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Abstract
Understanding the factors influencing variation in the diversity and structure of rich biological communities (e.g., 
Neotropical upland forests) is essential in the context of climate change. In this study, we examine how environmental 
filters (temperature, precipitation, and elevation) and distinct habitats (moist upland forests - MUF and dry upland 
forests - DHF) influence the phylogenetic diversity and structure of 54 tree communities (28 MHF and 26 DHF). We used 
the standardized effect size (ses) of the metrics phylogenetic diversity (ses.PD), mean pairwise distance (ses.MPD), and 
mean nearest neighbor distance (ses.MNTD) to quantify changes in tree community diversity and structure. Then, we 
assessed the relationships of the phylogenetic metrics with the environmental filters as predictors using generalized 
linear models (GLMs). Our results indicate that increasing temperature negatively affects the phylogenetic indices 
analyzed, leading to less diverse and more clustered communities. In contrast, increasing precipitation and elevation 
showed a significant positive relationship with the analyzed indices, directing communities towards greater phylogenetic 
diversity and random or overdispersed structure. Our findings also reveal that phylogenetic diversity and structure vary 
with habitat type. For example, while MUFs exhibit higher phylogenetic diversity and random structure, DUFs display 
lower phylogenetic diversity and clustered structure. In conclusion, our results suggest that the phylogenetic patterns 
exhibited by upland communities in the semiarid region are strongly related to climatic conditions and the habitat in 
which they are found. Therefore, if the predicted temperature increases and precipitation decreases in climate change 
scenarios for the semi-arid region materialize, these communities may face significant biodiversity loss.

Keywords: phylogeny, environmental filter, Brejo de Altitude, Caatinga, Atlantic Forest.

Resumo
Compreender os fatores que influenciam a variação na diversidade e estrutura de comunidades biológicas diversas 
(por exemplo, florestas de terras altas neotropicais) é essencial no contexto das mudanças climáticas. Por esse 
motivo, examinamos como os filtros ambientais (temperatura, precipitação e altitude) e habitats distintos (florestas 
úmidas de altitude - MUF e florestas secas de altitude - DUF) influenciam a diversidade e estrutura filogenética de 
54 comunidades de árvores (28 MUF e 26 DUF). Utilizamos o tamanho do efeito padronizado (ses) das métricas 
diversidade filogenética (ses.PD), distância média entre pares (ses.MPD) e distância média até o vizinho mais próximo 
(ses.MNTD) para quantificar as mudanças na diversidade e estrutura das comunidades de árvores. Em seguida, 
avaliamos as relações das métricas filogenéticas com os filtros ambientais como preditores usando modelos lineares 
generalizados (GLMs). Nossos resultados indicam que o aumento da temperatura possui relação negativa com os 
índices filogenéticos analisados, direcionando comunidades filogeneticamente menos diversas e mais agrupadas. Já o 
aumento da precipitação e elevação apresentaram significativa relação positiva com os índices analisados, direcionando 
comunidades filogeneticamente mais diversas e com estrutura aleatória ou sobredispersas. Nossos achados também 
mostram que a diversidade e estrutura filogenética variam com o tipo de habitat. Enquanto MUFs apresentam maior 
diversidade filogenética e estrutura aleatória, DUFs exibem menor diversidade filogenética e estrutura agrupada. 
Em conclusão, nossos resultados indicam que os padrões filogenéticos apresentados pelas comunidades de terras 
altas do semiárido possuem forte relação com as condições climáticas e o habitat no qual estão inseridos. Assim, 
caso o aumento de temperaturas e a redução da precipitação previstos nos cenários de mudanças climáticas para a 
região semiárida se concretizarem, essas comunidades podem enfrentar uma significativa perda de biodiversidade.

Palavras-chave: filogenia, filtro ambiental, Brejo de Altitude, Caatinga, Floresta Atlântica.

