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1. Introduction

Fermentation plays a pivotal role in the production of 
essential foods and the global economy. Fermented products 
such as chocolate, bread, wine, cheese, and yogurt are central 
to daily diets, prized for their sensory qualities and nutritional 
benefits (Das et al., 2022). Historical evidence reveals that 
cereal fermentation has existed for millennia, with figures 

like Pasteur identifying microorganisms as fermentation 
agents, reinforcing the significance of this practice over time 
(Şanlier et al., 2019; Wang et al., 2021; Cavaillon and Legout, 
2022; Cuamatzin‐García et al., 2022; Wu et al., 2023).

These fermentative processes, including alcoholic, 
acetic, and lactic fermentation, yield pathogen-free foods, 
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literature review (Lima et al., 2022) described the main 
fermented products consumed by the Brazilian population, 
including native and traditional peoples. Among them 
are artisanal cheeses, fermented meats such as socol and 
charqui, non-alcoholic or low-alcohol beverages such as 
aluá, calugi, tarubá and yakupá, alcoholic beverages such as 
cachaça, tiquira, caiçuma, cauim and caxiri, and fermented 
foods based cassava such as puba, water flour, sour cassava 
starch, and tucupi. Figure  1 depicts the preparation of 
tucupi, while Figure  2 showcases the stages of Tarubá 
pulp preparation conducted in a community located in 
the municipality of Santarém, Pará, Brazil.

Table 1 presents the most commonly used substrates in 
fermentations, with emphasis on cassava and its varieties, 
which are widely used as sources of carbohydrates by many 
native communities in the region. Fermentations conducted 
by lactic acid bacteria (LAB) and ethanol-fermenting yeasts 
are the most common types of fermentation observed. 
The products generated have potential nutritional, probiotic, 
and cultural value. In this literature review, we will 
highlight two indigenous fermentations: tucupí and caxiri 
(Santos et al., 2012; Brito et al., 2019; Campos et al., 2019).

3. Tucupi

Tucupi, a viscous yellow broth derived from the bitter 
cassava root, is a fundamental ingredient in Amazonian 
cuisine, prominently featured in dishes like tacacá, pato 
no tucupi, and caruru (Costa et al., 2018). This culinary 

ensuring food safety and extending product shelf life due to 
their antimicrobial properties. Today, the modern industry 
continues to explore fermented products not only for their 
taste and digestibility but also for their potential as sources 
of beneficial probiotics that promote intestinal health and 
human well-being (Zommiti et al., 2020; Voidarou et al., 
2020; Baillo et al., 2023).

In Latin America, rich in cultural traditions, fermentations 
play a significant role, with foods like puba, tucupi, 
tiquira, caxiri, polvilho azedo, tarubá, and Marajó cheese 
originating from pre-Columbian civilizations (Campos et al., 
2019; Brito et al., 2022). With the growing discourse on 
bioeconomy and regional development in the Brazilian 
Amazon, it is vital to explore Amazonian fermentations 
and their potential as tools to drive regional development. 
This exploration should consider not only the economic 
aspects but also the social, cultural, and environmental 
dimensions (Barros and Albernaz, 2014), recognizing 
that all these elements are interconnected and play a 
fundamental role in the well-being of a region.

2. Fermented Products from the Amazon Region

Brazil has a rich cultural diversity, resulting from its 
historical formation that brought together European, 
African and indigenous peoples (Santos  et  al., 2019). 
This diversity is also reflected in culinary traditions and 
in fermentative processes with substrates found in the 
country (Schwan et al., 2017; Jimenez et al., 2022). A recent 

Figure 1. Preparation of tucupi in a community in the city of Santarém, Pará, Brazil. (A) Harvested cassava; (B) Grated and sifted cassava; 
(C, D) Use of tipiti for pressing and extracting the milky liquid; (E, F) Simmering tucupi for 30 to 60 minutes.
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gem is celebrated not only for its flavor but also for its 
nutritional richness, boasting vitamins B and C, along 
with recognized antioxidant properties (Campos et al., 
2019; Brito  et  al., 2022; Jimenez  et  al., 2022). In the 
Amazon region, the annual tucupi production reaches 
approximately 800,000 liters, with Manaus serving as its 
primary hub, facilitated by a network of rural producers 
and artisans who significantly contribute to the local 
economy (Chisté et al., 2007).

