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the digestive tract of larval stages of a shredder insect in
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Abstract

Tropical biomes such as Brazilian Cerrado and Amazon Forest have a great diversity of fungi and insects. Interactions
between these organisms can be beneficial to both partners. In streams, these interactions contribute to litter
decomposition. Studying the digestive tract (DT) of shredder insects as a habitat for fungal microorganisms is an
opportunity to obtain fungal strains with biotechnological potential, which may help to understand the symbiotic
relationships between these organisms in tropical forests. This study investigated the fungal community in the
DT of larvae of Triplectides (Trichoptera: Leptoceridae) collected in low-order streams in the Cerrado and Amazon
Forest biomes in Brazil. Forty-nine fungal isolates were obtained and identified among 32 species and 12 genera.
The genus Roussoella was only found in the DT of insects in Amazon Forest streams, while 7 genera only occurred in
the DT of insects in Cerrado streams. The genus Penicillium (40%) was the most frequent. In the Cerrado, 78% were
producers of CMCase, more than two-fold that in the Amazon Forest (35%). And 62% were producers of xylanase,
in the Cerrado and 71% in the Amazon Forest. In this context, the fungal community in the DT of Triplectides larvae
may play an important role in the insect diet by breaking down lignocellulosic material.
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Resumo

Biomas tropicais como o Cerrado brasileiro e a Floresta Amazonica apresentam uma grande diversidade de fungos
e insetos. As interagdes entre esses organismos podem ser benéficas para ambos os parceiros. Em riachos, essas
interagdes contribuem para a decomposicdo da serapilheira. O estudo do trato digestério (TD) de insetos como um
habitat para microrganismos fingicos é uma oportunidade para obtenc¢do de linhagens flingicas com potencial
biotecnolégico, podendo trazer luz para o entendimento das relagdes simbidticas entre esses organismos em
florestas tropicais. Esse estudo investigou a comunidade ftingica do TD de larvas de Triplectides (Trichoptera:
Leptoceridae) coletados em riachos de baixa ordem nos biomas Cerrado e Floresta Amazonica no Brasil. Foram
obtidos 49 isolados fingicos e identificados entre 32 espécies de 12 géneros. O género Roussoella foi encontrado
apenas no DT de insetos em riachos da Floresta Amazonica, enquanto sete géneros ocorreram apenas no DT de
insetos em riachos do Cerrado. O género Penicillium (40%) foi o mais frequente. No Cerrado, 78% foram produtoras
de CMCase, mais que o dobro da Floresta Amazonica (35%). E 62% foram produtoras de xilanase, no Cerrado, e 71%
na Floresta Amazonica. Nesse contexto, a comunidade ftingica do TD de larvas Triplectides pode desempenhar um
papel importante na dieta de insetos por quebrar o material lignoceluldsico.

Palavras-chave: Triplectides, Trichoptera, xilanase, celulase.

Introduction

Brazilian Cerrado and Amazon Forest biomes are  fungithat coexist in several terrestrial and aquatic habitats,

considered biodiversity hotspots. This high biodiversity,
especially in neotropical regions, represents a great
potential for organisms to be discovered (Almeida et al.,
2017), as well as their specificities. Thus, these tropical
forests hold a large part of the diversity of insects and

where potential interactions may occur between species
of the two groups (Boucias et al., 2012; Douglas, 2015).
Insects are colonized by microorganisms, in their body
surface, in their digestive tract (DT) and interior of certain
tissues. Bacteria and fungi prevail in insect microbiomes and
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they are essential for survival, maturation and nutritional
functions of hosts among honey bees (Kwong and Moran,
2016; Raymann and Moran, 2018) and also in some species
of moths (Chen et al., 2016).

The roles of the symbionts in relations between fungi and
insects were found to be nutritional, for protection, or even
for hormonal maturation of the insect (Mohammed et al.,
2018), whereas the microorganisms receive protection and
abundant food in the body of the insect. Fungi contribute
nutrients to several insect groups (Gibson and Hunter,
2010), as with bark beetles (Six, 2012) and the carmine
cochineal that fungi help in the nitrogen recycling process
(Lebn et al., 2016).