Phylogenetic diversity and structure in moist and dry upland 
forests in the semi-arid region of Brazil
Diversidade e estrutura filogenética em florestas úmidas e secas de terras altas na 
região semiárida do Brasil

A. S. Pintoa,b* , E. S. Dinizc,d*  and S. F. Lopesa,b 
a	Universidade Federal Rural de Pernambuco – UFRPE, Departamento de Biologia, Programa de Pós-graduação em Etnobiologia e Conservação 
da Natureza, Recife, PE, Brasil

b	Universidade Estadual da Paraíba – UEPB, Departamento de Biologia, Laboratório de Ecologia Neotropical – EcoTropics, Campina Grande, PB, Brasil
c	Universidade Federal de Viçosa – UFV, Departamento de Engenharia Florestal, Laboratório de Geoprocessamento e Sensoriamento Remoto, 
Viçosa, MG, Brasil

d	ProBioDiversa Brasil, Associação para Conservação da Biodiversidade, Viçosa, MG, Brasil

*e-mail: anderson.slvp@gmail.com; eciodiniz@gmail.com. 
Received: May 6, 2023 – Accepted: August 24, 2023

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9253-7486
https://orcid.org/0000-0002-3543-6571
https://orcid.org/0000-0001-6472-6765
mailto:anderson.slvp@gmail.com
mailto:eciodiniz@gmail.com


Brazilian Journal of Biology, 2023, vol. 83, e2745772/11

Pinto, A.S., Diniz, E.S. and Lopes, S.F.

(e.g., temperature and precipitation) and phylogenetic 
diversity and structure (Qian et al., 2017a, b; Luo et al., 
2019; Liu  et  al., 2020; Zhang  et  al., 2020). Owing to 
this relationship, global climate change is altering the 
phylogenetic patterns of plant communities exposed to 
adverse conditions (Li et al., 2019). The effects of climate 
on phylogenetic diversity might be more pronounced in 
tropical upland ecosystems, as they are among the most 
threatened by such global changes (Mata-Guel  et  al., 
2023). Therefore, a better understanding of the effects of 
climatic variables on the current phylogenetic patterns 
can provide insights into how these communities will 
respond to future climate changes.

Despite the growing number of studies describing the 
relationships between climatic variables and phylogenetic 
diversity and structure in upland ecosystems, we identified 
a significant gap related to the Neotropics. Currently, 
there are no large-scale studies investigating how the 
environmental heterogeneity of the Brazilian semi-arid 
region relates to the phylogenetic patterns of the upland 
forests in this area. This region is of great interest for 
conservation, as it is one of South America’s most vulnerable 
locations to climate change (Marengo and Bernasconi, 
2015; Marengo et al., 2017). To address this gap, the present 
study investigates two co-occurring upland ecosystems in 
the semi-arid region: the Serras de Caatinga (dry upland 
forests - DUF) and the Brejos de Altitude (moist upland 
forests - MUF). The DUFs harbor communities within the 
phytogeographic domain of the Caatingas (Silva et al., 2014; 
Moro et al., 2016; Lopes et al., 2017; Ramos et al., 2020; 
Diniz et al., 2021). In contrast, the MUFs consist of islands 
of moist vegetation belonging to the Atlantic Forest domain 
(tropical moist forest), also present in elevated areas of 
the semi-arid region (Tabarelli and Santos, 2004; Rodal 
and Nascimento, 2006; Santos et al., 2007b; Rodal et al., 
2008; Queiroz et al., 2017; Marques et al., 2021).

With this study, we aimed to investigate the effects 
of environmental filters (temperature, precipitation, 
and elevation) and habitat type (DUF and MUF) on the 
phylogenetic diversity and structure of tree communities 
in upland ecosystems in the Brazilian semi-arid region. 
We hypothesize that environmental filters display relevant 
roles in assembling the tree communities with phylogenetic 
patterns (clustering or overdispersion) according to their 
habitat type. Thus, we expect that an increase in the effects 
of environmental filtering will result in phylogenetically 
clustered and less diverse communities (DUF), while 
overdispersed and more diverse communities will occur 
in less stressful habitats (MUF).