The production process of tucupi, illustrated in Figure 3, 
commences with the peeling and grating of bitter cassava 
roots, followed by pressing to extract the milky yellow 
liquid. This liquid is allowed to rest in large clay bowls for 
about three days, where natural fermentation takes place, 
leading to a reduction in cyanide content (Roman, 2022). 
Throughout the fermentation process, the involvement of 
lactic acid bacteria, such as Lactobacillus fermentum and 
Lactobacillus plantarum, is essential, as they convert the 
starch found in cassava into lactic acid, bestowing the final 
product with its characteristic acidic flavor (Brito et al., 
2022; Carboni et al., 2023). Furthermore, aerobic mesophilic 
bacteria, molds and yeasts present in tucupi contribute 
to the complexity of taste and aroma, generating organic 
acids like acetic acid and butyric acid (Costa et al., 2018; 
Campos et al., 2019; Jimenez et al., 2022).

The fermented tucupi (as depicted in Figure 1) resulting 
from this intricate process is a yellow liquid replete with 
starch, vitamins, and minerals. It is distinguished by a 
bitter and pungent flavor, and it is a staple in the cuisine 
of Northern Brazil, particularly in the creation of the 
iconic tacacá (Chisté  et  al., 2007). Beyond its regional 
significance, tucupi has garnered international recognition, 
finding its way into the culinary creations of renowned 
chefs worldwide due to its exotic sensory qualities (Carmo 
Brito et al., 2019). Tucupi boasts notable nutritional value, 
characterized by high levels of carbohydrates, fiber, calcium, 
and iron. Additionally, it serves as a natural source of 
probiotics that promote intestinal flora balance, further 
solidifying its status as an indispensable ingredient in the 
regional cuisine of Northern Brazil (Chacón Mayorga et al., 
2021).

Tucupi fermentation varies across locations due to 
environmental factors, local microbiota, and traditional 
practices (Carvalho et al., 2019). Key elements contributing 
to this variability include: 1) Local microbiota, shaped by 
the region’s flora and fermentation practices, impacting 
flavors and textures. 2) Environmental conditions (climate, 
temperature, humidity, and water quality) in the Amazon 
region influencing unique microorganism strains during 
fermentation. 3) Differences in bitter cassava roots, the 

Figure 2. Stages of Tarubá pulp preparation carried out in a community in the city of Santarém, Pará, Brazil. (A) Harvested mandicoca; 
(B, C) Extracting the liquid part (tucupi) from the mandicoca using tipiti; (D, E) Obtaining the cassava dough and preparing beiju; (F, 
G) Preparing the bed for fermenting the beijus with curuá palm (Orbignya pixuna) leaves and curumim plant; (H) Tarubá dough stored 
in buckets for commercialization.
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Table 1. Information about fermentation products of native and traditional people of the Brazilian Amazon previously described in 
the literature.

Name Substrate Microorganism Process References

Cauim Cassava and 
sweet potato.

Lactobacillus pentosus, L. plantarum, 
Corynebacterium xerose, C. 

amylocolatum, C. vitarumen, Bacillus 
cereus, B. licheniformis, B. pumilus, B. 
circulans and Paenibacillus macerans

The sun-dried puba is 
grated and cooked to 

produce a porridge which, 
after adding chewed sweet 
potato, is left to ferment.

Almeida et al. (2007)

May also 
contain rice, 

corn and 
peanuts

Yakupa Cassava and 
sweet potato.

Lactobacillus fermentum, L. 
plantarum, Weissela cibaria, W. 

confusa, Saccharomyces cerevisiae 
and Pichia kudriavzevii

The sun-dried puba is 
mashed, dissolved in water 
and filtered to remove the 
fibers. The resulting liquid 
is cooked and added with 
grated sweet potato and 

put to ferment.

Freire et al. (2015)

Caxiri Cassava and 
sweet potato.

Bacillus pumilus, Bacillus cereus, 
Bacillus subtilis, Sphingomonas 

sp, Pediococcus acidilactici, 
Saccharomyces cerevisiae, 
Rhodotorula mucilaginosa, 

Pichia membranifaciens, Pichia 
guilliermondii and Cryptococcus 

luteolus

Roasted puba is mixed 
with water and grated 

sweet potato and left to 
ferment.

Santos et al. (2012)

May also 
contain corn.

