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ABSTRACT 
There has been a need for geodetic network densification since the early days of 
traditional surveying. In order to densify geodetic networks in a way that will 
produce the most effective reference frame improvements, the crustal velocity field 
must be modelled.  Artificial Neural Networks (ANNs) are widely used as function 
approximators in diverse fields of geoinformatics including velocity field 
determination. Deciding the number of hidden neurons required for the 
implementation of an arbitrary function is one of the major problems of ANN that 
still deserves further exploration. Generally, the number of hidden neurons is 
decided on the basis of experience. This paper attempts to quantify the significance 
of pruning away hidden neurons in ANN architecture for velocity field 
determination. An initial back propagation artificial neural network (BPANN) with 
30 hidden neurons is educated by training data and resultant BPANN is applied on 
test and validation data. The number of hidden neurons is subsequently decreased, 
in pairs from 30 to 2, to achieve the best predicting model. These pruned BPANNs 
are retrained and applied on the test and validation data. Some existing methods for 
selecting the number of hidden neurons are also used. The results are evaluated in 
terms of the root mean square error (RMSE) over a study area for optimizing the 
number of hidden neurons in estimating densification point velocity by BPANN. 
Keywords: Artificial Neural Networks; Pruning Hidden Neurons; Geodetic Point 
Velocity. 
 
 



Yilmaz, M. 

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 19, no 4, p.558-573, out-dez, 2013. 

5 5 9  

RESUMO 
A densificação de redes geodésicas é uma necessidade presente desde o início das 
atividades de levantamentos.  Para a obtenção de resultados adequados a 
modelagem de campos de velocidades da crosta deve ser efetivada. Redes Neurais 
Artificiais (RNAs) são amplamente utilizadas como aproximadores de funções em 
diversas aplicações em Geomática, incluindo a determinação campos de velocidade. 
Decidir o número de neurônios ocultos necessários à implementação de uma função 
arbitrária é um dos principais problemas de RNA que ainda merece destaque nas 
Ciências Geodésicas. Geralmente, o número de neurônios ocultos é decidido com 
base na experiência do usuário. Com estas considerações em mente, surgem 
métodos de determinação automática de arquiteturas de RNAs, como os Métodos de 
Poda. Neste artigo busca-se quantificar a importância de poda ou supressão de 
neurônios ocultos em uma arquitetura de RNA para determinar o campo de 
velocidades. Uma RNA com retro-propagação contendo 30 neurônios ocultos é 
treinada e testes são aplicados. O número de neurônios ocultos é reduzido de trinta 
até dois, dois a dois, visando-se encontrar a melhor arquitetura de predição. 
Também são utilizados alguns métodos existentes para a escolha do número de 
neurônios ocultos. Os resultados são avaliados em termos raiz do erro médio 
quadrático ao longo de uma área de estudo para otimizar o número de neurônios 
ocultos na estimativa de velocidades com base na densificação de pontos com a 
RNA. 
Palavras-chave: Redes Neurais Artificiais; Poda de Neurônios Ocultos; 
Velocidades de Pontos Geodésicos. 
 
 
1. INTRODUCTION 
 There has been a need for geodetic network densification since the early days 
of traditional surveying. The general objective of network densification is to provide 
a more convenient accurate access to the reference frame (FERLAND et al., 2002). 
The densification of the geodetic networks is necessary in support of large-scale 
mapping applications, cadastral measurement and geodetic point construction. 
Nowadays, the Global Positioning System (GPS) is most frequently used to densify 
geodetic networks. Densifying the geodetic networks in Turkey require determining 
the positions of potential new GPS sites with reference to the locations of existing 
GPS sites (TURKISH CHAMBER OF SURVEY AND CADASTRE ENGINEERS, 
2008). Therefore, it is necessary to estimate the velocity vectors of the densification 
points in order to obtain the associated coordinates with the reference GPS epoch.  
 The geodetic point velocities derived from measured time series of GPS sites 
are used as basic parameter in geodetic and geophysical applications, including 
velocity field determination of geodetic networks, kinematic modelling of crustal 
movements and monitoring plate boundary dynamics. The estimation of an accurate 
geodetic point velocity has therefore great importance in geosciences.  In recent 
decades, comprehensive efforts have been put to determine the crustal velocity field 
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in several scientific studies (NOCQUET & CALAIS, 2003; D'ANASTASIO et al., 
2006; HEFTY, 2008; WRIGHT & WANG, 2010).   
 The artificial neural network (ANN) has been applied in diverse fields of 
geosciences and geoinformatics including velocity field determination and 
remarkable accomplishments were made with ANN. For example, a comparison of 
the ability of ANNs and polynomials have been put for modelling the crustal 
velocity field and ANN was offered as a suitable tool for modelling the velocity 
field (MOGHTASED-AZAR & ZALETNYIK, 2009). A back propagation artificial 
neural networks (BPANN) was used for estimating the velocity of the geodetic 
densification points as an alternative tool to the interpolation methods and BPANN 
estimated the point velocities with a better accuracy than the interpolation methods 
(GULLU et al., 2011a). The utility of ANNs for estimating the velocities of the 
points in a regional geodetic network has been evaluated and the employment of 
BPANN is concluded as an alternative method for geodetic point velocity 
estimation (YILMAZ, 2012).  
 Deciding the number of hidden neurons required for the implementation of an 
arbitrary function is one of the major problems of ANN that still deserves further 
exploration. The main objective of this study is to evaluate BPANNs with different 
number of hidden neurons for optimizing the architecture of BPANN in estimating 
the velocities of GPS densification points. The point velocities that are estimated by 
BPANNs over a study area are compared, in terms of root mean square error 
(RMSE) of the velocity differences. The rest of this paper is structured as follows: 
The theoretical aspects of ANN, hidden number selection and training procedure are 
presented in Section 2. Section 3 outlines the study area, source data and evaluating 
methodology. The numerical case study is analyzed in Section 4. Section 5 includes 
the results and conclusions. 
 