2. Methods

2.1. Study area

The present study comprises 54 tree communities 
located in five states of the Northeast Region of Brazil: 
Alagoas, Ceará, Paraíba, Pernambuco, and Rio Grande 
do Norte (Supplementary Material, Table S1). Together, 
these states occupy a territorial area of approximately 
385,000 km2 (IBGE, 2022). The regional climate is Bswh’ 

1. Introduction

Upland ecosystems are among the world’s most 
important environments due to their high biodiversity 
(Körner, 2004) and provision of essential ecosystem services 
(e.g., water and food resources, carbon sequestration, soil 
conservation) (Mengist et al., 2020). The high biodiversity 
of these environments is linked to the multitude of unique 
habitats created by the variation of abiotic conditions 
along their elevation gradients (Körner, 2004; Körner et al., 
2017). The most influential abiotic filters contributing to 
habitat diversification and shaping biodiversity patterns in 
upland ecosystems encompass temperature, precipitation, 
and soil properties (Zhang  et  al., 2016; Chun and Lee, 
2018; Sabatini  et  al., 2018; Luo  et  al., 2019; Zhu  et  al., 
2019; Ohdo and Takahashi, 2020). In the Neotropics, 
these abiotic filters stand out as significant drivers of 
shifts in taxonomic diversity patterns among different 
plant communities established in uplands, such as 
Andean forests (Cuesta et al., 2017), Tepuis (Campos et al., 
2022a), Inselbergs (Pinto-Junior  et  al., 2020), Páramos 
(Campos et al., 2018; Neri et al., 2017), and Caatinga Uplands 
(Santos et al., 2007a; Ramos et al., 2020; Diniz et al., 2021). 
Recent studies also indicate that these abiotic filters 
have a strong relationship with phylogenetic diversity 
and structure patterns observed in Neotropical upland 
ecosystems (Mattos et al., 2019; Campos et al., 2021, 2022b; 
Cisneros et al., 2021).

Phylogenetic diversity refers to the sum of the 
evolutionary ages of species in a community (Faith, 1992). 
Simultaneously, the phylogenetic structure is related to the 
organization of these species (i.e., clustering, overdispersion, 
and randomness) based on their evolutionary relationships 
(Webb, 2000; Webb et al., 2002). In communities with 
clustered structures, species tend to be phylogenetically 
closer than expected by chance (Webb, 2000), while 
having similar functional traits that might be conserved 
in their evolutionary lineages (Connolly  et  al., 2011). 
Clustering is commonly determined by environmental 
filtering, which selects species with conserved functional 
adaptations suited to local conditions (Wiens and Graham 
2005; Cavender-Bares  et  al., 2009). For example, high 
temperatures and low precipitation in upland dry forests 
filter drought-tolerant lineages, promoting phylogenetic 
clustering (Cisneros et al., 2021).

On the other hand, when biotic interactions (e.g., 
competition) are more powerful drivers of community 
assembly than environmental filtering, phylogenetically less 
related species coexist (i.e., overdispersion), thus enriching 
the phylogenetic diversity of biological communities 
(Weiher and Keddy, 1995; Webb  et  al., 2002). Further, 
phylogenetic overdispersion can also be an outcome of 
the effects of environmental filtering on species with 
convergent trait evolution (Cavender-Bares et al., 2009; 
Ndiribe et al., 2013; Mori et al., 2021). Conversely, when 
abiotic and biotic drivers exert balanced or little influence 
on community assembly, stochastic factors (e.g., dispersal 
limitation) play a more important role and lead to random 
phylogenetic structure (Vellend, 2010; Rosindell et al., 2011).

