK, eds. Ecology and behavior of the ladybird beetles (Coccinellidae) Chichester: Willey-Blackwell, pp. 141-274. http://dx.doi.org/10.1002/9781118223208.ch5
    » http://dx.doi.org/10.1002/9781118223208.ch5
  • HONĚK, A., 1985. Habitat preferences of aphidophagous coccinellids (Coleoptera). Entomophaga, vol. 30, no. 3, pp. 253-264. http://dx.doi.org/10.1007/BF02372226
    » http://dx.doi.org/10.1007/BF02372226
  • JAROŠÍK, V., KENIS, M., HONĚK, A., SKUHROVEC, J. and PYŠEK, P., 2015. Invasive insects differ from non-invasive in their thermal requirements. PLoS One, vol. 10, no. 6, p. e0131072. http://dx.doi.org/10.1371/journal.pone.0131072 PMid:26090826.
    » http://dx.doi.org/10.1371/journal.pone.0131072
  • KATSANIS, A., BABENDREIER, D., NENTWIG, W. and KENIS, M., 2013. Intraguild predation between the invasive ladybird Harmonia axyridis and non-target European coccinellid species. BioControl, vol. 58, no. 1, pp. 73-83. http://dx.doi.org/10.1007/s10526-012-9470-2
    » http://dx.doi.org/10.1007/s10526-012-9470-2
  • KINDLMANN, P. and DIXON, A.F.G., 1993. Optimal foraging in ladybird beetles (Coleoptera: Coccinellidae) and its consequences for their use in biological control. European Journal of Entomology, vol. 90, no. 4, pp. 443-450.
  • KOCH, R.L. and GALVAN, T.L., 2008. Bad side of a good beetle: the North American experience with Harmonia axyridis. BioControl, vol. 53, no. 1, pp. 23-35. http://dx.doi.org/10.1007/s10526-007-9121-1
    » http://dx.doi.org/10.1007/s10526-007-9121-1
  • KOCH, R.L., FERNANDES, M.G. and DUTRA, C.C., 2011. First confirmed record of Harmonia axyridis (Pallas, 1773) (Coleoptera: Coccinellidae) in the state of Mato Grosso do Sul, Brazil. Check List, vol. 7, no. 4, pp. 476-477. http://dx.doi.org/10.15560/7.4.476
    » http://dx.doi.org/10.15560/7.4.476
  • KOCH, R.L., VENETTE, R.C. and HUTCHISON, W.D., 2006. Invasions by Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in the Western hemisphere: implications for South America. Neotropical Entomology, vol. 35, no. 4, pp. 421-434. http://dx.doi.org/10.1590/S1519-566X2006000400001 PMid:17061788.
    » http://dx.doi.org/10.1590/S1519-566X2006000400001
  • KONTODIMAS, D.C., MILONAS, P.G., STATHAS, G.J., PAPANIKOLAOU, N.E., SKOURTI, A. and MATSINOS, Y.G., 2008. Life table parameters of the aphid predators Coccinella septempunctata, Ceratomegilla undecimnotata and Propylea quatuordecimpunctata (Coleoptera: Coccinellidae). European Journal of Entomology, vol. 105, no. 3, pp. 427-430. http://dx.doi.org/10.14411/eje.2008.054
    » http://dx.doi.org/10.14411/eje.2008.054
  • KOVÁŘ, I., 1996. Morphology and anatomy. In: I. HODEK and A. HONĚK, eds. Ecology of Coccinellidae Dordrecht: Kluwer Academic, pp. 1-18. http://dx.doi.org/10.1007/978-94-017-1349-8_1
    » http://dx.doi.org/10.1007/978-94-017-1349-8_1
  • LAMANA, M.L. and MILLER, J.C., 1998. Temperature-dependent development in an Oregon population of Harmonia axyridis (Coleoptera: Coccinellidae). Environmental Entomology, vol. 27, no. 4, pp. 1001-1005. http://dx.doi.org/10.1093/ee/27.4.1001
    » http://dx.doi.org/10.1093/ee/27.4.1001
  • LANZONI, A., ACCINELLI, G., BAZZOCCHI, G.G. and BURGIO, G., 2004. Biological traits and life table of the exotic Harmonia axyridis compared with Hippodamia variegata, and Adalia bipunctata (Col., Coccinellidae). Journal of Applied Entomology, vol. 128, no. 4, pp. 298-306. http://dx.doi.org/10.1111/j.1439-0418.2004.00847.x
    » http://dx.doi.org/10.1111/j.1439-0418.2004.00847.x
  • LIMA, M.S., MELO, J.W.S. and BARROS, R., 2018. Alternative food sources for the ladybird Brumoides foudrasii (Mulsant) (Coleoptera: Coccinellidae). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 78, no. 2, pp. 211-216. http://dx.doi.org/10.1590/1519-6984.02816 PMid:28793028.