2. ARTIFICIAL NEURAL NETWORKS 
 ANN can be defined as physical cellular networks that are able to acquire, 
store, and utilize experiential knowledge related to network capabilities and 
performances (SINGH et al., 2010). ANN is formed by artificial neurons that are 
interlinked through synaptic weights for modelling of decision-making processes of 
a human brain. Each neuron receives inputs from other neurons and generates an 
output. The output acts as an input to other neurons. The input information of the 
neuron is manipulated by means of weights that are adjusted during an iterative 
adjustment process known as training process. ANN is a distributed parallel 
processor, consisting of simple units of processing with which knowledge can be 
stored and used for consecutive assessments (HAYKIN, 1999). ANN processes the 
records one at a time, and learns by comparing its prediction of the record with the 
known record. After the training procedure an activation function is applied to all 
neurons for generating the output information (LEANDRO & SANTOS, 2007).   
 The multilayer perceptron (MLP) model that was suggested by Yilmaz (2012) 
for velocity field determination was selected for this study. Its advantages include 
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easy implementation and generalization ability among several architectures of 
ANNs. MLP consists of one input layer with N inputs, one (or more) hidden layer(s) 
with q units and one output layer with n outputs. The output of the model with a 
single output neuron (output layer represented by only one neuron, i.e. n = 1) can be 
expressed by Nørgaard (1997):  
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Wj is the weight between the j-th hidden neuron and the output neuron, wj,l is the 
weight between the l-th input neuron and the j-th hidden neuron, xl is the l-th input 
parameter, wj,0 is the weight between a fixed input equal to 1 and  j-th hidden neuron 
and Wo is the weight between a fixed input equal to 1 and the output neuron. 
 The non-linear relationship between hidden and output layers requires an 
activation function, which can appropriately relate the corresponding neurons. The 
sigmoidal function that is used for satisfying the approximation conditions of ANNs 
(HAYKIN, 1999; BEALE at al., 2010) is selected as the activation function.  The 
sigmoid function is mathematically represented by:  

 

f (z) = )1(
1

ze−+                                           (2) 

 
where z is the input information of the neuron and f(z) Є [0,1]. The input and output 
values of ANN have to be scaled in this range. The proposed ANN for this study is 
trained using the classical back-propagation algorithm that has well-known ability 
as function approximators (PANDYA & MACY, 1995). A standard tool in statistics 
known as cross-validation is used herein as a stopping criterion (HAYKIN, 1999) in 
which training, testing and validation data sets are needed. BPANN is currently the 
most widely used algorithm for connectionist learning. Its rapid rise in popularity 
has been a major factor in the resurgence of ANNs. Back-propagation is a non-
linear generalization of the squared error gradient descent learning rule for updating 
the weights of neurons in MLPs (SAVIO et al., 2010). Despite its limitations, back-
propagation has expanded the range of problems to which ANNs can be applied 
(REZAI et al., 2009). BPANN has been more widely applied in engineering fields 
among all other ANN applications because of its capacity for nonlinear mapping, its 
accuracy for learning and its good robustness. BPANN is a feed forward and 
supervised learning network so it requires a desired response to be trained. BPANN 
learns how to transform inputs into desired responses, so it is widely used for 
function approximation. The major purpose of developing function approximation is 
to interpolate in a meaningful way between the training samples (HOLMSTROM & 
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data and poor generalization, while too few hidden neurons may not allow BPANN 
to learn the data sufficiently and accurately.  
 There are various approaches to find the optimal structure of ANN with an 
optimal size of the hidden neuron in a constructive or destructive algorithm. During 
the constructive/destructive processes, the number of hidden neurons are increased 
or decreased incrementally. In these methods, the available data are divided usually 
into three independent sets: A training set, a testing set and a validation set. Only 
the training set participates in the ANN learning, the testing set is used to avoid 
overfitting and the validation set is used to compute prediction error, which 
approximates the generalization error. The performance of a function approximation 
during training, testing and validation is measured, respectively, by training error, 
testing error and validation error presented in the form of mean squared error (MSE) 
(LIU & STARZYK, 2008).  For a given set of N inputs, MSE is defined by:  

