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Abstract

Bovine pericardium (BP) has been used as a biomaterial for several decades in many medical applications 
particularly due to its mechanical properties and the high collagen content. In the acellular form it favors faster 
tissue repair, providing a three-dimensional support for cellular and vascular events observed during tissue 
repair and due, to a low elastin content, may favor its use as a breast implant cover, resulting in a low possibility 
of contracture of the biomaterial, preventing the appearance of irregularities during the reconstruction process. 
Thus, the aim of this study was to evaluate, histomorphologically, the behavior of acellularized bovine pericardium 
(ABP) as a mammary implant cover in rats. For this purpose, 16 animals were divided into two groups, with eight 
animals at each biological point: 7 and 15 days after surgery. Of the 16 animals, 32 specimens were obtained: 
16 in the experimental group (EG) and 16 in the control group (CG). Throughout this study, none of the studied 
groups had postoperative complications. Results: The histomorphological results showed, in the two biological 
points, both in the EG and in the CG, chronic inflammatory infiltrate, leukocyte fibrin exudate, formation of 
granulation tissue and deposition of collagen fibers, more evident in the EG, regressive along the biological 
points. At 15 days, the implanted ABP showed initial biointegration with the fibrous capsule and surrounding 
tissues of the recipient bed. Conclusion: These results indicate that the due to the observed favorable tissue 
response ABP may be of potential use as a breast implant cover.
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Resumo

O pericárdio bovino (PB) tem sido utilizado como biomaterial há várias décadas em diversas aplicações médicas, 
principalmente devido às suas propriedades mecânicas e ao alto teor de colágeno. Na forma acelular, favorece a 
reparação tecidual mais rápida, dando um suporte tridimensional para eventos celulares e vasculares observados 
durante a reparação tecidual e devido ao baixo teor de elastina, pode favorecer seu uso como cobertura de 
implantes mamários, resultando em baixa possibilidade de contratura do biomaterial, evitando o aparecimento de 
irregularidades durante o processo de reconstrução. Assim, o objetivo deste estudo foi avaliar, histomorfologicamente, 
o comportamento do pericárdio bovino acelularizado (PBA) como cobertura de implante mamário em ratos.
Dezesseis animais foram divididos em dois grupos, com oito animais em cada ponto biológico: 7 e 15 dias após
a cirurgia. Dos 16 animais, 32 espécimes foram obtidos: 16 no grupo experimental (GE) e 16 no grupo controle
(GC). Ao longo deste estudo, nenhum dos grupos estudados apresentou complicações pós-operatórias. Os achados 
histomorfológicos mostraram, nos dois pontos biológicos, tanto no GE quanto no GC, infiltrado inflamatório crônico, 
exsudato fibrino leucocitário, formação de tecido de granulação e deposição de fibras colágenas, mais evidentes 
no GE, regressivas ao longo dos pontos biológicos. Aos 15 dias, o PBA implantado apresentou biointegração inicial 
com a cápsula fibrosa e tecidos circundantes do leito receptor. Esses resultados indicam que, devido à resposta
favorável do tecido observado, o PBA pode ser de uso potencial como cobertura de implante mamário.

Palavras-chave: biomateriais, colágeno, implante mamário, pericárdio, ratos.
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Alternatively, the use of acellularized bovine pericardium 
(ABP) in silicone coverage has been researched.

The BP in its native form has been used for years as a 
biomaterial, mainly in the cardiovascular area, due to its 
mechanical and biological properties resulting from its high 
content of type I collagen. In its acellular form, it mimics 
the ECM of the host tissue, especially in the which refers 
to their three-dimensional organization and chemical 
composition. Furthermore, it presents itself as a material 
with wide availability and accessibility, which makes it a 
biomaterial with characteristics that favor wide use in the 
biomedical area (Soares et al., 2021; Braile-Sternieri et al., 
2020; Mathapati et al., 2013; Goissis et al., 2011). The 
acellularization process is a procedure that removes cellular 
components from tissues without altering the integrity of 
the remaining ECM (Crapo et al., 2011), decreasing tissue 
antigenicity due to the elimination of cellular debris and 
soluble components.

