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1. Introduction

The use of natural products as sources of new drugs has 
become a valuable resource for humankind over the years. 
Plants exhibit a multitude of applications and advantages 
that are instrumental in people healing from physical 
ailments and, for this reason, have raised scientific interest 

as targets in the investigation of their biotechnological 
potential (Hikal et al., 2017).

The genus Helicteres (Malvaceae senso lato) comprises 
indigenous species found in the Northeast and Southeast 
regions of Brazil. Phytochemical and pharmacological 
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Resumo
O tilirosídeo é um flavonóide glicosídico presente em muitas espécies de plantas, incluindo Helicteres velutina K. Schum 
(Malvaceae sensu lato), conhecida no Brasil como “pitó”. Esta molécula mostrou ter muitas atividades biológicas, 
porém nenhum estudo foi realizado para investigar a toxicidade dessa substância. O presente trabalho teve como 
objetivo avaliar a possível toxicidade celular in silico, in vitro e ex-vivo do kaempferol-3-O-β-D- (6 ”-Ep-coumaroil) 
glucopiranosídeo (tilirosídeo), por meio de análises de estrutura química, toxicidade avaliação e propriedades 
bioativas preditivas, utilizando amostras humanas para testes in vitro e ex-vivo. A análise in silico sugere que 
o tilirosídeo exibe bom índice de absorção para penetrar nas membranas biológicas. Além disso, apresentou 
considerável potencial de proteção celular contra os radicais livres e com atividades anticarcinogênica, antioxidante, 
antineoplásica, antiinflamatória, anti-hemorrágica e antitrombótica. A avaliação dos efeitos hemolíticos e 
genotóxicos do tilirosídeo mostrou baixas taxas de hemólise nas hemácias e ausência de toxicidade em células 
da mucosa oral. Os dados obtidos indicam que esta molécula pode possuir uma abordagem terapêutica promissora 
como uma possível nova droga com potencial biotecnológico.
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polar fractions were chromatographed in Sephadex (LH‑20), 
employing methanol and chloroform:methanol (1:1) as 
the mobile phase for isolation of tiliroside. Tiliroside was 
used in the experiments described in this study, more 
information on the identified, obtention procedures and 
structural determination is described in a previous study 
(Fernandes et al., 2019).

2.3. In silico analysis

The chemical structure of tiliroside was obtained 
through Pubchem® (PUBCHEM, 2004). The toxicity 
assessment used the AdmetSAR® software (ADMETSAR, 
2012), where the following parameters were analyzed: Gene 
Inhibition (GI), Ames Toxicity (AT), Potential Carginogens 
(C), Acute Oral Toxicity (AOT) and Carcinogenicity (Car). 
The predictive bioactive properties were determined by 
the software PASS online® (PASS ONLINE, 2014), which 
predicts a compound’s activity spectrum as probable 
activity (Pa) or probable inactivity (Pi). The values of Pa 
and Pi vary from 0.000 to 1.000. When Pa is greater than 
Pi, the compound is thought to be experimentally active. Pa 
greater than 0.7 (or Pa > 0.7) and Pi less than 0.3 (or Pi < 0.3) 
indicate great probability of pharmacological potential, 
reflecting considerable experimental pharmacological 
effects (Rakib et al., 2019; Ahmad et al., 2016).

2.4. Human erythrocytes and oral mucosa cells collection

The assays were carried out according to the Ethics Code 
of the World Medical Association and were approved by the 
Ethics Committee of the University Center of Patos (protocol 
number: 3.621.284). The blood samples (A, B and O) and 
smear samples from the oral mucosa were obtained from 
healthy young adults in order to generate eukaryotic cell 
pellets. The participants comprised Biological Sciences and 
Dental students from the Federal University of Campina 
Grande (campus Patos – PB), healthy young adults of both 
sexes between 18 and 40 years of age.

2.5. In vitro analysis

2.5.1. Hemolytic activity

Human blood aliquots (types A, B and O) were mixed 
with NaCl 0.9% (1:30) and centrifuged at 2500 rpm for 
5 min for separation of the red blood cells (RBC). This 
procedure was repeated two more times and the sediment 
from the last centrifuge was resuspended in NaCl 0.9% to 
obtain a 0.5% suspension free of white cells and platelets.