Fungi have been often found in the DT of several insects
that feed on wood or detritus and, possibly, play a role in
the digestion of such plant material (Engel and Moran,
2013; Le6n et al., 2016; Santos et al., 2018; Belmont-
Montefusco et al., 2020a, Belmont-Montefusco et al.,
2020Db). Shredder insects feed on senescent plant material
in low-order streams (Graga et al., 2001; Jabiol and
Chauvet, 2012) where they contribute to the breakdown
of organic matter in aquatic ecosystems together with
fungal groups such as Ascomycetes and Hyphomycetes
(Gragaetal., 2016). Insect species of the genus Triplectides
(Trichoptera: Leptoceridae) are shredders during their
aquatic larval stage, consuming substrates such as leaves
and dead wood (Oliveira and Pes, 2014; Cortez and
Gongalves, 2015). Microbial colonization of those substrates
improve palatability and increase nitrogen content of food
(Gragaetal.,2001). The genus is highly diverse in tropical
streams where a variety of substrates are available for fungal
colonization that may be ingested by these insects along
with food. The hypothesis arises that there is a diversity

of fungi associated with the DT of larvae of insects of the
genus Triplectides in low-order streams in the Brazilian
Cerrado and Amazon Forest.

The fungal composition and diversity in the DT of insects
may clarify the role of fungi in the physiology of the host
(Gaoetal., 2018) and shed light onto the ecological role of
symbiosis between the two groups and biotechnological
potential of those fungal communities. Thus, this study
aimed to verify whether there is a possible specificity of
occurrence of fungi in the DT of those insects and to test
the potential for the production of xylanases and cellulases,
which also shows the potential nutritional role, in food
digestion in the DT of the insect.

Material and Methods

Characterization of the study areas

The study was carried out in five streams located in a
conservation area and its surroundings in the north part
of the Brazilian Cerrado (Tocantins, Brazil) and in four
streams in an Amazon Forest (Pard, Brazil) biomes (Figure 1).
A 200 m stretch of the body of the stream was sampled
using a D-frame net (0.500 mm mesh and 0.465 m? area)
in each stream selected. Larvae of Triplectides (Trichoptera:
Leptoceridae) were collected in the substrate available
(especially leaf packages) and identified by specialists
based on the taxonomic descriptions by Hamada et al.
(2014). Each individual larva was transferred to a sterile
tube containing 1 mL sterile saline solution and stored for
2 to 4 hin ice until processing in the laboratory.
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Figure 1. Maps with sampling sites of Triplectides (Trichoptera: Leptoceridae) in low-order streams in the Cerrado (Lajeado State Park and
surroundings, state of Tocantins, Brazil) and low-order streams in the Amazon Forest (Tapaj6s National Forest, state of Pard, Brazil) biomes.
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Fungal isolation and purification

In the laboratory, the individual larvae were aseptically
dissected using a stereoscopic microscope. The intestinal
tract was added to 1.0 mL sterile saline solution in an
Eppendorf tube. Next, a 0.1 mL aliquot was seeded
on a Petri dish containing potato-dextrose agar (PDA)
supplemented with 100 pg mL"' chloramphenicol in
triplicates. The dishes were incubated at 28 °C for up to
60 days. The fungal isolates obtained were individually
transferred to Petri dishes containing PDA and incubated
at 25 °C for seven days for purification. Fungal strains
were kept in storage according to adaptations of Castellani
(1939).

DNA extraction, amplification and sequencing

The fungal isolates were transferred from storage to
dishes containing PDA for 24-28 h and then transferred
to 3% ME (Malt Extract) broth for cellular increase for
seven days of growth in a rotating shaker (100 rpm)
at room temperature. Next, approximately 40 mg of
mycelium were collected for DNA extraction with the
Wizard™ Genomic DNA Purification Kit (Promega, USA),
following the modified protocol by Burghoorn et al. (2002).
After extraction, the DNA was analyzed in a NanoDrop
2000 (Thermo Scientific, Brazil) spectrophotometer.
Primers ITS1 (5’-TCCGTAGGTGAACCTGCGG-3’) and ITS4
(5" TCCTCCGCTTATTGATATGC 3’) (White et al., 1990)
were employed for amplification of the ITS (Internal
Transcribed Spacer) region of rDNA (~600 bp) following
the amplification conditions proposed by Santos et al.
(2016). The amplified ITS fragments were submitted to
electrophoresis in 1.0% agarose gel containing GelRed™
(Biotium Inc., USA) and visualized under ultraviolet light
in a photo documentation system (Loccus Biotechnology,
Brazil). The 1 kb DNA Ladder (Promega, USA) was used as
a molecular weight marker.