In the biodiversity context, it is evident that there 
is a strong relationship between climatic variables 
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(warm semi-arid) according to the updated Köppen-Geiger 
climate classification (Alvares  et  al., 2014). The states 
are predominantly occupied by the Caatinga, a mosaic 
of physiognomies influenced by variations in relief, 
precipitation, and soils (Moro et al., 2016; Queiroz et al., 
2017). In the present study, we focus exclusively on the 
vegetation found in upland locations in the semi-arid 
region, particularly MUF and DUF. MUF ecosystems occur in 
elevated locations in the semi-arid region, such as plateaus, 
flat-topped hills, mountain ranges, low mountains, and 
peaks (Tabarelli and Santos, 2004; Santos et al., 2007b; 
Queiroz et al., 2017; Marques et al., 2021). These ecosystems 
are refuges of the current Atlantic Forest (moist forest) 
that have persisted in locations with less arid and more 
stable conditions throughout the evolutionary history of 
Brazil’s semi-arid region (Silveira et al., 2019). Due to this 
context, MUFs are considered “islands of moist forest” 
within a semi-arid matrix, supporting a wide range of 
ecosystem services and high biodiversity (Pôrto  et  al., 
2004). On the other hand, DUFs are ecosystems that house 
forests belonging to the phytogeographic domain of the 
Caatingas, dry forest sense of Pennington  et  al. (2009). 
Therefore, they are typically associated with mountain 
ranges, isolated low mountains, and inselbergs (Moro et al., 
2016; Lopes et al., 2017), and are considered “biodiversity 
refuges” due to their high diversity associated with the 
elevation gradient (Silva et al., 2014; Lopes et al., 2017; 
Ramos et al., 2020).

2.2. Data acquisition

The floristic data used in the analyzes were obtained 
from the NeoTropTree (NTT) database (Oliveira-Filho, 2017), 
which consists of a compilation of checklists of tree species 
over three meters in height derived from floristic surveys 
from the published literature and herbarium records. 
NTT has information on more than 20,000 species of woody 
plants and 7,000 georeferenced areas that extending from 
southern Florida (USA) to Patagonia. Each georeferenced 
area corresponds to a single type of vegetation that can 
occur within a radius of five kilometers.

We accessed the NTT data tab and selected the 
geographical data option to collect the necessary 
information for our study. From this option, it is possible to 
filter habitats based on information related to the country of 
occurrence, state or province, and phytogeographic domain, 
among other criteria. Thus, we initially filtered the study 
areas by state, taking into consideration the five states 
mentioned previously. We focused our sampling searches 
on the five mentioned states as they harbor most MUFs 
(Tabarelli and Santos, 2004). As an additional criterion, 
we included communities belonging to the Atlantic Forest 
and Caatinga domains in the study, which are in locations 
that presented a minimum elevation of 600 m within the 
semi-arid region. We used this criterion because DUF 
(Silva et al., 2014; Moro et al., 2016; Lopes et al., 2017; 
Ramos et al., 2020; Diniz et al., 2021) and MUF (Tabarelli 
and Santos, 2004; Santos et al., 2007b; Queiroz et al., 2017; 
Marques et al., 2021) are intrinsically related to features 
such as plateaus, flat-topped hills, mountain ranges, low 
mountains, inselbergs, and peaks.

Based on the criteria established (i.e., five states 
and 600 m elevation), we selected 28 communities 
belonging to the Atlantic Forest domain (MUF) and 
26 communities belonging to the Caatinga domain 
(DUF) (Figure 1), totaling 54 communities and a list of 
1,015 sampled species.

We used the WorldClim database (Hijmans et al., 2005) 
to obtain data on mean annual temperature, mean annual 
precipitation, and elevation (spatial resolution of 30 arc 
seconds ≈ 1km2) for each sampled area. We used these 
variables because mean annual temperature and mean 
annual precipitation are two key climatic variables for 
species distribution at broad spatial scales (Kreft and Jetz, 
2007; Kooyman et al., 2012)

2.3. Phylogenetic reconstruction

We subsequently inserted our species list into the 
GBOTB.extended mega tree contained in the V.PhyloMaker 
package algorithm to generate a calibrated phylogeny of 
our study areas using the phylo.maker function (Jin and 
Qian, 2019). This mega tree is an updated and corrected 
version of the phylogeny for plants published by Smith 
and Brown (2018) combined with the phylogeny published 
including pteridophytes by Zanne et al. (2014). Since the 
mega tree was constructed based on fossil and molecular 
records from GenBank and phylogenetic data from Open 
Tree of Life, this enables reconstructing phylogenies with 
high resolution, having all families and most genera 
resolved.