The use of ABP was described in breast reconstruction 
surgery with implants by Mofid et al. (2012), using a 
biomaterial with structural characteristics similar to 
ADMs, but with greater ease of obtaining. And since then, 
it has been used as an alternative to ADM, due to the 
decrease in postoperative complications; faster healing, 
as it provides a suitable three-dimensional framework for 
tissue regeneration; and for presenting better functional 
and aesthetic results (Mallikarjuna et al., 2017).

The ABP has a lower elastin content (2.98%) when 
compared to ADMs (5-7%) (Giuliani et al., 2014) and has a 
high amount of collagen, which enables faster tissue repair 
(Castagnetti et al., 2020; Mallikarjuna et al., 2017; Urban et al., 
2016) and may be beneficial in preventing irregularities 
during the breast expansion process by covering part of 
the soft tissues. Given the above, the objective of this study 
was to evaluate, histomorphologically, the use of ABP in the 
coverage of breast implants on the back of rats.

2. Material and Methods

2.1. ABP matrix

ABP matrices with dimensions of 3.0 x 3.5 cm that were 
previously treated in a phosphate buffer solution with pH in the 
range of 6.5 to 8.5 containing: a) Glycerol (>4 M); b) 0.1% dodecyl 
sulfate (SDS), for 72 hours and c) Triton X-100, in the presence 
of EDTA with 0,005% sodium azide, throughout the processing.

In the intervals of this treatment, the matrices were washed 
with water and saline solution. The reconstitution of the 
collagen fibril set was performed in 0.13 M phosphate buffer 
and pH 7.4. The volume of 0.1% SDS solutions was calculated 
based on the total mass of collagen present in the BP used in 
each experiment and on the stoichiometry of the SDS-collagen 
interaction. After processing, the matrices were sterilized and 
stored in 4% formaldehyde. The ABP used in this study was 
provided by Braile Biomédica® (São José do Rio Preto – SP).

2.2. Surgical procedure for biomaterial implantation

This study was developed in accordance with the 
Normative Resolution no. 55/2022 (Brazilian Guideline 
for the Care and Use of Animals in Teaching or Scientific 

1. Introduction

The use of biomaterials is not recent and its application 
in the correction of problems related to human health dates 
back to antiquity. However, in recent years, technological 
advances in the field of tissue bioengineering (TB) have 
made it possible to improve and develop appropriate 
techniques and biomaterials for tissue replacement and 
regeneration (Sharma et al., 2019), in view of the limitations 
and disadvantages of techniques and materials currently 
used (Vig et al., 2017; Miguez-Pacheco et al., 2015). Thus, in 
recent decades, researchers in the field of BT have produced 
increasingly sophisticated and effective biomaterials to 
replace tissues that had their functions lost due to trauma, 
disease or as a result of the body´s natural aging process, 
as well as to aesthetic purposes.

These biomaterials can be produced from different 
sources of raw material, natural or synthetic. Among 
the former, type I collagen stands out mainly, the most 
abundant protein in the human body, which corresponds 
to approximately 30% of body weight, the main component 
of connective tissues, distributed in the extracellular matrix 
(ECM) where it performs different functions (Ghomi et al., 
2021; Sorushanova et al., 2019), which enables wide 
applicability in the biomedical area, given the different 
structural and functional modifications that can be 
performed during the processing of collagen biomaterials.

Regarding the use of biomaterials in reconstructive 
surgeries, associated with breast implants, the literature 
has shown promising clinical results (Castagnetti et al., 
2020; Aguilera-Sáez et al., 2015; Gubitosi et al., 2014). 
In this context, the use of alloplastic grafts has been an 
effective alternative, since it avoids the use of tissue flaps 
during reconstruction, which often causes tissue deformities 
with consequent functional and aesthetic impairments 
in the donor areas. There is still the possibility that some 
patients do not have availability of donor areas. It is worth 
mentioning that the use of a non-autogenous implant, such 
as breast silicone, induces an inflammatory response which, 
in turn, can lead to erosion of the surrounding tissues, 
fistulization and even implant extrusion (Maia et al., 2010). 
In these situations, the use of dermal substitutes plays an 
essential role in implant coverage, as it helps tissue repair 
by providing a fundamental three-dimensional framework 
for the cellular events observed after silicone implantation, 
which minimizes postoperative complications.