Tiliroside was added to 2 mL of the RBC suspension at 
different concentrations (50, 100, 500 and 1000 µg/mL) 
in distinct preparations to reach a final volume of 2 mL. 
The RBC suspension was used as a negative control (0% 
hemolysis) and a RBC suspension with 1%Triton X-100 was 
used as positive control (100% hemolysis). The samples 
were incubated for 1 h at 22 ± 2 ºC with slow and constant 
agitation (100 rpm) following centrifugation at 2.500 rpm 
for 5 min. Hemolysis was quantified by spectrophotometry 
at its absorbance maximum wavelength, 540 nm 
(Rangel et al., 1997). The tests were carried out in triplicate 
and the results were expressed as percentages representing 
the arithmetic average of three measurements.

studies have indicated that this genus is rich in constituents 
with diverse biological activities, including antioxidant, 
anticarcinogenic, antimicrobial, antiplasmodial, 
antinociceptive and hepatoprotective in H. isora (Kumar 
and Singh, 2014); antihypertensive and antiulcerogenic 
in H. sacarolha (Balogun  et  al., 2014), and analgesic, 
anti‑inflammatory, antimicrobial and anticarcinogenic 
in H. angustifólia (Huang  et  al., 2013; Fernandes  et  al., 
2020a). The species Helicteres velutina K. Schum, popularly 
known as “Pitó”, is a plant used as an insect repellent by 
the Pankararé indians in Bahia state/Brazil. Recent studies 
have shown the larvicidal activity of flavonoids from 
this species against Aedes aegypti (Santos  et  al., 2012; 
Fernandes et al., 2020b).

Tiliroside (Kaempferol-3-O-β-D-(6”-E-p-coumaryl) 
glucopyranoside), a glycosidic flavonoid present in 
specific plant parts (fruits, leaves and roots), is one of 
the major bioactive compounds of Helicteres velutina 
(Grochowski et al., 2018; Fernandes et al., 2019) known 
to exert various effects such as antibacterial and 
larvicidal, antithrombotic (Han et al., 2012), anticoagulant 
(Gevrenova  et  al., 2013), hepatoprotective (Goto  et  al., 
2012a), anti-inflammatory (Jin et al., 2016), antiobesity 
and antidiabetic (Goto  et  al., 2012b), and anticancer 
(Lu et al., 2009).

In this study, the potential toxicity and pharmacokinetic 
of tiliroside was investigated in silico, in vitro and ex vivo 
using assays with chemical structure analysis to predict 
bioactive properties, and with toxicological methods using 
anucleated (hemolysis in ABO system) and nucleated (oral 
mucosa toxicity) human cells.

2. Material and Methods

2.1. Plant material

The aerial parts of H. velutina were collected in February 
2015, in Jeremoabo (Bahia, State, Brazil) coordinates are 
09° 44’34.6” S and 38° 52’20.4” W, were identified by 
Prof. Adilva de Souza Conceição (Sate University of Bahia - 
UNEB). A voucher specimen, registered under the number 
28709-1, was deposited in the Herbarium of the Federal 
University of Bahia (HUNEB, Paulo Afonso Collection). 
This study has been registered in the National System of 
Genetic Resource Management and Associated Traditional 
Knowledge (SisGen—A568B8A).

2.2. Preparation of sample

The plant material H. velutina was oven dried at 40 °C, 
and subsequently powdered and macerated with 95% 
ethanol (5 L) for 72 hours. The extract solution was dried 
under reduced pressure at 40 °C yielding crude ethanolic 
extracts (CEEs). Afterwards it was subjected to separation 
by liquid-liquid chromatography using hexane, chloroform 
(CHCl3), ethyl acetate and n-butanol, which resulted in 
the respective fractions in addition to the hydroalcoholic 
fraction.

The dichloromethane fraction was chromatographed 
in flash silica using petroleum ether, dichloromethane and 
methanol individually or in binary mixtures. The resulting 
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2.6. Ex-vivo analysis

2.6.1. Evaluation of the genotoxic effects on oral mucosa 
cells

Epithelial cells were obtained from the buccal mucosa of 
both sides by cytobrush sampling. According to Kassie et al. 
(2001), the cytobrush (endocervical sample/cell collector) is 
the most adequate tool to collect exfoliated cells of the oral 
mucosa. The cells were placed in a tube containing 5 mL 
0.9% NaCl, which is considered a suitable cell preservation 
medium before the slide preparation. Control cells were 
divided into two groups: positive control – cells treated 
with hydrogen peroxide (0.0005%), and negative control 
– cells not exposed to any treatment.

