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1. Introduction

The organization of gill innervation is discussed briefly 
(Nilsson, 1984; Sundin and Nilsson, 2002; Dakrory et al., 
2014, 2018). However, the gill region is only innervated by 
nervi facialis, glossopharyngeus and vagus so they are called 
the branchial nerves (Jonz and Nurse, 2008). In teleost fishes, 
the nervi glossopharyngeus and vagus primarily innervate 

the gill arches. Branches of the branchial nerves are further 
divided into pretrematic (anterior) and posttrematic 
(posterior) rami that straddle the gill slits (Nilsson, 1984; 
Sundin and Nilsson, 2002; Jonz and Nurse, 2008).

The recent studies performed on bony fishes are 
presented by some other authors such as the study made by 
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Dakrory (2003) on the ciliary ganglion and its anatomical 
relations in some bony fishes. Sneddon (2003) examined 
the trigeminal somatosensory innervation of the head of a 
teleost fish, Oncorhynchus mykiss. In addition, Kerem et al. 
(2005) described the somatotopic organization of the 
trigeminal ganglion cells in a cichlid fish, O. niloticus. 
Meader (2005) gave an account on the innervation of the 
muscle of accommodation in the eye of the teleost fish, 
Holocentrus ascensionis. Ali and Dakrory (2008) studied 
the eye muscle nerves of Alticus kirkii magnosi.

Moreover, the most recent studies including the 
species under investigation interested in some other 
topics other than anatomy, such as behavioral and 
ecophysiological studies made by. Saparuddin et al. (2020) 
and Abougabal et al. (2020).

It is proved from the aforementioned review that, there 
are numerous studies performed on the cranial nerves of 
bony fishes. However, few studies were done on the cranial 
nerves of members belonging to the family Cichlidae. 
Therefore, the present study aimed to show the anatomy 
of the glossopharyngeal nerve of one species belongs to 
this family. Also, it is very important to make a full analysis 
for the fibers of this nerve, distribution and its relation 
with the other head structures.

2. Materials and Methods

The studied species is a freshwater bony fish; 
Oreochromis niloticus belonging to the family Cichlidae. 
O. niloticus is a diurnal and omnivorous fish that feeds 
on phytoplankton, aquatic plants, small invertebrates 
and benthic fauna. It is widely known for its importance 
in aquaculture.

The specimens of this species (fully formed embryos) 
were collected from a Nile tributary near Abu-Rawash. The 
fixation of the heads was in an aqueous Bouin solution 
for 24 hours. This is followed by washing in 70% ethyl 
alcohol several times and with distilled water to remove 
the excess of Bouin solution (AL-Malki, 2017).

The heads were decalcified by placing them in EDTA 
solution for about 40-45days, with changing the solution 
every 4 days. Then staining in toto for this bony species 
was carried out with Borax carmine after which they were 
prepared for blocking and then sectioned transversely by 
microtome (10 microns in thickness) (Dakrory et al., 2018). 
An accurate graphic reconstruction for the glossopharyngeal 
nerve was made in a lateral view after drawing of the 
serial transverse sections with the help of the projector 
(Dakrory et al., 2018). Many photomicrographs of parts 
of the sections were taken for illustration.

3. Results

The glossopharyngeal nerve of O. niloticus (Figures 1, 2, 
RO.IX) originates by means of one root from medulla 
oblongata at its ventrolateral side just ventral to the root of 
the posterior lateral line nerve. Nervus glossopharyngeus, 
after its origin, runs posteriorly in a ventrolateral direction 
intracranially. After a short distance, it emerges from the 

Figure 1. Graphic reconstruction of nervus glossopharyngeus 
of Oreochromis niloticus in a lateral view. CE. Cerebellum. G.P. 
Petrosal ganglion. MO. Medulla Oblongata. N.AAB.1 Nerve to the 
1st adductor arcus brachialis muscle. N.CSY. Cranial sympathetic 
nerve. N.EP.L. Nerve to the epithelial lining. N.ILAB.1 Nerve to the 
1st internal levator arcus branchialis muscle. N.OV.1 Nerve to the 
1st obliquus ventralis muscle. N.PSB. Nerve to pseudobranch. N.IX 
Nervus glossopharyngeus Nn.ELAB.1 Nerves to the first external 
levator arcus branchialis muscle. Nn.EP.L. Nerves to the epithelial 
lining. Nn.GFM. Nerves to the gill filament muscles. Nn.Gr.+EP.L. 
Nerves for gill rakers and the epithelial lining. Nn.PSB. Nerves 
to the pseudobranch. R.CM.IX+N.CSY. Ramus communicans of 
the glossopharyngeal nerve and the cranial sympathetic nerve. 
R.PH.IX Ramus pharyngeus of nervus glossopharyngeus. R.PR.
IX Ramus pretrematicus of nervus glossopharyngeus. R.PT.IX 
Ramus posttrematicus of the glossopharyngeal nerve. R.SY.IX 
Ramus sympathetic connecting the glossopharyngeal nerve. 
RO.IX Glossopharyngeal root. Rr.PT.+PR.IX Rami posttrematicus 
and pretrematicus of the glossopharyngeal nerve.