Miguel et al. (2015)

Tarubá Cassava Lactobacillus plantarum, L.brevis, 
Leuconostoc mesenteroides, Bacillus 

subtilis, Torulaspora delbrueckii, 
Pichia exigua, Candida rugosa, 

C. tropicalis, Pichia kudriavzevii, 
Wickerhamomyces anomalus and C. 

ethanolica

The cassava mass is first 
fermented and then 

diluted in water.

Ramos et al. (2015)

Farinha 
dágua

Cassava Lactobacillus spp, Streptococcus spp, 
Candida castellii, C. ethanolica, C. 

krusei, Pichia membranifaciens and 
Trichosporon asahii

For the production of flour, 
the puba is grounded, 
pressed and roasted.

Chisté and Cohen 
(2011)

Tucupi Cassava Lactobacillus fermentum, L. 
plantarum and low amounts of 

aerobic mesophilic bacteria, molds 
and yeasts.

Manipueira (liquid 
obtained from pressing the 
grated cassava root) is left 
to ferment spontaneously 
for about 24 hours. At the 

end the fermented liquid is 
boiled for 30 to 60 min.

Campos et al. (2019)

Brito et al. (2022)

Queijo do 
Marajó

Milk Weissella sp., Streptococcus sp., 
Lactococcus sp., Leuconostoc sp, 

Pediococcus sp, Lactobacillus sp, and 
Enterococcus sp

Buffalo milk is 
spontaneously fermented 

to produce a curd that 
is mixed with cream or 
butter and then cooked 

until it produces a 
homogeneous texture.

Figueiredo et al. (2018)

Cruz et al. (2020)

Calugi Cassava, corn 
and sweet 

potato

Corynebacterium variabile, 
Lactobacillus paracasei, L. plantarum, 

L. casei, Bacillus cereus, B. subtilis, 
Streptomyces sp, Enterobacter 

cloacae, Streptococcus parasanguis, 
Streptococcus salivarius, Weissella 

cibaria and Weissella confusa.

Cassava roots are grated 
and squeezed to produce 
a wet mass that is cooked 
together with corn flour 
and water. After cooling, 
chewed sweet potato is 

added and left to ferment.

Miguel et al. (2015)

Tiquira Cassava Aspergillus niger, A. flavus, Rhizopus 
oryzae, Saccharomyces cerevisia.

The beiju (cassava bread) is 
saccharified and fermented 

simultaneously by the 
action of native fungi and 

later distilled

Savadogo et al. (2016)

Ribeiro et al. (2019)
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raw material, affecting tucupi quality and organoleptic 
characteristics. 4) Variation in traditional processing 
techniques among communities, affecting the sensory 
profile of tucupi through differences in juice extraction, 
fermentation time, and the use of natural additives. 
It is important to highlight that tucupi’s variability is not 
necessarily a disadvantage but rather a characteristic that 
enriches local cuisine. Each community in the Amazon 
region can produce its unique tucupi with distinct flavors 
and aromas (Silva et al., 2023), contributing to the culinary 
diversity of the region.

Industrial applications of tucupi are primarily found 
on a regional scale, and its industrial application is still 
emerging (Costa et al., 2018). However, there are interesting 
initiatives in the literature to explore the potential of tucupi 
in broader industrial applications. For instance, Costa et al. 
(2017) aimed to develop an industrial product using tucupi 
as the main ingredient, preparing and evaluating the 
sensory and rheological characteristics of a creamy tucupi 
paste. The research results showed that all tucupi paste 
formulations received good sensory acceptance (>70%). 
The concentrated creamy tucupi paste (10%) had similar 
color and acidity to liquid tucupi, and 99% of consumers 
expressed an intention to purchase. The authors concluded 
that the creamy tucupi paste presented itself as a promising 
alternative to traditional tucupi.

Pires (2015) optimized various process parameters for 
tucupi powder production using the spray dryer method. 
The physicochemical properties of the resulting tucupi 
powder, along with its remarkable water solubility, 
supported the claim that tucupi powder production through 

the spray dryer method represents a promising perspective 
for the conservation and commercialization of this product. 
This was confirmed by Costa et al. (2018), who developed 
a tucupi powder seasoning and assessed the sensory 
acceptability of the product. The acceptability index was 
80% for overall impression, and the purchase intent test 
indicated that 94% of the judges would be willing to buy 
the product. Similar to the production of a creamy tucupi 
paste, the optimization of the tucupi powder production 
process plays a crucial role. This optimization is critical 
as it can open up new market opportunities by increasing 
product shelf life, reducing weight and volume, which, in 
turn, significantly contributes to lowering transportation 
and storage costs, making product distribution to distant 
regions more efficient (Pires, 2015).