The phylo.maker function creates phylogenetic 
hypotheses, which generate evolutionary relationships 
among different species, in three scenarios (scenarios 
1-3) (Jin and Qian, 2019). We used the hypothesis based 
on scenario 3 to add missing branches to generate our 
phylogenetic tree. Using the scenario 3, the V.Phylomaker 
algorithm defines the length of the taxa branches to be 
inserted, adding an absent genus between the basal node 
of its respective family, and an absent species between 
the basal node of its respective genus (Qian and Jin, 
2016). Since scenario 3 consider average distances to 
bind the tips of the phylogeny, it reduces bias caused 
by polytomies.

Figure 1. Location of the study areas in the semi-arid region 
of Brazil. White dots indicate sampling points in moist upland 
forests; black dots indicate sampling points in dry upland forests.
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2.4. Phylogenetic diversity and structure

First, we calculated Faith’s Phylogenetic Diversity (PD) 
(Faith, 1992), Mean Pairwise Distance (MPD), and Mean 
Nearest Taxon Distance (MNTD) (Webb et al., 2002). Then, 
we calculated their standardized effect sizes (ses): ses.
PD, ses.MPD and ses.MNTD, to correct for the commonly 
expected collinearity effect with species richness on 
these metrics. The ses calculation consists of randomly 
extracting 999 times the same number of species present 
in each resultant random community, generating means 
of randomized communities that are compared with the 
communities observed for each metric (i.e., PD, MPD, 
and MNTD) (Kembel et al., 2010). The ses was computed 
using 10,000 randomizations under the null model 
phylogeny pool (unconstrained null model) (Kembel and 
Hubbell, 2006). Next, we used the values of ses.MPD, 
ses.MNTD and of ses.PD, to assess, respectively, if the 
phylogenetic structure and diversity of the communities 
are significantly different from the expected by chance. 
For that, we assessed the significance of the averaged 
single values of ses.PD, ses.MPD and ses.MNTD of each tree 
community belonging to DUF and MUF, by applying the 
95% confidence interval, which ranged between 1.96 and 
-1.96. Values within this range (1.96 and -1.96) imply non-
significance, while values outside this range deviate from 
the mean and are considered significant (Forthofer et al., 
2006; Zar, 2010). In summary, we considered values less 
than -1.96 as significantly clustered, greater than 1.96 as 
significantly overdispersed, and within the range between 
-1.96 and 1.96 as random (Gotelli and Entsminger, 2003). 
The phylogenetic structure and diversity metrics were 
calculated using the functions ses.pd, ses.mpd, and ses.
mntd of the picante package (Kembel et al., 2010).

2.5. Generalized Linear Models (GLMs)

We conducted Generalized Linear Models (GLMs) with 
a Gaussian distribution to test whether environmental 
factors, such as mean annual temperature (ºC), mean 
annual precipitation (mm), and elevation (m), influence and 
explain the distribution patterns of phylogenetic diversity 
and structure (ses.PD, ses.MPD, and ses.MNTD) in the tree 
forest communities. We also added a categorical variable 
defined as “habitat” as a predictor to verify whether the 
phytophysiognomy itself influences phylogenetic diversity.

We verified the normality of the residuals of the 
response variables using the Shapiro–Wilk test (p<0.05) 
to meet the assumptions required by the analysis, while 
also assessing the distribution of the residuals in Q.Q 
Plots. We also checked for multicollinearity between the 
predictor variables by calculating the Variance Inflation 
Factor (VIF) through the vif function of the R package car 
(Fox and Weisberg, 2019). We considered a VIF value < 5 as 
the threshold to consider acceptable to keep predictors in 
the same model (Borcard et al., 2018). We also verified the 
linear relationship between dependent and independent 
variables through the L2 and SUP tests using the gof package 
(Holst, 2015). All predictors were linearly related to the 
phylogenetic target variables.