    » http://dx.doi.org/10.1590/1519-6984.02816
  • MAIA, A.H.N., LUIZ, A.J.B. and CAMPANHOLA, C., 2000. Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. Journal of Economic Entomology, vol. 93, no. 2, pp. 511-518. http://dx.doi.org/10.1603/0022-0493-93.2.511 PMid:10826207.
    » http://dx.doi.org/10.1603/0022-0493-93.2.511
  • MARTINS, C.B.C., ALMEIDA, L.M., ZONTA-DE-CARVALHO, R.C., CASTRO, C.F. and PEREIRA, R.A., 2009. Harmonia axyridis: a threat to Brazilian Coccinellidae? Revista Brasileira de Entomologia, vol. 53, no. 4, pp. 663-671. http://dx.doi.org/10.1590/S0085-56262009000400018
    » http://dx.doi.org/10.1590/S0085-56262009000400018
  • MEDEIROS, M.A., RIBEIRO, P.A., MORAIS, H.C., BRANCO, M.C., SUJII, E.R. and SALGADO-LABORIAU, M.L., 2010. Identification of plant families associated with the predators Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) and Hippodamia convergens Guérin-Menéville (Coleoptera: Coccinellidae) using pollen grain as a natural marker. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 70, no. 2, pp. 293-300. http://dx.doi.org/10.1590/S1519-69842010005000011 PMid:20379654.
    » http://dx.doi.org/10.1590/S1519-69842010005000011
  • MESSENGER, P.S., 1959. Bioclimatic studies with insects. Annual Review of Entomology, vol. 4, no. 1, pp. 183-206. http://dx.doi.org/10.1146/annurev.en.04.010159.001151
    » http://dx.doi.org/10.1146/annurev.en.04.010159.001151
  • MEYER, J.S., INGERSOLL, C.G., MCDONALD, L.L. and BOYCE, M.S., 1986. Estimating uncertainty in population growth rates: jackknife vs. bootstrap techniques. Ecology, vol. 67, no. 5, pp. 1156-1166. http://dx.doi.org/10.2307/1938671
    » http://dx.doi.org/10.2307/1938671
  • MICHAUD, J.P. and QURESHI, J.A., 2006. Reproductive diapause in Hippodamia convergens (Coleoptera: Coccinellidae) and its life history consequences. Biological Control, vol. 39, no. 2, pp. 193-200. http://dx.doi.org/10.1016/j.biocontrol.2006.04.004
    » http://dx.doi.org/10.1016/j.biocontrol.2006.04.004
  • MICHAUD, J.P., 2002. Invasion of the Florida citrus ecosystem by Harmonia axyridis (Coleoptera: Coccinellidae) and asymmetric competition with a native species, Cycloneda sanguinea. Environmental Entomology, vol. 31, no. 5, pp. 827-835. http://dx.doi.org/10.1603/0046-225X-31.5.827
    » http://dx.doi.org/10.1603/0046-225X-31.5.827
  • MILLÉO, J. and MEIRA, W.V., 2012. Morfologia dos Coccinellini (Coleoptera: Coccinellidae) depositados na coleção entomológica dos Campos Gerais do Paraná, Ponta Grossa, Paraná. EntomoBrasilis, vol. 5, no. 2, pp. 146-163. http://dx.doi.org/10.12741/ebrasilis.v5i2.231
    » http://dx.doi.org/10.12741/ebrasilis.v5i2.231
  • MILLÉO, J., FERNANDES, F.S. and GODOY, W.A.C., 2014. Comparative demography of the exotic Harmonia axyridis with other aphidophagous coccinellids reared on artificial diet. Pesquisa Agropecuária Brasileira, vol. 49, no. 1, pp. 1-10. http://dx.doi.org/10.1590/S0100-204X2014000100001
    » http://dx.doi.org/10.1590/S0100-204X2014000100001
  • MILLER, J.C., 1992. Temperature-dependent development of the convergent lady beetle (Coleoptera: Coccinellidae). Environmental Entomology, vol. 21, no. 1, pp. 197-201. http://dx.doi.org/10.1093/ee/21.1.197
    » http://dx.doi.org/10.1093/ee/21.1.197
  • NEDVĚD, O. and HONĚK, A., 2012. Life story and development. In: I. HODEK, H.F. VAN EMDEN and A. HONĚK, eds. Ecology and behavior of the ladybird beetles (Coccinellidae) Chichester: Wiley-Blackwell, pp. 54-109. http://dx.doi.org/10.1002/9781118223208.ch3.