In this scenario, the use of acellular dermal matrices 
(ADMs) has become one of the main options for breast 
reconstruction using prostheses (Urban et al., 2016), due 
to the possibility of improving the aesthetic result and 
reducing the side effects of the radiotherapy. Clinical and 
experimental data show that the use of matrices to cover 
breast implants for reconstructions contributes to a lower 
incidence of complications or deformities, as it improves 
the definition of the inframammary fold and provides a 
more natural breast, with less invasive procedures and a 
lower rate of long-term capsular contracture, common 
in this type of reconstruction (Lee and Mun, 2016, 2017; 
Schmitz et al., 2013, Mofid et al., 2012), which favors 
better functional and aesthetic results (Castagnetti et al., 
2020; Mallikarjuna et al., 2017; Urban et al., 2016). 
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Research Activities – DBCA) and Normative Resolution 
no. 37/2018 (Guideline for the Practice of Euthanasia), 
both from the National Council for the Control of Animal 
Experimentation, after approval by the Ethics Committee 
on the Use of Animals of the Institute of Health Sciences 
of the Federal University of Bahia (Protocol no. 115/2017).

Sixteen male Wistar rats, weighing between 250 and 
350 g, were distributed into two groups: experimental 
(EG) - biomaterial (ABP) overlaid on the mini mammary 
prosthesis (MP) and control (CG) - MP without biomaterial 
implantation - with eight animals in each biological point 
(7 and 15 days). According to the principles of the 3R’s 
(Replacement, Reduction and Refinement), was implanted 
the MP in the submuscular plane of all animals, on both 
sides of the back, right (control) and left (experiment). Thus, 
from the 16 animals it was possible to obtain 32 specimens, 
16 with biomaterial and 16 without the biomaterial. Prior, 
to implantation in the animals, the ABP matrices were 
washed, under manual handling, for three minutes for 
five repetitions, in 150 mL of sterile physiological solution 
each wash, to remove formaldehyde.

Prior to the surgical procedures, the animals received 
anesthesia with ketamine hydrochloride 75 mg/kg, associated 
with xylazine hydrochloride 5 mg/kg, intraperitoneally, as 
described by Damy et al. (2010). The 2 mL MPs (Silimed®) 
were implanted on both sides of the animals’ dorsum having 
as reference the mid-sagittal line and a horizontal line at the 
height of the lower costal ridge, as described by Schmitz et al. 
(2013) and Kafejian et al. (1997). On the experimental side (EG), 
the MP was overlapped with a ABP matrix, which covered the 
entire MP and was fixed with 4 points with nylon thread no. 4.0.

2.3. Histological processing

After the biological time points of 7 and 15 days, the 
animals were euthanized with lethal intraperitoneal injection 
of ketamine and xylazine, in respective dosages, 300 mg/Kg 
and 30 mg/kg. Then, tissue samples were obtained, with 
a margin of 1.0 cm from the edge of the MP and depth 
below the muscle plane, including the panniculus carnosus 
muscle. The specimens were fixed in 4% buffered formalin 
for 24 hours. After this period, the silicone MP was removed 
from all groups and the tissue samples were sectioned in two 
regions: central and peripheral, to evaluate the biomaterial 
interface with the MP. The specimens were then sent for 
routine histological processing, embedded in paraffin, cut 
5 µm thick, and stained by hematoxylin and eosin (HE) and 
picrosirius red (PIFG). Histological sections were examined 
by light microscopy with a DM6B microscope (LEICA®), 
photographed with a DFC 7000T camera (LEICA®) and LAS 
V.4.12 Leica Application Suit® (LEICA®) software.

3. Results

3.1. Acellularized bovine pericardium

The photomicrograph in Figure 1 shows the effectiveness 
of the BP acellularization process, which demonstrates the 
complete absence of cells in the biomaterial structure, as 
well as the maintenance of the collagenous framework 
with waved collagen fibers in standard BP appearance.