During the pre-tests, we noticed that temperature and 
elevation were collinear variables (VIF > 5). Thus, we decided 

to create two models for each response variable. The first 
one includes the response variables (ses.PD, ses.MPD, and 
ses.MNTD) and the predictors mean annual temperature, 
mean annual precipitation and habitat (v. response ~ temp. 
+ precipitation + habitat). Then, we individually evaluated 
the influence of elevation on the response variables (v. 
response ~ elevation) in the second model.

After performing the models, we tested the significance 
(p < 0.05) of the relationships found between the response 
and predictive variables using ANOVA, calculated from the 
built-in R function anova. All analyzes were developed in 
the R version 4.2.2 software program (R Core Team, 2022).

3. Results

We found that temperature, precipitation, and elevation 
influence the phylogenetic diversity and structure of semi-
arid upland tree communities (Table 1). All the analyzed 
environmental filters (temperature, precipitation, and 
elevation) and habitat types (DUF and MUF) significantly 
influenced phylogenetic diversity (ses.PD). We observed that 
phylogenetic diversity (ses.PD) in upland communities (DUF 
or MUF) decreases with increasing temperature and increases 
with higher precipitation and elevation (Figure  2A-C). 
Regarding the index ses.MPD, we found that a significant 
increase in precipitation has a positive linear relationship 
with the increase this index values, while a decrease 
in temperature leads to a reduction in ses.MPD values 
(Figure 2D, E). Upon analyzing ses.MNTD, we discovered 
that an increase in temperature is significantly related to a 
decrease in this index values, while an increase in elevation 
positively influences ses.MNTD values (Figure 2G, I).

We also found that communities established in distinct 
habitats (DUF or MUF) exhibit significant phylogenetic 

Table 1. Results of the analyses of variance (ANOVA) of the GLMs 
for the effects of habitat type, temperature, precipitation and 
elevation on ses.PD, ses.MPD, ses.MNTD.

ses.PD F df P-values

Habitat 32.05 1 < 0.001

Temperature 17.74 1 < 0.001

Precipitation 16.97 1 < 0.001

Elevation 4.70 1 0.03

ses.MPD

Habitat 42.85 1 < 0.001

Temperature 4.46 1 0.03

Precipitation 24.20 1 < 0.001

Elevation 2.23 1 0.14

ses.MNTD

Habitat 4.04 1 0.04

Temperature 40.42 1 0.002

Precipitation 2.53 1 0.11

Elevation 4.05 1 0.04
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diversity and structure differences. MUF showed greater 
phylogenetic diversity (ses.PD) and higher values of ses.MPD 
and ses.MNTD compared to DUF (Figure 3). Considering the 

values of ses.MPD, our results indicate that approximately 
80% of MUFs exhibit a random phylogenetic structure. 
The remaining 20% consisted of communities that displayed 

Figure 2. Relationships between the predictive variables (temperature, precipitation and elevation) and the phylogenetic metrics (ses.
PD, ses.MPD, ses.MNTD).

Figure 3. Variation in standardized effect sizes of phylogenetic diversity (ses.PD) (A), mean pairwise distance (ses.MPD) (B) and mean 
nearest neighbor distance (MNTD) (C) between moist upland forests (MUF) and dry upland forests (DUF).
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significant phylogenetic overdispersion. When considering 
the values of ses.MNTD, the random phylogenetic structure 
becomes even more apparent in MUFs, as 90% of their 
communities showed values distributed between 1.96 and 
-1.96 for this metric.