  • OMKAR and MISHRA, G., 2005. Mating in aphidophagous ladybirds: costs and benefits. Journal of Applied Entomology, vol. 129, no. 8, pp. 432-436. http://dx.doi.org/10.1111/j.1439-0418.2005.00996.x
    » http://dx.doi.org/10.1111/j.1439-0418.2005.00996.x
  • OMKAR and PERVEZ, A., 2016. Ladybird beetles. In: OMKAR, ed. Ecofriendly management for food security San Diego: Academic Press, pp. 281-310. http://dx.doi.org/10.1016/B978-0-12-803265-7.00009-9
    » http://dx.doi.org/10.1016/B978-0-12-803265-7.00009-9
  • PERVEZ, A. and YADAV, M., 2018. Foraging behavior of predaceous ladybird beetles: a review. European Journal of Environmental Sciences, vol. 8, no. 2, pp. 102-108. http://dx.doi.org/10.14712/23361964.2018.14
    » http://dx.doi.org/10.14712/23361964.2018.14
  • PHOOFOLO, M.W., GILES, K.L. and ELLIOTT, N.C., 2007. Quantitative evaluation of suitability of the greenbug, Schizaphis graminum, and the bird cherry-oat aphid, Rhopalosiphum padi, as prey for Hippodamia convergens (Coleoptera: Coccinellidae). Biological Control, vol. 41, no. 1, pp. 25-32. http://dx.doi.org/10.1016/j.biocontrol.2006.12.017
    » http://dx.doi.org/10.1016/j.biocontrol.2006.12.017
  • POLIS, G.A., MYERS, C.A. and HOLT, R.D., 1989. The ecology and evolution of intraguild predation potential competitors that eat each other. Annual Review of Ecology and Systematics, vol. 20, no. 1, pp. 297-330. http://dx.doi.org/10.1146/annurev.es.20.110189.001501
    » http://dx.doi.org/10.1146/annurev.es.20.110189.001501
  • PRICE, P.W., 1984. Insect ecology 2nd ed. New York: John Wiley, 607 p.
  • RAAK-VAN DEN BERG, C.L., JONG, P.W., GORT, G., MANLY, B.F.J. and VAN LENTEREN, J.C., 2018. Life histories of an invasive and native ladybird under field experimental conditions in a temperate climate. Entomologia Experimentalis et Applicata, vol. 166, no. 3, pp. 151-161. http://dx.doi.org/10.1111/eea.12658
    » http://dx.doi.org/10.1111/eea.12658
  • ROCCA, M., RIZZO, E., GRECO, N. and SÁNCHEZ, N., 2017. Intra- and interspecific interactions between aphidophagous ladybirds: the role of prey in predator coexistence. Entomologia Experimentalis et Applicata, vol. 162, no. 3, pp. 284-292. http://dx.doi.org/10.1111/eea.12527
    » http://dx.doi.org/10.1111/eea.12527
  • ROLIM, G.S., CAMARGO, M.B.P., LANIA, D.G. and MORAES, J.F.L., 2007. Classificação climática de Köppen e de Thornthwaite e sua aplicabilidade na determinação de zonas agroclimáticas para o estado de São Paulo. Bragantia, vol. 66, no. 4, pp. 711-720.
  • ROY, H.E., RHULE, E., HARDING, S., HANDLEY, L.-J.L., POLAND, R.L., RIDDICK, E.W. and STEENBERG, T., 2011. Living with the enemy: parasites and pathogens of the ladybird Harmonia axyridis. BioControl, vol. 56, no. 4, pp. 663-679. http://dx.doi.org/10.1007/s10526-011-9387-1
    » http://dx.doi.org/10.1007/s10526-011-9387-1
  • SANTOS, N.R.P., SANTOS-CIVIDANES, T.M., CIVIDANES, F.J., ANJOS, A.C.R. and OLIVEIRA, L.V.L., 2009. Aspectos biológicos de Harmonia axyridis alimentada com duas espécies de presas e predação intraguilda com Eriopis connexa. Pesquisa Agropecuária Brasileira, vol. 44, no. 6, pp. 554-560. http://dx.doi.org/10.1590/S0100-204X2009000600002
    » http://dx.doi.org/10.1590/S0100-204X2009000600002
  • SARMENTO, R.A., VENZON, M., PALLINI, A., OLIVEIRA, E.E. and JANSSEN, A., 2007. Use of odours by Cycloneda sanguinea to assess patch quality. Entomologia Experimentalis et Applicata, vol. 124, no. 3, pp. 313-318. http://dx.doi.org/10.1111/j.1570-7458.2007.00587.x
    » http://dx.doi.org/10.1111/j.1570-7458.2007.00587.x
  • SAS INSTITUTE INC. – SAS, 2002. SAS/STAT user’s guide: version 8.02 - TS level 2MO [software]. Cary: SAS Institute Inc..