3.2. CG - 7 days - MP without ABP implant

At this biological point, was noted the presence of 
diffuse mononuclear inflammatory infiltration and 
granulation tissue (Figures 2a and 2c) subjacent to the 
fibrous capsule formed around the MP (Figures 2a and 2b). 
The beginning of collagen fiber deposition was observed 
near the region where the MP was implanted, evidenced 
by PIFG (Figure 2d). Peripherally to the fibrous capsule, 
the presence of blood vessels was noted.

3.3. CG - 15 days - MP without ABP implant

At 15 days, a moderate chronic inflammatory infiltrate 
was noted with a decrease in edema and more organized 
granulation tissue in relation to the previous biological 
point (Figures 3a and 3c). The fibrous capsule was thin and 
with the collagen fibers organized in a parallel fashion, 
in relation to the 7 days (Figure 3b), better evidenced in 
the staining with PIFG (Figures 3b and 3d).

3.4. EG - 7 days – MP with ABP implant

At this biological point, we observed chronic 
inflammatory infiltrate, more intense when compared 
to the CG, and granulation tissue surrounding the ABP 
and MP (Figures 4a and 4c). In some histological sections, 
this finding extended to the hypodermis. Fibrous capsule 
formation was more evident than in the CG (Figure 4b), 
which was seen in the early stages of biointegration with 
the ABP and adjacent tissues (Figure 4d).

3.5. EG - 15 days - MP with ABP implant

At 15 days, the mononuclear inflammatory infiltrate 
was still notoriously observed with edema and granulation 
tissue, more evident than at seven days (Figure 5a). 
It was also noted the presence of fibrin, evident collagen 
deposition (Figure 5b) and fibrous capsule formation, on 
both sides of the biomaterial, more evident on the external 
side to the ABP (Figure 5c). At higher magnification, we 
observed the integration of the ABP with the neoformed 
collagen tissue (Figure 5d).

Figure 1. ABP structure. Note the absence of cells and the 
maintenance of collagen fibers (*) and the native structure 
of the BP matrix after the acellularization process. H.E.  
Source: Authors’ elaboration.
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Figure 2. Photomicrographs of the CG at the 7-day biological point. After 7 days, GC shows: (a) Diffuse mononuclear inflammatory infiltrate 
and granulation tissue, contiguous to the fibrous capsule, surrounding the MP. HE. Bar: 1mm; (b) Fibrous capsule formation so circumjacent 
to the MP. PIFG. Bar: 1mm; (c) Granulation tissue adjacent to the MP. HE. Bar: 100 µm; (d) Deposition of collagen and fibrin fibers adjacent 
to the PM. PIFG. Bar: 200 µm. Collagen (C), Fibrin (F), Fibrous Capsule (FC), Granulation Tissue (GT), Mini Prosthesis (MP), Muscle (M). 
Source: Elaborated by the authors.

Figure 3. Photomicrographs of the CG at the 15-day biological point. At 15 days the CG shows: (a) Chronic inflammatory infiltrate with decreased 
edema and more organized granulation tissue than at 7 days. HE. Bar: 1mm; (b) Thinner fibrous capsule than at the 7-day biological point. 
PIFG. Bar: 1mm; (c) More organized granulation tissue. HE. Bar: 500 µm; (d) Parallel organized collagen fibers in the fibrous capsule. PIFG. 
Bar: 500 µm. Dermis (D), Epidermis (E), Fibrous Capsule (FC), Granulation Tissue (GT), Mini Prosthesis (MP), Muscle (M). 
Source: Authors’ elaboration.
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Figure 4. Photomicrographs of the EG at the 7-day biological point. At 7 days EG shows: (a) Chronic inflammatory infiltrate and granulation 
tissue surrounding the ABP and MP. HE. Bar: 500 µm; (b) Fibrous capsule formed contiguously to the ABP. PIFG. Bar: 500 µm; (c) Initial 
biointegration of the acellularized bovine pericardium to the surrounding tissues. HE. Bar: 200 µm; (d) Acellularized bovine pericardium 
in an initial process of biointegration more evident. Initial biointegration of the acellularized bovine pericardium with collagen fibers. PIFG. 
Bar: 100 µm. Acellularized Bovine Pericardium (ABP), Dermis (D), Fibrous Capsule (FC), Granulation Tissue (GT), Hypoderm (H), Muscle (M).
Source: Elaborated by the authors.