 

MSE = ∑
=

−
N

i

pred
i

act
i yyN

1

2)(1                                               (3) 

 
where yi

act denotes the given actual output value and yi
pred denotes the neural 

network (predicted) output. 
 In this study, a destructive algorithm (LE CUN, 1990; REED, 1993; LAAR & 
HESKES, 1999; LIANG, 2007) is applied starting with 30 neurons in the hidden 
layer of BPANN and after the training process has taken place, BPANN is pruned 
from 30 to 2 by decreasing the hidden neurons in pairs. Some existing methods for 
selecting the number of hidden neurons mentioned below are also used for 
comparing the results.  

 
2.1.1 Methods for Selecting the Number of Hidden Neurons 
 There are some existing methods that are currently used in the field of neural 
networks to choose the architecture of ANN. Some of the approaches have a 
theoretical formulation behind and some of them are just justified based on 
experience. These methods were used in the experimental study without a 
preliminary preference. The following notation is used: N is the dimension of the 
input data, Nh represents the number of hidden neurons in the single hidden layer 
and M is used for the output dimension. T is used to indicate the number of available 
training vectors.  

1) Baily and Thompson (1990) have submitted that Nh=N * 0.75. 
2) Katz (1992) proposed ANN architecture with N *1.5 ≤ Nh ≤ N * 3. 
3) Aldrich et al. (1994) used the following equation for the number of 

hidden neurons. Nh= )MN(k
T

+ , (2≤ k <10). 
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4) Barron (1994) pointed out that the number of hidden neurons was   Nh=

)Tlog*N/(T . 

5) Kaastra and Boyd (1996) have suggested to use Nh= MN *  hidden 
neurons in ANN architecture.  

6) Kanellopoulas and Wilkinson (1997) estimated the number of hidden 
neurons by Nh= N * 2. 

7) Neuralware (2001) defined ANN structure with Nh=T/(5*(N+M)) hidden 
neurons.     

8) Witten and Frank (2005) estimated the default ANN architecture size as 
Nh= (N+M)/2. 
 

2.2 BPANN Training Procedure 
 Training of BPANN, implemented to find a good mapping function, can be 
done by an adjustment of the weights between the hidden layer and the output layer 
to the data set that attempts to decrease the residuals (difference between the 
computed output and the actual given output) of the output of the neural network 
using a suitable supervised learning algorithm while fixing the network architecture 
and activation function. Through the process of training, BPANN learns general 
properties of the input - output relationship of a system and thus generalizes beyond 
training data points (MAHMOUDABADI et al., 2009). The training procedure 
consists of two main steps: Feed-forward and back-propagation. The training 
process continues over the training data set for several thousand epochs. The delta 
rule based on squared error minimization is used for BPANN training procedure. 
BPANN is trained to minimize the MSE by a gradient method. 
 
3. STUDY AREA, SOURCE DATA AND METHODOLOGY 
 In this study, the densification point velocity estimation is carried on over a 
study area that is located in internal western region of Turkey within the 
geographical boundaries: 37.85 0 N ≤ φ ≤ 39.78 0 N; 29.11 0 E ≤ λ ≤ 30.23 0 E 
defining approximately area of 65000 km2  (∼ 230 km x ∼ 280 km). 
 The evaluating tests of the densification points’ velocity refer to a source data 
set in the study area (Figure 2). The source data set comprises 44 existing GPS sites 
that belong to Turkish National Fundamental GPS Network (TNFGN) and it is 
separated into three groups for training, testing and validation procedures. The 
velocities of TNFGN points used in this study for evaluating BPANN based point 
velocities, were computed in ITRF2000 (reference epoch 2005.00) with repeated 
GPS observations that relates positional precision at sub-millimetre level.   
 The evaluation is based on the determination of the differences between the 
known point velocity and the point velocities estimated by BPANN, using the 
equation below. 