  • UGINE, T.A. and LOSEY, J.E., 2014. Development times and age-specific life table parameters of the native lady beetle species Coccinella novemnotata (Coleoptera: Coccinellidae) and its invasive congener Coccinella septempunctata (Coleoptera: Coccinellidae). Environmental Entomology, vol. 43, no. 4, pp. 1067-1075. http://dx.doi.org/10.1603/EN14053 PMid:25182621.
    » http://dx.doi.org/10.1603/EN14053
  • VAKHIDE, N. and SAFAVI, S.A., 2014. Biology and fertility life table of the greenbug, Schizaphis graminum (Hemiptera: Aphididae) on the resistant winter wheat cultivar (Pishgam) in Iran. Archiv für Phytopathologie und Pflanzenschutz, vol. 47, no. 3, pp. 355-365. http://dx.doi.org/10.1080/03235408.2013.809909
    » http://dx.doi.org/10.1080/03235408.2013.809909
  • VANCE-CHALCRAFT, H.D., ROSENHEIM, J.A., VONESH, J.R., OSENBERG, C.W. and SIH, A., 2007. The influence of intraguild predation on prey suppression and prey release: a meta-analysis. Ecology, vol. 88, no. 11, pp. 2689-2696. http://dx.doi.org/10.1890/06-1869.1 PMid:18051635.
    » http://dx.doi.org/10.1890/06-1869.1
  • VANDEREYCKEN, A., BROSTAUX, Y., JOIE, E., HAUBRUGE, E. and VERHEGGEN, F.J., 2013. Occurrence of Harmonia axyridis (Coleoptera: Coccinellidae) in field crops. European Journal of Entomology, vol. 110, no. 2, pp. 285-292. http://dx.doi.org/10.14411/eje.2013.042
    » http://dx.doi.org/10.14411/eje.2013.042
  • VARGAS, G., MICHAUD, J.P. and NECHOLS, J.R., 2013. Cryptic maternal effects in Hippodamia convergens vary with maternal age and body size. Entomologia Experimentalis et Applicata, vol. 146, no. 2, pp. 302-311. http://dx.doi.org/10.1111/eea.12027
    » http://dx.doi.org/10.1111/eea.12027
  • ZAZYCKI, L.C.F., SEMEDO, R.E.S., SILVA, A., BISOGNIN, A.Z., BERNARDI, O., GARCIA, M.S. and NAVA, D.E., 2015. Biology and fertility life table of Eriopis connexa, Harmonia axyridis and Olla v-nigrum (Coleoptera: Coccinellidae). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 75, no. 4, pp. 969-973. http://dx.doi.org/10.1590/1519-6984.03814 PMid:26675915.
    » http://dx.doi.org/10.1590/1519-6984.03814
  • ZHANG, G.F., LÖVEI, G.L., WU, X. and WAN, F.H., 2016. Presence of native prey does not divert predation on exotic pests by Harmonia axyridis in its indigenous range. PLoS One, vol. 11, no. 7, p. e0159048. http://dx.doi.org/10.1371/journal.pone.0159048 PMid:27391468.
    » http://dx.doi.org/10.1371/journal.pone.0159048
  • ZHAO, J., LI, S., GAO, X.W., ZHANG, F. and WANG, S., 2015. Comparison of life tables of Cheilomenes sexmaculata (Coleoptera: Coccinellidae) under laboratory and greenhouse conditions. Journal of Economic Entomology, vol. 108, no. 4, pp. 1700-1707. http://dx.doi.org/10.1093/jee/tov178 PMid:26470311.
    » http://dx.doi.org/10.1093/jee/tov178

Publication Dates

  • Publication in this collection
    22 July 2022
  • Date of issue
    2022

History

  • Received
    20 Apr 2022
  • Accepted
    06 July 2022
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br