On the other hand, the low values of ses.MPD and 
ses.MNTD displayed by DUF indicates that many of their 
communities tend to have a more clustered phylogenetic 
structure than expected by chance. This tendency 
becomes clear when we observe that approximately 60% 
of DUF communities showed ses.MPD values below -1.96, 
indicating phylogenetic clustering based on this index. 
When considering ses.MNTD values, we note that 30% 
of DUF communities exhibited phylogenetic clustering.

4. Discussion

Our study revealed that temperature, precipitation, 
and elevation are environmental filters that promote 
significant changes in the phylogenetic structure and 
diversity of upland forests in the Brazilian semi-arid region. 
Consequently, communities established in habitats exposed 
to harsher environmental conditions (DUF) tend to exhibit 
low phylogenetic diversity and clustering, as expected. 
On the other hand, the communities established in habitats 
under lower pressure of the environmental filters (MUF) 
harbor higher phylogenetic diversity, and phylogenetic 
structure ranging from random to overdispersed, partially 
confirming our expectations. These results highlight the 
importance of environmental heterogeneity in the semi-
arid region for determining distinct phylogenetic patterns 
in upland communities.

Precipitation and temperature were the primary 
environmental filters influencing the species phylogenetic 
relationships. This is congruent with the importance of 
higher water availability and moderate temperatures 
as essential drivers of increased phylogenetic diversity 
in upland forests (Qian et al., 2014; Zhang et al., 2020; 
Cisneros et al., 2021; Tolmos et al., 2022). Although elevation 
is also an essential variable influencing the patterns of 
phylogenetic diversity and structure of upland forests 
(Mattos et al., 2019; Campos et al., 2021, Campos et al. 
2022b), its effect on phylogenetic diversity and structure 
was less pronounced than precipitation and temperature 
in our study. Since elevation directly affects local 
environmental conditions (e.g., temperature, atmospheric 
pressure, soils), its impact on biological communities is 
indirect (Körner et al., 2017), thus possibly masking its 
actual effects in our analysis.

Despite its minor effect on the phylogenetic diversity 
of our studied upland forests, elevation is a relevant factor 
due to its influence on variations have temperature and 
precipitation that lead to orographic rainfall in the semi-arid 
region (Lyra et al., 2014; Andrade et al., 2016; Mutti et al., 
2020). Orographic rainfall occurs when moist air masses 
encounter elevated areas, and the lower atmospheric 
pressure and temperature cause water vapor to condense, 
forming clouds and increasing local precipitation (Roe, 
2004). This phenomenon might have been directly 
linked to the patterns of phylogenetic diversity that we 

observed, as the increase in ses.PD corresponds to lower 
temperatures, higher precipitation, and elevation. Moreover, 
locations exposed to orographic rainfall typically harbor 
moist ecosystems within the semi-arid region, such as 
MUF (Queiroz et al., 2017), which exhibited the highest 
values of ses.PD, ses.MPD and ses.MNTD in our study. 
Therefore, our findings suggest that orographic rainfall 
may represent a critical factor in enhancing phylogenetic 
diversity in upland forests in the semi-arid region, as less 
stressful environmental conditions and greater resource 
availability tend to favor an increase in the number of 
lineages in upland plant communities (Qian et al., 2023).

As stress imposed by environmental filtering increased, 
exemplified by higher temperatures, we observed a 
decrease in the values of phylogenetic metrics (i.e., ses.
PD, ses.MPD and ses.MNTD). This pattern was expected 
since factors related to increased water stress tend to 
reduce phylogenetic diversity in plant communities 
due to the exclusion of non-tolerant species (Anacker 
and Harrison, 2012). Thus, our results indicate that the 
increase in environmental stress in the semi-arid region 
leads to the assembly of communities mostly composed 
of phylogenetically close species adapted to harsher 
conditions, as also observed in other upland forests 
(González-Caro et al., 2014; Liu et al., 2019; Zhang et al., 
2020; Cisneros et al., 2021).