Figure 2. Photomicrograph of part of a transverse section of 
Oreochromis niloticus passing through the postorbital region 
showing the origin of the root of nervus glossopharyngeus. X40.

cranium through the glossopharyngeal foramen (Figure 3, 
F.GP). This foramen occupies a position in the anterior part 
of the exoccipital bone (EXO.), anterior and medial to the 
jugular foramen. Immediately outside the cranial cavity, the 
glossopharyngeal nerve gives off a dorsal communicating 
branch to the Cranial Sympathetic Nerve (Figure 1, R.CM.
IX+N.CSY). This branch and the main nerve together run 
forwards medial to both the cranial sympathetic nerve and 
the ganglion of the first branchial vagal trunk (G.EB.X1), lateral 
to the cranial sympathetic nerve and dorsal to the internal 
jugular vein (IJV.) (Figure 4). Here, the cranial sympathetic 
nerve fuses with the dorsal branch and anastomoses with 
the main glossopharyngeal nerve. Thereafter, nervus 



Brazilian Journal of Biology, 2022, vol. 82, e245509 3/6

Anatomy of the cranial nerves of the Nile tilapia Oreochromis niloticus. I. Nervus glossopharyngeus

glossopharyngeus shifts ventromedially being ventral to 
the cranial sympathetic nerves, ventromedial to the origin 
of the first branchial vagal trunk and dorsomedial to the 
internal jugular vein. In this position, it gives off two fine 
branches to the first external levator arcus branchialis 
muscle (Figure 1, Nn.ELAB.1) and one fine branch to the 
first internal levator arcus branchialis muscle (Figure 1, 
N.ILAB.1). Then it enters the petrosal (epibranchial) ganglion 
(Figures 1, 5, G.P). This ganglion lies ventral to the cranial 
sympathetic nerve (N.CSY.), medial to the internal jugular 
vein (IJV.), dorsolateral to the circus cephalicus and the 
second epibranchial artery (EP.A2). From the epibranchial 

(petrosal) ganglion arise the nervus glossopharyngeus 
as two branches; the ramus pharyngeus (Figure 1, R.PH.
IX) and the trunk representing the rami pretrematic and 
posttrematic IX, (Figures 1, 5, Rr.PT.+PR.IX).

3.1. Ramus pharyngeus

Ramus pharyngeus (Figure 1, R.PH.IX) arises anteriorly 
from the petrosal (epibranchial) ganglion. It runs for a 
long distance dorsal to the first external levator arcus 
branchialis muscle, ventral to the cranial sympathetic 
nerve and ventromedial to the internal jugular vein. Shortly 
forwards, ramus pharyngeus gives off a ventral branch 
which passes anteriorly and gives off a nerve ending in the 
gill chamber epithelial lining. Then that branch enters the 
psudobranch where it ends (Figure 1, N.PSB.). Anteriorly, 
ramus pharyngeus (Figure 6, R.PH.IX) continues forwards 
being dorsal to the pseudobranch (PSB), lateral to the 
efferent branchial artery, medial to the internal jugular 
vein and ventrolateral to the cranial sympathetic nerve. 
At the anterior end of the pseudobranch, it gives off two 
nerves for the pseudobranch (Figure 1, Nn.PSB.). Thereafter, 
ramus pharyngeus extends dorsal to the pharyngeal roof 
giving off a fine nerve to this roof. Shortly after that, the 
ramus pharyngeus extends dorsolateral to the roof of the 
pharyngeal cavity, where it divides into two nerves, which 
ramify in the epithelial lining of the pharyngeal roof.