The amplified products were sequenced in both
directions using the same PCR starters in an ABI 3500 XL
(Life Technologies, USA) automated sequencer according
to the Sanger or chain termination method (Sanger et al.,
1977) using a BigDye Terminator v3.1 sequencing kit
(Life Technologies, USA). Sequencing was performed
by the company Myleus Biotechnology, located in Belo
Horizonte - MG, Brazil. Additionally, the amplification
of the genes B-tubulin (Bt2a and Bt2b) was used for
fungus taxa with low intraspecies variation according
to the protocols established by Godinho et al. (2013).
All sequences were compared with sequences deposited
at the GenBank database using a local alignment
algorithm for nucleotide sequences BLAST (Basic Local
Alignment Search) (Altschul et al., 1990) and at the CBS
(Centraalbureau voor Schimmelcultures Fungal Biodiversity
Centre) database (http://www.cbs.knaw.nl).

Xylanolytic and cellulolytic screening of the fungal
community

The fungal community in the DT of Triplectides was
tested for the production of xylanase and cellulase
through screening in solid medium containing xylan
or carboxymethylcellulose (CMC) as the only carbon
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source. The production of the enzyme was assessed via
the growth of the strain on a dish and the revelation of
hydrolysis halo using Congo red stain (Zhang et al., 2006).
The strains were reactivated in PDA and then repeated
in triplicate to a medium with xylan (Xylan, Beechwood
purified) or carboxymethylcellulose (CMC) and trace
elements composed of (C;H,0, « H,0 50; ZnSO, * 7H,050;
Fe (NH,) 2 (SO,) , * 6H,0 10; CuSO, * 5H,0 2.5; MnSO, *
H,0 0.05; H,BO, 0.05; Na,M00,2H,0 0.05; Salt solution:
Na,C,H.0, * 5H,0 150; KH,PO, 250; NH,NO, 100; MgSO,
* 7H,0 10; CaC,, * 2H,0 5) and biotin (0.1 mg ml') 5 mL;
0.2 mL chloroform (Vogel, 1956).

Next, staining was conducted with Congo red (0.25%)
for 30 min and washing was performed with NaCl (1 M)
for 15 min. The fungi that exhibited lighter color halos
around the colony in the selective medium were considered
producers of xylanase or cellulase. A digital caliper was
used to measure the diameter of the colonies and the halos.
The enzymatic index (EI) was determined by dividing
the diameter of the halo by the diameter of the colony
(Nogueira and Cavalcanti, 1996).

Statistical analysis

Diversity was measured via the indices of Simpson
(1-D), Shannon (H ‘), Margalef, and Chao-1, which were
calculated for the number of sampled larvae from streams
in the Cerrado and Amazon Forest. The larvae were
considered the sampling unit, being the biomes, and not
the streams, the variable of interest. The indices were
calculated with 95% confidence using the software PAST
version 4.01 (Hammer et al., 2001).

Results

A total of 49 fungal isolates were obtained from 21
larvae of Triplectides (Trichoptera: Leptoceride) and
identified among 32 species of 12 genera, besides two taxa
with inconclusive taxonomy (Table 1). The average fungal
isolates per DT was 2.14 CFU/DT in the Cerrado biome
streams and 1.72 CFU/DT in the Amazon Forest streams.
In the Cerrado, 32 strains were obtained belonging to 23
species of 11 genera, whereas in the Amazon Forest, 17
strains of 11 species of five genera were obtained. The genus
Roussoella was only found in the DT of insects in Amazon
Forest streams, while seven genera only occurred in the
DT of insects in Cerrado streams. The genus Penicillium
was the most frequent and occurred both in the Cerrado
and in the Amazon Forest, with 20 strains (40%) isolated in
different DTs. The genera Cladosporium (8%), Talaromyces
(8%), and Trichoderma (8%) exhibited similar frequency of
occurrence. The genera Aspergillus and Clonostachys, with
one occurrence each, were isolated only in the Cerrado
biome.