Figure 5. Photomicrographs of the EG at the 15-day biological point. After 15 days it is evident in the EG: (a) ABP surrounded by mixed 
inflammatory infiltrate. HE. Bar: 500 µm; (b) ABP being integrated to the surrounding tissues. PIFG. Bar: 500 µm; (c) ABP surrounded 
by inflammatory fibrinous exudate. HE. Bar: 500 µm; (d) ABP integrated to the fibrous capsule more evident. PIFG. Bar: 200 µm. 
Acellularized Bovine Pericardium (ABP), Dermis (D), Fibrous Capsule (FC), Mini Prosthesis (MP), Muscle (M). Fibrous Capsule (FC), 
Dermis (D), Mini Prosthesis (P), Muscle (M), Acellularized Bovine Pericardium (ABP).
Source: Elaborated by the authors.
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4. Discussion

This study analyzed the tissue response of ABP in the 
coverage of breast implant, since collagen has been widely 
researched in the development of biomaterials for different 
biomedical applications. The inflammatory response 
observed after implantation of the ABP matrix was of 
the chronic type, with a predominance of mononuclear 
cellular infiltrate, compatible with the type of inflammation 
observed in the evaluation of biomaterials in vivo 
(Santos et al., 2021; Al-Maawi et al., 2017; Miguel et al., 
2013; Anderson et al., 2008). This finding is in line with 
the study of Bernardini et al. (2020) who also observed 
chronic inflammation after ABP implantation. However, 
these authors studied this biomaterial with different 
analysis periods than our study.

According to Kim et al. (2012) and Heyer et al. (2010), 
the presence of the matrices in the host tissue can act as 
a foreign body, susceptible to inflammatory response, 
especially, chronic, given that macrophages respond 
rapidly to the implantation of biomaterials in living tissue 
(Anderson et al., 2008; Sheikh et al., 2015; Zaveri et al., 
2014). The tissue injury observed as a consequence of the 
surgical procedure for the implantation of a biomaterial 
triggers chemical signaling cascades that initially culminate 
in the migration of neutrophil like leukocytes to the region 
of injury, which degranulate and initiate the acute phase 
of the inflammatory response (Anderson et al., 2008). In 
sequence, the leukocyte predominance is of macrophages, 
primarily type 1 (M1), classically activated by the newly 
synthesized chemical mediators at the implantation 
site - histamine, interleukin 4 (IL-4), interleukin 8 (IL-8) 
and interleukin 13 (IL-13) (Klopfleisch and Jung, 2017; 
Klopfleisch, 2016; Anderson et al., 2008). These cells are 
responsible for effecting the locally observed immune 
response, thus characterizing the chronic phase of the 
inflammatory response (Anderson et al., 2008). The 
release of IL-4 and IL-13 stimulates polarization of type 
2 (M2) macrophages that secrete chemical mediators, 
which modulate cellular and vascular events that favor 
the formation of multinucleated giant cells to increase 
phagocytic capacity at the biomaterial implantation site 
(Zhou and Groth, 2018), and tissue repair (Rahmati et al., 
2020; Klopfleisch and Jung, 2017; Klopfleisch, 2016; 
Sheikh et al., 2015) Soon, angiogenesis, granulation tissue 
development, fibroblast infiltration, collagen synthesis, and 
connective tissue formation occur (Rahmati et al., 2020). 
In our study we noted the formation of blood vessels both 
in the periphery and permeating the ABP fibers in the 
two periods studied. Regarding vascular neoformation, 
Bernardini et al. (2020) observed a greater number of 
blood vessels from 3 weeks after ABP implantation, which 
according to Kalaba et al. (2016) is considered a positive 
response and indicates integration of the biomaterial with 
the surrounding tissue, probably favors the production of 
non-fibrotic dermal tissue.