3.2. Rami pretrematic and posttrematic

From the ventral side of the petrosal ganglion arise the 
two rami as a single trunk (Figures 1, 5, Rr.PT.+PR.IX). As the 
trunk leaves the ganglion, it receives a large sympathetic 
branch (Figures 1, 5, R.SY.IX). Thereafter, this trunk extends 
anteroventrally giving off a fine nerve to the first internal 
levator arcus branchialis muscle (Figure 1, N.ILAB.1). This 
trunk continues anteriorly being medial to the branchial 
lamellae and dorsolateral to the first epibranchial cartilage. 
Here, this trunk turns its course ventrolaterally in a posterior 
direction passing medial to the gill filaments where it gives 
rise to fine nerves to these filaments (Figure 1, Nn.GFM.). 
Shortly posteriorly and at the apex of the curvature of the 
first branchial arch, the trunk divides into its two rami; 
pretrematicus (R.PR.IX) and posttrematicus (R.PT.IX) (Figure 1).

3.3. Ramus pretrematicus

From the branchial trunk, ramus pretrematicus 
(Figures 1, 7, R.PR.IX) separates and runs venteromedially 
being ventral to the first epibranchial cartilage (C.EB.1), 
dorsal to the first ceratobranchial cartilage (C.CB.1) and 
medial to the gill rakers. Here, it gives fine branches to gill 
rakers and the epithelial tissue lining the first holobranch 
in this region (Figure 1, Nn.GR.+EP.L.). Directly after that, 
this ramus becomes dorsal to the ceratobranchial bone. 
It runs for a distance in this position giving rise to several 
fine branches to taste buds and the epithelium of the dorsal 
margin of the gill arch. Then, ramus pretrematicus (Figure 1, 
R.PR.IX) continues in the same position for a very long course 
during which it giving off many branches to the taste buds 
and epithelial lining of the gill arch. Finally, it ends as many 
fine nerves in the epithelial lining (Figure 1, Nn.EP.L.) of 
the floor of the pharynx and the taste buds in this region.

Figure 3. Photomicrograph of part of a transverse section of 
Oreochromis niloticus passing through the postorbital region 
showing the glossopharyngeal foramen. X40.

Figure 4. Photomicrograph of part of a transverse section of 
Oreochromis niloticus through the postotic region showing the 
position of the glossopharyngeal nerve extracranially. X60. AU.C. 
Auditory capsule. EXO. Exooccipital bone. F.GP. Glossopharyngeal 
foramen. IJV. internal jugular vein. G.EB.X1 The epibranchial ganglion 
of the 1st branchial vagal trunk. G.EB.X2 The epibranchial ganglion 
of the 2nd branchial vagal trunk. MO. Medulla Oblongata. N.CSY. 
Cranial sympathetic nerve. N.IX Nervus glossopharyngeus RO.IX 
Glossopharyngeal root.
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3.4. Ramus posttrematicus

From the branchial trunk, ramus posttrematicus 
(Figures 1, 7, R.PT.IX) separates and gives off a fine branch 
to the first adductor arcus brachialis muscle (Figures 1, 7, 
N.AAB.1). Then the main ramus extends ventrally lateral 
to the first epibranchial and ceratobranchial cartilages. 
It penetrates the first adductor arcus branchialis muscle 
and becomes ventrolateral to the ceratobranchial cartilage 
giving rise to fine posterior branches to the gill filaments 
and their muscles at the apex of the holobranch. Thereafter, 
the ramus posttrematicus runs anteriorly ventrolateral to 
the ceratobranchial cartilage and lateral to the efferent 
blood vessel. It runs for a long distance in this position 
giving off many branches to the muscles of the gill 
filaments (Figure 1, Nn.GFM.). More forwards, the ramus 
posttrematicus extends ventrolateral and then ventral 
to the first hypobranchial bone and dorsal to the afferent 
blood vessel. Here, it gives off many branches to the gill 
filament muscles (Figure 1, Nn.GFM.). Thereafter, it gives off 
several fine nerves to the gill filaments and their muscles. 

More forwards, it gives off a branch to the epithelium of 
the isthmus. Finally, it runs medially dorsal to the afferents 
branchial vessels and ventral to the basibranchial and 
hypobranchial cartilage till it ends in the first obliquus 
ventralis muscle (Figure 1, N.OV.I).