Among the species, Penicillium caseifulvum, Penicillium
paxilli,and Neopestaloptiopsis formicarum occurred in the DT
of larvae from streams in the Cerrado and Amazon Forest.
All other species occurred in only one of the biomes, i.e.,
20 species occurred exclusively in the Cerrado and eight,
in the Amazon Forest. The most frequent species were P.
paxilli in the Cerrado, with four strains, and T. palmae in
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the Amazon Forest, with three strains. Twenty-two species,
including four species of the genus Cladosporium, seven
species of Penicillium, three species of Trichoderma and
Diaporthe, in addition to Aspergillus stellatus, Myxospora
musae, Paraphaeosphaeria arecacearum, Clonostachys rosea,
and Roussoella mexicana occurred as singletons.

The Chao-1 index showed that, in both biomes, the
ideal sampling number was not reached. Due to the
overvaluation of species considered singletons in the
calculation of richness, the Cerrado biome (54 fungal
species) showed a greater estimate of richness than the
Amazon Forest (15 fungal species). The Margalef richness
index was also higher in the Cerrado, as were the Simpson
and Shannon diversity indices (Table 2).

Differences in the physicochemical parameters of the
water in the nine streams sampled were detected between
the Cerrado and the Amazon Forest (Table 3). The mean
altitude of Cerrado streams was above 400 m, while those
in the Amazon Forest had a mean altitude of 99 m as they
were in the Amazon plain. The mean temperature of the
streams in the Cerrado was lower than in the Amazon Forest

by about 2 °C. The waters in the Amazon Forest streams were
acidic and had higher electric conductivity and turbidity.

A total of 62% (Figure 2A) of the fungal community
in the Cerrado exhibited enzyme activity for xylanase
and strains Cladosporium kenpeggii MT521711.1 and
Cladosporium subuliforme MT521712.1 showed the highest
values of enzymatic indices (EI) (Table 1). Seventy-eight
percent strains exhibited cellulolytic activity and the
highest El values were shown by Cladosporium subuliforme
MT521712.1 and Penicillium mallochii MN737739.1
(Table 1). In the Amazon Forest (Figure 2B), 71% of strains
exhibited xylanolytic activity and 35% exhibited positive
activity for cellulase. The highest EI values were shown
by strains Penicillium maximae MN737732.1 to xylanase
and Penicillium paxilli MN737731.1 to cellulase (Table 1).

Discussion

The DTs of Triplectides larvae found in streams in the
Amazon Forest and Cerrado host a diversified community

Table 2. Number of insects sampled (n) and richness and diversity of filamentous fungi in the DT of Triplectides (Trichoptera: Leptoceridae)

in Cerrado and Amazon Forest Biomes, Brazil.

Biomes Geographical coordinates lsa:/:zl(e:) Ric?sr;ess Chao-1 Margalef Szrlnfs;;))n Sh;;rl;l;on
Cerrado I (10°03'33.40S; 48°13'49.30"W) n=3 10 54 6.5 0.95 3.06
I (10°03'53.60"S; 48°14'58.00"W) n=3 7
I (10°03'55.90S; 48°14'57.70"W) n=3 5
IV (10°04'25.00"S; 48°13°29.10"W) n=2** 3
V. (09°58'46.30"S; 48°17°03.20"W) n=3 5
Richness n=14 23*
Amazon VI (03°23'25.2"S; 54°56'26.3"W) n=3 7 15 3.7 0.90 234
Forest vy (03°25'59.1"; 54°54'59.6"W) n=1* 1
VIII (03°07°04.3"S; 55°03'49.5"W) n=1** 1
IX (03°33'48.2"S; 54°52'30.90"W) n=2** 3
Richness n=7 11*

Note: *Total value excluding taxon repetition; **Number of samples collected was lower due to lack of larvae during the field trip.