These responses occur due to the immediate adsorption 
of proteins on the surfaces of biomaterials after tissue 
implantation, before the host cells interact with the 
material. With this, there is the formation of a provisional 
matrix rich in fibrin on and around the biomaterial. 

In parallel, the acute phase of the inflammatory response 
initially arises, which may take a few hours to even 
days (Rahmati et al., 2020; Anderson et al., 2008). 
Over time, this phase is gradually replaced by the 
chronic one, which lasts from approximately two 
weeks to months (Anderson et al., 2008). The types, 
levels and conformation of adsorbed proteins are 
dependent on the physicochemical characteristics 
of biomaterials (Sheikh et al., 2015; Das et al., 2011). 
In this sense, modulation of macrophage responses 
through modifications of surface chemistry and roughness 
is an alternative that can be used to mitigate the chronic 
inflammation observed after biomaterial implantation, 
since an exacerbated inflammatory reaction limits the 
functional performance of numerous biomaterials, for 
example, pacemaker electrodes and breast implants 
(Zaveri et al., 2014; Siggelkow et al., 2003; Kamel et al., 
2001). Our histological findings evidenced, in both 
groups studied, the aforementioned events presence 
of fibrin, granulation tissue, collagen synthesis and 
fibrous capsule formation (Bernardini et al., 2020; 
Das et al., 2011; Xu et al., 2009; Gamba et al., 2002; 
Santillán-Doherty et al., 1995), important for biomaterial 
integration and tissue repair. In the experimental group, 
since the first period of analysis, we noticed connective 
tissue deposition permeating the collagen fibers of the 
ABP matrix and circumjacent to the biomaterial with 
fibrous capsule formation, which presented itself more 
organized at 15 days, suggesting initial biointegration of 
the biomaterial (Bernardini et al., 2020; Ludolph et al., 
2019; Schmitz et al., 2013). In the CG, the formation 
of the fibrous capsule was less thick compared to the 
experimental group, probably due to the presence of 
ABP and more noticeable inflammatory response in 
the EG. In the study by Schmitz et al. (2013), the use 
of ADM evidenced, at 3 and 12 weeks, the presence of 
myofibroblasts arranged circumjacently to the implant, 
which, according to Bernardini et al. (2020), in moderate 
quantity is considered positive for biomaterial integration 
and accommodation of the prosthesis.

Knowing that the biocompatibility of the biomaterial 
is directly related to its immunogenic potential, 
that is, with the type and intensity of the observed 
inflammatory response, which should preferably be 
chronic and discrete (De Paula, 2017), the results of our 
study allow us to state that the evaluated ABP proved 
to be biocompatible throughout the studied period. 
These findings are in line with what was observed by 
Bernardini et al. (2020), who demonstrated regressive 
chronic inflammatory response over time, suggesting 
good biocompatibility of the evaluated dermal matrix. 
Furthermore, macroscopically, at all biological points, 
none of the groups studied showed local adverse effects, 
such as hematoma, abscess, seroma, wound dehiscence, 
or extrusion of the mini prostheses. These findings 
ratify the results found by Bernardini et al. (2020) who 
also used ABP as a mini breast prosthesis cover in rats. 
Seroma formation in reconstructive surgery is a common 
problem that can distend the skin and culminate in 
negative aesthetic outcome (Mallikarjuna et al., 2017), 
as well as cause extrusion of the prosthesis.
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Based on the results found in this study, it is suggested 
that the ABP has the potential to be used in surgeries with 
breast prostheses safely. However, it is necessary to develop 
further research involving a longer observation period to show 
biological responses of ABP after long periods of implantation, 
in order to support the understanding of biomaterial 
integration, specifically at the interface with the host tissue.

5. Conclusion

According to the experimental conditions of this 
study, we conclude that the ABP was biocompatible and 
showed initial integration to the surrounding tissues 
in the two biological points evaluated. Thus, it has the 
potential to be used clinically in surgeries with breast 
prostheses safely.
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