When analyzing the differences in phylogenetic diversity 
and structure patterns between habitats, we noticed that 
although MUFs have higher phylogenetic diversity and 
overdispersion than DUFs, they tend to exhibit random 
phylogenetic structure, which contradicts part of our initial 
expectations. This phylogenetic random trend might be 
an outcome of unmeasured stochastic influence (e.g., 
dispersal limitation) inherently encompassed in our study 
(Vellend, 2010). However, the observed MUF communities 
exhibiting phylogenetic overdispersion regarding the basal 
clades and older nodes (ses.MPD) could be related to the 
formation process of these habitats. According to Costa et al. 
(2018), the climate (Last 30,000 years) constrained MUFs 
to isolated enclaves in northeastern Brazil, while most 
of their surroundings were occupied by seasonally dry 
forests (Caatinga). These MUF enclaves maintained more 
stable and less stressful climatic conditions than their 
surrounding areas (Silveira et al., 2019). Thus, in this study, 
for some MUFs this scenario may have favored increased 
phylogenetic diversity and structural patterns toward 
overdispersion. Environments with higher productivity, 
moderate climatic conditions and higher availability of 
resources tend to support greater species diversity (Kreft 
and Jetz, 2007; Ricklefs and He, 2016).

The phylogenetic clustering observed in DUF 
communities possibly also depicts their historical processes 
linked to the formation of their regional pool of species. 
Although current semi-arid conditions have only been 
established in the last 4,500 years (Oliveira et al., 1999), 
fossil records indicate that some of the most representative 
plant groups of today’s Neotropical dry forests diversified 
in the Miocene (Pennington et al., 2018). Furthermore, 
phylogenetic studies show that Neotropical dry forests 
exhibit a high degree of monophyly and phylogenetic 
conservatism (Pennington et al., 2009). This is congruent 
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with our results showing that the phylogenetic clustering 
in DUF communities is more related to basal nodes and 
older clades (ses.MPD) of the phylogenetic tree.

Overall, our results indicate that the studied tree 
communities’ phylogenetic components (diversity and 
structure) are sensitive to variations in temperature and 
precipitation. This supports a major concern, as studies 
predict drought events will become more intense and 
frequent in northeastern Brazil throughout this century 
(Marengo and Bernasconi, 2015; Marengo et al., 2017). 
If these predictions are confirmed, MUFs may be one of the 
most affected ecosystems within the semi-arid context, as 
the phylogenetic patterns observed in these communities 
are associated with less stressful environmental conditions. 
Consequently, a potential increase in temperature and 
decrease in precipitation could contribute to the extinction 
of species with low drought tolerance found in MUFs, such 
as the tree ferns from the genera Alsophila and Cyathea 
(Supplementary Material, Table S2), causing significant 
phylogenetic diversity loss in their communities.

5. Conclusion

Our findings lead us to conclude that greater resource 
availability (higher precipitation, i.e., water availability) and 
milder environmental conditions (i.e., lower temperature) 
were critical factors in increasing phylogenetic diversity, 
expressed by ses.PD, ses.MPD, and ses.MNTD. Our results 
also allowed us to conclude that the phylogenetic diversity 
and structure are also significantly influenced by the 
habitat type (MUF or DUF) in upland forests of the Brazilian 
semi-arid region. Thus, these results allow us to better 
understand the mechanisms driving the phylogenetic 
diversity and structure of upland forests in the semi-arid 
region and provide clues on how these communities might 
be affected by future environmental changes.

Thus, we hope that our contribution to a better 
understanding of the mechanisms driving the phylogenetic 
diversity and structure of upland forests in the semi-arid 
region may encourage further studies. Considering the 
present, we believe that additional research could explore 
the influence of other filters, such as soils and chronic 
anthropogenic disturbances, on the phylogenetic patterns 
of the communities studied. In light of future risks, studies 
presenting modeling for different climate change scenarios 
are important for more accurately understanding how 
the phylogenetic component of these communities may 
respond to increased environmental stress. Integrating 
these approaches could improve our ability to predict 
and mitigate the impacts of global changes on these 
communities and their associated ecosystems.
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