The cell samples were washed twice in saline solution 
and then centrifuged for 10 min at 1.500 rpm and kept in 5 
mL of saline. The supernatant was discarded. After the third 
wash they were exposed ex-vivo to tiliroside at different 
concentrations (50, 100, 500 and 1000 µg/mL) for 30 min. 
Next, the cells were centrifuged and the supernatant was 
once again removed. The cells were homogenized in a 
vortex mixer and placed on the slides. They were placed 
on three slides to each concentrations analysed, dried at 
room temperature and fixed in methanol: acetic acid (3:1) 
for 15 min (Thomas et al., 2008). After fixation, the slides 
were kept at room temperature for 12 h and later immersed 
in distilled water for 1 min and stained in 2% Giemsa for 
optical microscopy observation (Gabriel et al., 2006). Cell 
toxicity can be assessed through the presence of cellular 
indicators such as micronuclei, bi-nucleation, karyolysis, 
karyorrhexis, and macronuclei (Sponchiado et al., 2016). 
Approximately 1000 cells were analyzed per slide, and 
the data were expressed as percentages representing the 
arithmetic average of three measurements.

2.7. Statistical analysis

The experiments were carried out in triplicate and the 
results were expressed as percentages representing the 
arithmetic average of three measurements. The data were 
analyzed using One-way Analysis of Variance (ANOVA) and 
the Bonferroni post hoc test. The tests were performed with 
the GraphPadPrism software (version 6.0 for Windows, San 
Diego, CA-USA). Differences were considered significant 
when P ≤ 0.05.

3. Results and Discussion

The flavonoid tiliroside, isolated from H. velutina 
(Figure 1), has a molar mass of 594.52 g/mol and 43 total 
atoms.

The in silico analysis determined the theoretical 
physico‑chemical properties of tiliroside, indicating that the 
flavonoid molecule has theoretical aspect of bioavailability 
such as lipophilicity coefficient (LogP: 2.49), aqueous 
solubility coefficient (LogS: - 3.09) and the topological polar 
surface area (TPSA: 216.58 Å2). Tha data suggest that the 
molecule has notable absorption index when penetrating 
biological membranes (LogP: ≤ 5.00, and LogS: ≤ - 4.00), 
showing a polar surface area greater than the parameter 

adopted in the indication of good permeability in TPSA 
membrane, i.e. ≤ 140 Å2 (Veber et al., 2002).

Recent studies suggest that flavonoids alter the 
organization of biomembranes, which can lead to 
changes in membrane protein function (Tsuchiya, 2015; 
Ingólfsson et al., 2014; Selvaraj et al., 2015). Such information 
reinforces the absorption capacity and permeability of 
membranes described for tiliroside, expressed in LogS, 
LogP and TPSA values. They also indicate viability for 
other in vivo administration routes of this molecule, such 
as intramuscular, cutaneous and intravenous.

In the predictive analysis of tiliroside toxicity, it was 
evaluated whether the molecule would induce or inhibit 
mutagenicity. The gene inhibition (GI: 0.752) and AMES 
test (AT: 0.574) revealed that tiliroside does not inhibit 
gene to expressed, while the carcinogens (C: 0.965) and 
carcinogenicity (Car: 0.677) showed that the molecule is not 
carcinogenic. When the parameters of toxicity analysis is 
(> 0.500) indicate probability of pharmacological potential 
(Rakib et al., 2019; Ahmad et al., 2016). In the acute oral 
toxicity (AOT: 0.404), the molecule was classified as 
category III, with LD50 values higher than 500 mg/kg and 
lower than 5000 mg/kg (Drwal et al., 2014), as showed 
in (Table 1).

Tiliroside’s antigenotoxic activity is based on its ability 
to protect the cell against oxidative stress. Considering 
the performance indicated by the toxicity parameters 
(C, AOT and Car), showed that tiliroside has potential 
against damage in cells and DNA, also it suggested that 
flavonoid molecule exhibits marked cellular protection 
against free radicals. However, the in silico approach for 
predicting the antigenotoxic effect of flavonoids must 
be further investigated by in vitro and in vivo studies, as 
these molecules are subject to metabolization, involving 
a wide range of reactions such as deglycosylation, 

Figure 1. Kaempferol-3-O-β-D-(6”-E-p-coumaryl) glucopyranoside 
– tiliroside.

Table 1. Toxicity analysis in silico of tiliroside.

Parameter

GI Non-inhibitor 0.752

AT AMES toxic 0.574

C Non-carcinogens 0.965

Car Non-required 0.677

AOT III 0.404

GI: Gene inhibition; AT: AMEStest; C: Carcinogens; Car: Carcinogenicity; 
AOT: Acute oral toxicity.
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glucuronidation, sulfation, methylation, ring fission that 
modify the bioavailability of the molecule (Erlund, 2004).