4. Caxiri

Caxiri is a fermented alcoholic beverage of pre-
Columbian indigenous origin from the Amazon region, 
deeply rooted in local culture. Its production is carried 
out through the fermentation of cassava, which may 
vary according to the region and ethnic groups involved 
(Santos et al., 2012; Schwan et al., 2017). Communities 
such as Belterra, Alter do Chão, Marajó, Barcelos, and 
Manacapuru are recognized for their large-scale production, 
although it is difficult to estimate the exact volume due 
to seasonal and production factors. It is common for 
these communities to produce caxiri, as the beverage 
represents an important economic and cultural aspect 
of the region, being considered a sacred drink for some 
indigenous tribes in the Amazon and is often consumed 
in ceremonies and rituals as a form of celebration and 
communion among members of the tribe (Miguel et al., 
2015; Chacón Mayorga et al., 2021).

The caxiri production process (Figure 4) begins with 
the collection of cassava, which is washed, peeled, and 
grated. Then, the mass is placed in a sieve and pressed 
to extract the liquid. This liquid is mixed with water and 
left to settle. After this, the clear liquid is strained and 
transferred to a clay pot, where fermentation occurs with 
the addition of fermenting microorganisms, usually a 
combination of bacteria and yeasts naturally present in 
human saliva, and saccharifying amylases (Santos et al., 
2012). During the fermentation process, the sugars present 
in the liquid are converted into alcohol and lactic acid 
by the microorganisms, including wild yeasts such as 
Saccharomyces cerevisiae and Candida sp., as well as lactic 
acid bacteria such as Lactobacillus and Pediococcus, and 
acetic acid bacteria such as Acetobacter sp. (Miguel et al., 
2015). These microorganisms act synergistically to ferment 
the sugars present in the cassava broth. The process involves 
the saccharification of starch, the conversion of sugars 
into alcohol by yeasts, and the production of lactic acid 
by lactic acid bacteria, which helps to control the pH of 
the medium and a suitable environment for yeast growth 
(Miguel et al., 2015; Tamang and Lama, 2022; Carboni et al., 
2023). The flavor/aroma of caxiri is described as slightly 
bitter and sour, with a touch of sweetness and an earthy 
taste. Visually, caxiri is a clear drink, with a yellowish or 

Figure 3. Flowchart showing the production of tucupi by the 
traditional process
 Source: Adapted from Brito et al. (2022).
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whitish color, and may have a white or beige foam on the 
surface (Santos et al., 2012).

It is well known that the potential industrial use of caxiri 
would face significant challenges due to the traditional 
and artisanal nature of the manufacturing process 
(Schwan  et  al., 2017), which differs substantially from 
large-scale production practices. However, industrialization 
is not impossible but requires special considerations: 
process standardization, quality control, production 
technology, preservation of authenticity, and legal and 
regulatory issues (Gonçalves et al., 2022. In summary, since 
the traditional caxiri manufacturing process takes into 
account specific fermentation practices, local ingredients, 
and even community involvement (Chacón Mayorga et al., 
2021), the degradation of caxiri during industrialization 
can be a real challenge. Therefore, the industrialization 
of caxiri should be approached with caution and respect 
for local culture and traditions, making it more viable to 
establish partnerships with indigenous communities for 
small-scale production.

5. Fermented Products from the Amazon Region: 
Potential for the Food Industry and Social 
Technology

The Amazon region has a rich history of indigenous 
innovation and wisdom in the development of unique and 
highly valued food products, and two notable examples 
of this success are guaraná and chocolate. Indigenous 
peoples of the Amazon were the first to cultivate guaraná 
(Paullinia cupana), a plant rich in caffeine. Indigenous 
knowledge of guaraná cultivation and processing led to a 

highly valued energy drink, which was later successfully 
incorporated into the global beverage industry (Figueroa, 
2016). The importance of guaraná is evident by its presence 
on supermarket shelves in the form of soft drinks and 
energy supplements, and its production is a fundamental 
part of the local economy in the Amazon (Filoche and 
Pinton, 2014).