4. Discussion

In the species under investigation, nervus 
glossopharyngeus originates by a single root from the lateral 
side of the medulla oblongata. This was described in many 
teleosts (Dakrory and Ali, 2006; Dakrory et al., 2012, 2014, 
Al-Harthi, 2016). However, nervus glossopharyngeus arises 
by two roots as said by Maheswari (1965) in Mastacembelus 
armatus and Saxena (1967) in Amphipnous cuchia. Among 
Chondrichthyes, a single root was described by Mazhar 
(1979) in Pteroplatea altavela. However, Dakrory (2000) 
described three rootlets for nervus glossopharyngeus 
in Rhinobatus halavi, and they unite into one root soon.

Moreover, Matsuda et al. (1991) reported a single 
glossopharyngeal (postotic) nerve originates from the 
vagal lobe passing to the gills and pharynx. Also, Wicht 
(1996) in Ichthyomyzon unicuspis and Braun (1998) in the 
hagfishes Eptatretus stoutii and Myxine glutinosa found 
the same case. On the other hand, Kuratani et al. (1997) 
mentioned separate glossopharyngeal and vagal nerves 
in embryos of Lampetra japonica.

In O. niloticus, the glossopharyngeal nerve emerges 
from the cranial cavity through a separate foramen in the 
exoccipital bone. Also in Ctenopharyngodon idellus (Dakrory, 

Figure 5. Photomicrograph of part of a transverse section of 
Oreochromis niloticus passing through the postotic region showing 
the petrosal ganglion and the origin of the rami pretrematic and 
posttrematic of nervus glossopharyngeus from the ganglion. The 
sympathetic nerve and sympathetic branch are also shown. X60.

Figure 6. Photomicrograph of part of a transverse section of 
Oreochromis niloticus through the anterior otic region showing the 
position of ramus pharyngeus of the glossopharyngeal nerve. X40.

Figure 7. Photomicrograph of part of a transverse section of 
Oreochromis niloticus passing through the postotic region showing 
the separation of the rami pretrematicus and posttrematicus 
of nervus glossopharyngeus. The nerve to the adductor arcus 
branchialis is shown. X60. AU.C. Auditory capsule. B. Brain. C.CB.1 
The first ceratobranchial cartilage. C.EB.1 The first epibranchial 
cartilage. EP.A2 The second epibranchial artery. G.P. Petrosal 
ganglion. GR. Gill Raker. IJV. internal jugular vein. M.AAB.1 First 
adductor arcus branchialis muscle. N.AAB.1 Nerve to the 1st 
adductor arcus brachialis muscle. N.CSY. Cranial sympathetic 
nerve. PSB. Pseudobranch. R.PH.IX Ramus pharyngeus of 
nervus glossopharyngeus. R.PR.IX Ramus pretrematicus of 
nervus glossopharyngeus. R.PT.IX Ramus posttrematicus of the 
glossopharyngeal nerve. R.SY.IX Ramus sympathetic connecting 
the glossopharyngeal nerve. Rr.PT.+PR.IX Rami posttrematicus 
and pretrematicus of the glossopharyngeal nerve.
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2000), Tilapia zillii (Dakrory and Ali, 2006), Liza ramada 
(Dakrory et al., 2012) and Liza aurata (Al-Harthi, 2016), the 
same case was found. On the other hand, Dakrory et al. 
(2014) reported the exit of both the glossopharyngeus and 
the vagal nerves together from the cranium through the 
jugular foramen in Gambusia affinis affinis.

Nakae and Sasaki (2008) carried out studies on ten 
tetraodontiform families; they stated that the relation 
between the glossopharyngeal foramen and the 
elements of the cranium shows a wide range of variation. 
These authors showed that in Triacanthus biaculeatus, 
Kentrocapros aculatus and Ostracionimm aculatus, nervus 
glossopharyngeus exits from the cranium together with 
the vagal nerve through a foramen in the exoccipital 
bone, as previously mentioned. While the nerve leaves 
the cranial cavity through a foramen in the pterotic bone 
in Sufflamenchry sopterum and Zeus faber. However, in 
Canthigas terrivulata and Antigoni acapros, this nerve 
emerges from the cranium through a foramen in the 
posterior part of the prootic bone. In Diodon holocanthus, 
the glossopharyngeal nerve leaves the skull through an 
opening between the exoccipital and basioccipital bones. On 
the other hand, nervus glossopharyngeus and nervus vagus 
emerge through a foramen in the prootic bone in Molamola. 
In Lophiomus setigerus, nervus glossopharyngeus emerges 
from the cranium through a foramen rimmed by the prootic, 
exoccipital and basioccipital bones. In Malakichthy swakiyae 
and Siganus spinus, the glossopharyngeal nerve leaves 
the cranium through a foramen in the exoccipital bone.