Table 3. Physicochemical parameters of sampled streams of Cerrado and Amazon Forest, Brazil.

Parameters* Cerrado Amazon Forest
Altitude (m) 452.2 +94.16 99 + 18.67
Temperature (°C) 23.03 £23.03 25.84 +0.90
Turbidity 191 +1.04 2.83 £1.68
Dissolved oxygen (mg L) 8.72+0.21 8.71+1.46
pH 6.46 £ 0.57 4.02+0.13
Electrical conductivity (mS cm™) 6.97 +4.23 18.74 £ 0.64
Width (m) 219+1.25 3.01 £1.60
Depth (m) 0.14 £ 0.07 0.20£0.11
Current velocity (m s™) 0.30+0.10 0.21+0.15

*Arithmetic mean # standard deviation.
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Figure 2. Percentage of fungal isolates from the DT of Triplectides (Trichoptera: Leptoceridae) in Cerrado (A) and Amazon Forest (B)
biomes producers and non-producers of xylanase (Xyl) and cellulase (CMCase).

of fungi, as the diversity indices show (Table 2). Triplectides
sp. larvae are usually found in patches of leaves located on
the bed of streams and pools of water and are classified
as a trophic group of leaf shredders (Kiffer et al., 2016).
Therefore, it is expected that, when feeding on leaves,
those larvae ingest a variety of microorganisms, including
fungi colonizing such substrates, which may make up their
mycobiome (Mohammed et al., 2018). That phenomenon is
known as conditioning of the plant material and may occur
by fungal colonization of the leaf litter in the environment.
Those fungi may originate from the plant itself and from
soil and water after the abscission of leaves. Seasonality
affects the fall of leaf litter in tropical biomes (Atlantic
Forest, Amazon Forest, and Cerrado), an effect that possibly
impacts the quality and amount of substrates (Tonin et al.,
2017). This might reflect on the distribution of shredder
species in their microhabitat and also in the choice of the
food (Abos et al., 2006). Since the present study did not
select the type of leaf where the insect was collected (age,
senescence, stage of decomposition, etc.), it is possible
that the larvae had fed on leaves of different types that
probably contain different microbial communities, thus
forming a diverse microbiome.

Another possible origin of the high diversity of fungal
groups in DT of larvae is the differences in diets of species
and life cycles of the insects. There is strong evidence that
substrates determine the intestinal microbiota of larvae
and thus the diversity of the intestinal microbiota is fully
related to the diet and life cycles of each insect species
(Arias-Cordero et al., 2012; Mohammed et al., 2018;
Alves Janior et al., 2019). Recent studies show that the
microbiomes differ in the stages of larval development
(Chen et al., 2016; Gao et al., 2018; Yao et al., 2019), with
higher diversity in the initial phase and greater richness
in the adult phase (Gao et al., 2018). Since the larvae
collected in this work were possibly at distinct larval
stages, a diversified microbiome was expected. Also the
physiology and physicochemical characteristics of the DTs
of insects may vary between species and, thus, different
larvae may host distinct microbial communities (Ceja-
Navarro et al., 2014; Mason et al., 2017). In the field, it is
not possible to distinguish larvae of different Triplectides
species, specially in the two biomes where there are few
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thorough taxonomic studies of aquatic insects, and the
distinction of species is accomplished by examination of
adult stages (Pes et al., 2005).

The fungal community was composed mostly of
singletons, i.e., with a low frequency of occurrence of a
large number of species. One of the possible explanations
for this fact is related to the diversity of substrates on
which the larvae were collected. That is supported by
the literature, the high frequency of singletons may be
related to the high diversity of fungi associated with
plant substrates (Martins et al., 2017; Malta et al., 2019;
Ferreira et al., 2019). It also reinforces evidence that the
diets of larvae of the same taxon of Trichoptera may vary
due to the differences in riparian vegetation in their
aquatic habitats.