The bioactive properties revealed by the predictive 
analysis on tiliroside showed promising results for the 
activation probability (Pa) in relation to the inactivation 
probability values (Pi). It also exhibited greater probability 
of having a wide range of biological activities, including 
anticarcinogenic (Pa: 0.986; Pi: 0.001), antioxidant (Pa: 
0.910; Pi: 0.003), antineoplastic (Pa: 0.837; Pi: 0.008), 
anti-inflammatory (Pa: 0.759; Pi: 0.009), anti-hemorrhagic 
(Pa: 0.736; Pi: 0.002) and antithrombotic (Pa: 0.666; 
Pi: 0.010) (Table 2).

According to Luca  et  al. (2016), flavonoids are 
molecules with an important biological value due to their 
potential pharmacological activities (e.g. antioxidant, 
anti‑inflammatory and immunological). They found a 
correlation between food consumption and some illnesses, 
since a diet rich in flavonoids has been associated with 
reduced risks of several chronic diseases.

The flavonoid tiliroside showed an inhibitory effect on 
the growth of instinct, liver and skin cancer cells on in vitro 
assays (Rao et al., 2007). The results of the in silico analysis 
of the present study show the possible beneficial effects 

of tiliroside on several pathological processes, indicating 
that molecule has bioactivity against cancer cells and 
low levels of toxicity as shown by the previous findings.

The sensibility measurement of human RBC at different 
concentrations of tiliroside obtained from H.  velutina 
suggests low cytotoxic effects. The percentage of hemolysis 
is characterized as low when between 0 and 40%, as 
moderate when between 40 and 80%, and as high when 
above 80% (Rangel et al., 1997). Tiliroside exhibited low 
levels of hemolysis in all concentrations tested. In particular, 
at the highest concentration (1000 µg/mL), the hemolytic 
rate for blood types O, B and A was < 29%, < 28%, and < 20%, 
respectively. Therefore, this compound possesses the rate 
of lysed RBC in the following order: A< B< O (Figure 2).

The results obtained in the hemolysis assay showed 
a small difference between the tiliroside and the human 
RBC types (A, B and O). The system ABO is characterized 
by the antigenic portion, with the presence of specific 
monosaccharides on the RBC membrane surface: Serum 
type A (N-acetylgalactosamine), serum type B (D-galactose), 
serum type AB (possesses both antigens) and serum type O 
(has no antigens) (Van Ginkel and Sevanian, 1994). Lower 
hemolysis was observed after exposure to tiliroside in 
type A blood < 20%, suggesting a better interaction with 
N-acetylgalactosamine, which was responsible for the less 
cytotoxic effect at the highest concentration. The hemolysis 
in the RBC, after exposure to different concentrations of 
test substances that promote cellular lysis, is the ideal 
measurement to reveal the cytotoxic potential of the 
natural products tested in this cell model. High levels of 
cytotoxicity can be a great disadvantage for the use of 
products, such as phytoconstituents, as they may interfere 
with the biological effects (Hooijberg et al., 1997).

Studies developed by Al Muqarrabun and Ahmat (2015) 
evidenced that the most common class of secondary 
metabolites of the genus Helicteres are flavonoids, which 
are characterized by low hemolysis activity (values < 50%). 
In addition, the results described in the in silico analysis for 
bioactive properties anti-hemorrhagic (Pa: 0.736; Pi: 0.002) 
and anti-thrombotic (Pa: 0.666; Pi: 0.010) confirms the 
protective influence of tiliroside on RBC. Therefore, the 

Figure 2. Cytotoxic effect of tiliroside (H. velutina) against RBC; (C-) Negative control (erythrocytes 0.5%), (C+) Positive control (1% Triton 
X-100). P < 0.05 (*), P < 0.01(**) and P < 0.001 (***) versus positive control.

Table 2. Bioactive properties of tiliroside.

Pa Pi

0.759 0.009 Antiinflammatory

0.736 0.002 Antihemorrhagic

0.666 0.010 Antithrombotic

0.986 0.001 Anticarcinogenic

0.910 0.003 Antioxidant

0.837 0.008 Antineoplastic

0.763 0.004 Antimutagenic

0.790 0.009 Apoptosis agonist

0.340 0.015 Apoptosis antagonista

Pa: Probability active; Pi: Probability inactive.
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predictive in silico analysis and the in vitro study reaffirm 
the molecule performance against its bioactivity and less 
cytotoxic effect in human anucleated cells such as RBC, 
where the oxidation and lysis mechanisms are more 
sensitive and the molecular interaction is less complex.