The case is different in cartilaginous fishes. Many 
authors such as, Hamdy and Hassan (1973), Elsatti (1982) 
and Dakrory (2000), described a canal through which the 
glossopharyngeal nerve passes. This glossopharyngeal 
canal is communicated with the auditory capsule cavity.

In the species studied, only one, extracranially located, 
petrosal (epibranchial) ganglion is present. The same case 
was reported in some teleosts by many authors, such as 
de Graaf, (1990) in Cyprinus carpio, Dakrory, (2000) in C. 
idellus, Dakrory and Ali (2006) in T. zillii, Hussein (2010) 
in Mugil cephalus, Dakrory et al. (2012) in L. ramada, 
Dakrory et al. (2014) in G. affinis affinis and Al-Harthi (2016) 
in L. aurata. Whereas, two ganglia; a medial intracranial 
sensory ganglion and a lateral petrosal intracranial one, 
were found for the glossopharyngeal nerve by Northcutt 
and Bemis (1993) in Latimeria chalumnae and Piotrowski 
and Northcutt (1996) in Polypterus senegalus.

In O. niloticus, there is no connection between the 
glossopharyngeal and the octaval nerves or its branches. 
However, Harrison (1981) described a connection between 
nervus glossopharyngeus and ramus ampularis posterior 
in Trichiurus lepturus.

In the present study, nervus glossopharyngeus has 
three rami; pharyngeus, pretrematic and posttrematic 
rami, distal to the petrosal ganglion. The same case is 
confirmed by Harrison (1981) in T. lepturus, De Graaf 
(1990) in C. carpio, Piotrowski and Northcutt (1996) in 
P. senegalus and by Dakrory and Ali (2006) in T. zillii. 
However, ramus pharyngeus is lacking and only two rami 
is present in many cases as those reported by Hussein 
(2010) in M. cephalus, Dakrory et al. (2012) in L. ramada, 
Dakrory et al. (2014) in G. affinis affinis and by Al-Harthi 

(2016) in L. aurata. Moreover, Dakrory (2000) and Taha 
(2010) reported the lacking of ramus pretrematicus in 
C. idellus and Hypophthalmichthys molitrix, respectively, 
i.e. there are two rami; ramus pharyngeus and ramus 
posttrematicus.

Regarding cartilaginous fishes, Dakrory (2000) described 
three rami; pharyngeus, pretrematicus and posttrematicus 
for the glossopharyngeal nerve in R. halavi.

In the studied cichlid species, there is no connection 
between the glossopharyngeal and the facial nerves. This 
case was mentioned by Dakrory and Ali (2006) in T. zillii, 
Hussein (2010) in M. cephalus, Dakrory et al. (2012) in L. 
ramada, Dakrory et al. (2014) in G. affinis affinis and by 
Al-Harthi (2016) in L. aurata. On the other hand, there 
is a connection between ramus pharyngeus IX and the 
posterior palatine ramus of the facial nerve (Jacobson’s 
anastomosis) was reported in C. idellus (Dakrory, 2000) and 
in H. molitrix (Taha, 2010). Also, ramus pharyngeus IX was 
reported to be connected with the rostral pole of the facial 
ganglion in P. senegalus (Piotrowski and Northcutt, 1996). 
Moreover, Saxena (1967) and Harrison (1981) described a 
connection between the glossopharyngeal and the facialis 
nerves in A. cuchia and T. lepturus, respectively.

In the species under investigation, ramus posttrematicus 
is not divided into two parts. The same condition was 
described by Dakrory (2000) in C. idellus, Dakrory and Ali 
(2006) in T. zillii, Taha (2010) in H. molitrix, Dakrory et al. 
(2012) in L. ramada, Dakrory et al. (2014) in G. affinis affinis 
and Al-Harthi (2016) in L. aurata. On the other hand, this 
ramus is divided into two parts; anterior and posterior as 
reported by Northcutt and Bemis (1993) in L. chalumnae 
and by Piotrowski and Northcutt (1996) in P. senegalus.

5. Conclusion

From the above-mentioned data, it is clear that there 
are some differences in the glossopharyngeal nerve of the 
studied species, concerning anatomy and number of nerve 
rami. On the other hand, there are similarities in certain 
features as root, ganglion and type of fibers. So we can 
conclude that, although there is a specific variation in the 
nerve among bony fishes; yet it is a typical branchial nerve.
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