A high number of filamentous fungi morphospecies
per DT (6.2 + 6.4) of larvae of Phylloicus was counted in
streams of the Amazon Forest (Santos et al., 2018). In
the present study, the mean number of taxa per DT was
2.33, much lower than the value reported by Santos et al.
(2018). That s likely due to the high diversity of the insect
genus Phylloicus that presents 25 spp described for Brazil
(Santos et al., 2019). This study, in turn, investigated the
mycobiome of Triplectides, which has about 14 species
described in Brazil (Pes et al., 2014). It is highly probable
that the set of Triplectides larvae collected belonged
to a narrower group of species. Studies (Clair, 1994;
Pimentel et al., 2020) report both Phylloicus and Triplectides
as little selective and the availability of food items is the
greatest influence on their diet. Phylloicus are detritivores,
being shredders only for breaking down leaves for shelter
construction (Pimentel et al., 2020), another explanation
for the higher diversity of fungi in DT of this genus as
compared to Triplectides.

The present results indicated common taxa in both
biomes, as is the case of the genus Penicillium, which was
the most frequent in this research (40%) and occurred
both in the Cerrado and in the Amazon Forest. The genus
Penicillium was also found in the DT of larvae of Phylloicus
in the same sites of Cerrado and Amazon Forest biomes
(Santos et al., 2018) as also in larvae of Triplectides, Phylloicus
and Stenochironomus aquatic insects in streams sampled in
another site of the Amazon Forest in the State of Amazonas,
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Brazil, together with Aspergillus and Trichoderma (Belmont-
Montefusco et al., 2020a; Belmont-Montefusco et al.,
2020b). In addition, the species Paraphaeosphaeria
arecacearum, found in the DT of Triplectides in Cerrado, was
also isolated in the DT of Phylloicus in the same Cerrado
sites by Santos et al. (2018). Thus, despite the differences
among the environmental factors of each biome and even
among the larval species studied, such species may have
a mycobiome in common, formed by fungi ubiquitous in
the environment, which reinforces the possibility that
those fungi are important to the insects.

Many of the fungal taxa found in the DT of Triplectides are
of broad occurrence in aquatic and terrestrial environments
(Gutiérrez et al., 2015; Song et al., 2018). The genus
Penicillium is found widely in nature in soil and plants, in
the air, and in decaying vegetation (Godinho et al., 2015;
Mohammadian et al., 2017). The genus Cladosporium is very
diverse, common, and widespread, including endophytic,
pathogenic, phytopathogenic, and saprophytic species
(Bensaci et al., 2015).

The most frequent species were Penicillium paxilli in
the Cerrado and Talaromyces palmae in the Amazon Forest.
The species T. palmae belongs to an endophytic group
(Sette et al., 2006), which includes P. paxilli that was first
isolated from leaves (Rukachaisirikul et al., 2007). Based
on those findings and considering the diet of insect larvae
is based on leaves, it can be suggested that some of the
fungi in the insects diet may be of endophytic or epiphytic
origin. Endophytic fungi are a very diversified group present
in most plants (Marques et al., 2018; Ramirez-Camejo,
2024) and, according to Peay et al. (2016), the diversity
of endophytic fungi associated with leaves is higher in
tropical forests when compared with larger spatial scales.
And some endophytic fungi may be good producers of
enzymes, such as cellulases and xylanases (Amirita et al.,
2012; Corréa et al., 2014).