Genotoxicity refers to the ability of chemical agents to 
damage genetic information in a cell. Cells have developed 
several mechanisms for repairing DNA damage, but if the 
lesions in the genetic material are not adjusted, they lead 
to genetic mutations that manifest themselves in a slew 
of genetic diseases that have common traits, most notably 
the development of cancer (Clancy, 2008; Jackson and 
Bartek, 2009; Swift and Golsteyn, 2014).

Cells containing macronuclei due to toxic exposures 
show nuclear hyperactivity that increases the diameter 
of the nucleus, causing cell division, which results in 
binucleation (Popova et al., 2007). Moreover, alterations 
involving karyolysis and karyorrhexis are observed when 
the cell is induced to undergo necrosis/apoptosis. In the 
karyorrhexis, the chromatin is fragmented and the nuclear 
membrane disappears, while in the karyolysis, there is a 
complete dissolution of the nucleus with loss of nuclear 
material. Hence, the more intense these alterations are 
expressed, the more severe is the pathological condition 
of the cells/tissues (Antonio et al., 2017; Obeng, 2021).

The ex vivo method for detecting genotoxicity in mucosa 
oral evaluates changes in DNA caused by test substances 
that shows cellular indicators such as: micronucleus, 
binucleation, karyolysis, karyorrhexis and macronucleus, 
were found in the evaluated slides (Figure 3).

In the genotoxicity test of oral mucosa cells, the 
occurrence of cell changes is consistent with toxic 
damage. These findings were more typically present in the 
positive control group exposed to the H2O2 solution. The 
groups treated with different concentrations of tiliroside 
exhibited few cellular alterations when compared to the 

positive control, but showed similar results to those of 
the negative control group that does not exhibit genotoxic 
effects (Table 3).

The data reveal that tiliroside exerted low toxicity 
effects at the highest concentrations (500 and 1000 µg / 
mL), with > 80% of normal cells different from the results 
in the positive control group (H2O2), < 90% of normal 
cells similar to the reported in negative control group. 
The exposure to 1000 µg/mL of tiliroside had the lowest 
alteration potential, showing >90% of normal cells, although 
some cellular changes were detected such as binucleation, 
macronucleus, karyolysis, and karyorrhexis. This set of 
cellular variations was lower than that described in the 
positive control (H2O2), suggesting a safe threshold of low 
toxicity with respect to concentration and time of exposure 
to the test substance.

The cellular changes mentioned in the genotoxicity 
assay reflect the beginning of induction of the physiological 
cell reactivity when exposed to 1000 µg/mL of tiliroside. 
These results corroborate the findings described in the 
in silico analysis that shows the tiliroside as predictive 
potential inducing apoptosis (Pa: 0.790; Pi: 0.009). This 
was attested by a lesser description of the inhibitory 
activity of apoptosis (Pa: 0.340; Pi: 0.015).

Studies developed by Jain  et  al. (2014) described 
that phenolic compounds extracted from H. isora dried 
fruits displayed high antioxidant and antitumor effects, 
demonstrating the importance of plants as a considerable 
source of natural phytoconstituents and antioxidant 
supplements. This information corroborates the results 
of this study, since the genus Helicteres is rich in phenolic 
compounds and flavonoids, exhibit low toxicity, antioxidant, 
anti-inflammatory and antitumor activities. However, 
specific data about the effects of tiliroside on genotoxicity 
in human oral mucosa have not been found in the literature.

Figure 3. Photomicrography of exfoliated oral mucosa cells with: (A) karyorrhexis; (B) karyolysis; (C) micronucleus; (D) binucleation; 
and (E) macronucleus. Magnification X1000.
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4. Conclusion

The in silico analysis suggests that tiliroside isolated 
from H. velutina has a significant absorption index 
when penetrating biological membranes. In addition, 
it also reveals potential anticarcinogenic, antioxidant, 
antineoplastic, anti-inflammatory, anti-hemorrhagic 
and antithrombotic activities. The in vitro and ex vivo 
assessment of the hemolytic and genotoxic effects showed 
low hemolysis rates in RBC and absence of cellular toxicity 
in the oral mucosa cells. The reduced cytotoxic activity is 
indicative of the safety of the concentrations used and 
demonstrates different ways of interaction of the tested 
substances with the analyzed cells. Therefore, the data 
obtained in the present study suggest that tiliroside could 
be a promising therapeutic approach for the development 
of a new drug, with potential biotechnological applications.
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