Similarly, the history of chocolate also has deep roots 
in the indigenous traditions of the Amazon region. Pre-
Columbian indigenous peoples, including the Mayans 
and Aztecs, developed cocoa processing techniques that 
turned the seeds into a paste enjoyed as a dark and bitter 
beverage (Coq-Huelva et al., 2017). This tradition was later 
passed on to European colonizers who refined the chocolate 
production process and popularized it worldwide (Foster 
and Cordell, 1992). These products not only exemplify the 
innovative capacity of indigenous communities in the 
Amazon but also demonstrate the potential of fermented 
products from the region for the global market.

Products from the Amazon region have the potential 
for widespread use in various applications such as 
condiments, beverages, food preservation, and food 
additives (Abreu et al., 2020; Prando et al., 2023; Bogas et al., 
2022). Furthermore, it is known that products like tucupi 
and jambu are already widely used as condiments in local 
cuisine and have the potential for global consumption 
(Costa et al., 2017). Finally, the fermentation of other native 
fruits such as cupuaçu, buriti, taperebá, bacuri, camu-
camu, and wild bee honey can be used for the large-scale 
production of fruit wines, beers, and vinegars (Dias et al., 
2003; Pelais et al., 2008; Costa et al., 2018; Gonçalves et al., 
2022). These examples highlight the remarkable ability 
of indigenous communities in the Amazon to develop 
unique and highly valued food products. The appreciation 
of these indigenous fermented products can not only boost 
the regional economy but also promote the preservation 
of traditional practices and sustainability (Garrett et al., 
2021). Table  2 describes the environmental, economic, 
and social advantages of the industrial production of 
fermented products from the Amazon region.

On the other hand, in recent years, social technology 
has emerged as an alternative for promoting sustainable 
development in various regions of the world (Duque 
and Valadão, 2017; Souza and Pozzebon, 2020). In the 
Brazilian context, there are several initiatives based on 
social technologies, ranging from the production of organic 
food in small rural properties to the implementation 
of water treatment and basic sanitation systems in 
needy communities (Oliveira  et  al., 2022). Taking the 
production of tucupi as an example of social technology 
in an Amazonian community, this process would mainly 
involve family farmers who cultivate cassava, the primary 
ingredient of tucupi. Production would take place on small 
rural properties or community associations, and products 
would be sold at local fairs, cooperatives, and even online, 
allowing access to distant markets. This social approach 
has the potential to valorize family farming and protect 
the region’s natural resources (Silva et al., 2022).

The sustainable production of native fermented products 
in the Amazon can bring many benefits. Firstly, it helps 
preserve the region’s rich biodiversity, as sustainable 

Figure 4. Flowchart showing the production of Caxiri by the 
traditional process.
Source: Adapted from Santos et al. (2012).
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practices protect the natural resources used in these 
products (Lima et al., 2022). Moreover, by valuing native 
ingredients and traditional knowledge, sustainable 
production empowers local communities and enhances 
their economic well-being. It also promotes cultural pride 
among indigenous and local populations, highlighting 
the significance of their heritage on the global stage 
(Oliveira et al., 2022). However, the success of sustainable 
production depends on effective government support, 
regulations, and quality control (Schwab and Freitas, 2016). 
This involvement is essential to ensure the adoption of 
sustainable practices, product compliance with hygiene 
and standardization standards, and access to markets 
beyond their local communities. In summary, sustainable 
production of native fermented products in the Amazon 
region offers an opportunity to balance economic growth 
with environmental conservation, cultural preservation, 
and the strengthening of local communities (Silva and 
Begossi, 2009).

6. Conclusion

In conclusion, this review explores how fermentations 
in the Amazon region can boost economic and social 
development. We compared two approaches: industrial 
technology and social technology. It’s clear that the 
Amazon boasts a rich culinary and cultural diversity with 
ancient food fermentation traditions that remain relatively 
unknown to the world.

We’ve found that both industrial and social technologies 
have their roles to play. Industrial methods are essential 
for large-scale production and delivering standardized 
products to the global market. Meanwhile, social technology 
is vital for preserving cultural traditions, empowering local 
communities, promoting social inclusion, and reducing 
inequalities. As global demand for natural and culturally 
rich products grows, the Amazon stands as an untapped 
resource. By understanding and respecting indigenous 
techniques and working closely with local communities, 
we can replicate the success of guaraná and chocolate, 

illustrating how Amazonian fermented products can drive 
innovation and growth in the food industry.
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