The community of fungi associated with the DT of
Triplectides in Cerrado has higher richness and diversity
than those in the Amazon forest, which may be influenced
by several factors. Particularities of streams such as
current velocity, width, and depth (Landeiro et al., 2010)
and leaf characteristics are important and must be taken
into account in studies on tropical streams (Li et al., 2009;
Landeiro et al., 2010). Current velocity may also influence
the feeding of insects inhabiting streams (Boyero et al.,
2006). Moreover, the taxonomy and functionality of the
composition of communities of Trichoptera in Cerrado
streams may be determined by factors such as physical
structure of the streams and water quality (Ferreira et al.,
2017). That may explain the differences in composition of
the fungal community of Triplectides DT between those
two biomes. Streams in the Amazon Forest and Cerrado,
besides having distinct abiotic characteristics and plant
physiognomies, can host different species of Triplectides,
thus resulting in different mycobiomes. In the Cerrado,
a higher diversity of species of Triplectides may have
been sampled, since fourteen insects were sampled in
the Cerrado whereas only seven were collected in the
Amazon Forest. In addition to those, factors such as
altitude, which was different in the streams studied, may
have an influence. According to Camacho et al. (2009), the
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abundance and richness of shredder species vary with the
altitude due to the variation in temperature. According to
Casotti et al. (2015), the characteristics of the leaves may
induce the behavior of shredders, such as Triplectides, as
these organisms are able to choose the most palatable
resources. The Cerrado vegetation has leaves with waxes,
hair, and other characteristics (Fank-de-Carvalho et al.,
2010) that make them less palatable than forest vegetation
(Landeiro et al., 2010; Reis et al., 2019). Triplectides larvae
may feed preferably in leaves heavily conditioned by fungi
in Cerrado streams, explaining the higher fungal diversity
in Cerrado than Amazon Forest.

The occurrence of filamentous fungi producers of
cellulases and xylanases in the DT of Triplectides larvae
indicates that those organisms may play a role in the
breakdown of lignocellulosic matter ingested by the larva.
The percentage of CMCase-producing strains in the Cerrado
(78%) was more than two-fold that in the Amazon Forest
(35%). The differences in vegetation composition may have
influenced the enzymatic profile of the fungal community
in the biomes studied since different plant species host
different fungal species (Ferreira et al.,, 2015). Also, the
lower palatability of leaves from Cerrado vegetation may
account for differences in fungal enzymatic capabilities in
leaves of these two biomes. The percentages of strains that
broke down xylan in the Cerrado (62%) and in the Amazon
Forest (71%) indicate that the fungal community is more
xylanolytic than cellulolytic. That is certainly due to the
characteristic of the Triplectides insect that feeds both on
leaves and on wood (Oliveira and Pes, 2014; Cortez and
Gongalves, 2015). And, as plant cell walls are composed
of cellulose, hemicellulose (mainly xylan), and lignin
(Walia et al., 2017), xylan requires several xylanolytic
enzymes for full hydrolysis (Okeke, 2014).

In this work, it was observed that some taxa are
potentially higher enzyme-producers than others. The
genera Cladosporium and Penicillium exhibited the highest
enzymatic indexes for xylanase and cellulase, having, in this
case, greater extracellular enzyme activity (Oliveira et al.,
2006). The species that had the highest indices were
Cladosporium kenpeggii, which is considered a new,
little-studied species (Marin-Felix et al., 2017), as well as
Cladosporium subuliforme (Ramos-Garcia et al., 2016) and
Penicillium malochii (Rivera et al., 2012). According to the
literature, Penicillium species may produce enzymes able to
break down lignocellulosic material (Andersen et al., 2016;
Mohammed et al., 2018), as well as species of Cladosporium
(Andersen et al., 2016; Marques et al., 2018).

It is likely that the larvae acquire the fungi from their
diet, which, along with the environment where they live,
impact the formation of the mycobiome of the larvae
(Yao et al., 2019). In that case, fungi may represent an
additional food item so that many fungi can be considered
areasonable source of amino acids and nitrogen in insect
diets (Mason et al., 2017). In addition to being part of
larva diet, the symbiotic role of that fungal community
may be related to the action of enzymes able to delignify
the material made up of, mainly, cellulose, hemicellulose
(Gao et al., 2018; Alves Junior et al., 2019), and xylans,
enriching the diet of the insect, thus exerting a nutritional
role (Mohammed et al., 2018). Our results point to the
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hypothesis that the fungal community found in DT of
Triplectides larvae helps in processing the food both
during conditioning in the ecosystem and in the DT. The
presence of xylanolytic and cellulolytic fungi in the DT
of aquatic shredder insects supports the hypothesis of
a nutritional role of fungi as a symbiont and reinforces
the importance of ecological studies for the discovery
of biotechnological potential for enzyme production of
fungal strains new to science.
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