∆VX,Y,Z = V(known) – V(estimated)                                                       (4) 
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quantity for training and testing procedure of BPANN. The training process was 
carried out with a sufficiently large number of hidden neurons. In our simulations, 
30 hidden neurons are used as a starting value. A sufficiently large number of 
hidden neurons are required because too few hidden neurons often give a large first 
singular value, which, together with a high threshold, provide an incorrect indication 
of the rank of the output activations of the hidden layer neurons (TEOH et al., 
2006). 
 BPANN developed in MATLAB’s artificial neural network module allows to 
dynamically changing the parameters of a learning algorithm, to monitor error 
values and weight changes, and to generate digital data and graphs that show 
whether learning is sufficient. BPANN [2:30:1] (2 source nodes in the input layer, 
30 neurons in the hidden layer and 1 neuron in the output layer) is trained for 
100000 epochs to find an optimal set of connection weights. The velocities of the 
testing points are estimated via trained BPANN to minimize overfitting and the 
velocity estimation (generalization) power of the resultant BPANN is assessed by 
the velocities of the validation points. The parameters that are obtained in the 
training procedure with 30 hidden neurons are fixed and used in the training process 
of pruned BPANNs. Pruning of BPANN is applied after the training procedure. The 
number of hidden neurons is subsequently decreased in pairs from 30 to 2. These 
pruned BPANNs are retrained by fixed parameters and applied on the testing and 
validation data sets. Furthermore, BPANN architectures with 1, 3 and 5 hidden 
neurons are used for evaluating with respect to the existing methods mentioned 
above (Model A→ N = 2, M = 1, T = 20; Model B→ N = 2, M = 1, T = 24 ).  
 The significance of pruning away hidden neurons in BPANN architecture is 
investigated by RMSE values of the velocity residuals (∆VX,Y,Z ) of the training, 
testing and validation points (Figure 3 in appendix). The minimum and maximum 
values of these RMSEs and the corresponding hidden neuron numbers are 
summarized in Table 1, in appendix.  
 The reference velocity fields (VX,Y,Z) of the study area that are generated from 
GPS observations and the velocity residual (∆VX,Y,Z) maps with regard to the 
smallest velocity differences of the testing and validation points (associated with 20 
hidden neurons) computed by equation (4), are given in Figure 4, in appendix. The 
contour lines are drawn at 2-mm intervals on the velocity residual maps.  

 
5. RESULTS AND CONCLUSIONS 
 The analysis of the RMSE values given in Appendix, Figure 3 reveals that the 
training data set, the testing data set and the validation data set are very similar. The 
differences between the RMSE values based on the training points, the testing 
points and the validation points are quite small. It can be considered that the training 
data set represents the possible variations in the study area well. 
 Table 1, in Appendix, shows that for each data set, RMSE values of Model A 
are in better agreement than Model B. It can be seen that Model A produced a larger 
error on the training data set than Model B. However, the results of the testing and 
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validation data sets are better in Model A. This suggests that the training data set of 
Model A was representative of the entire data source (testing and validation data 
sets) and Model A produced RMSE values that were consistent for training, testing 
and validation data sets. 
 The graphical presentations in Appendix, Figure 3 confirms that BPANN 
architectures provide the sufficient RMSE values of the point velocity residual that 
relates the sufficient positional accuracy for the source data (±3 cm for TNFGN 
points). 
 The objective of this study was to quantify the significance of removing away 
hidden neurons in BPANN architecture for estimating the densification point 
velocity. From the results of this study, the following remarks can be made: 
(1) The employment of BPANN with 30 hidden neurons did not lead an 
overfitting of data nor poor generalization. 30 hidden neurons is an acceptable value 
for starting removal processes of hidden neurons. 
(2) Hidden neurons between 30 and 20 did not have a marginal effect on the 
resulting performance of BPANN. 
(3) In Model A and Model B, minimum RMSE values (Model A→ ±1.4, ±0.7, 
±1.4 mm/year; Model B → ±1.5, ±1.3, ±1.4 mm/year, respectively) of the training 
point velocity residuals are obtained by BPANN with 20 hidden neurons such as 
submitted by Gullu et al. (2011a) and by Yilmaz (2012). 
(4) In Model A, sufficient RMSE values (±2.3, ±1.3, ±1.7 mm/year for the testing 
points; ±2.0, ±1.2, ±1.7 mm/year for the validation points, respectively) are 
estimated when 20 hidden neurons are used for BPANN architecture, with respect to 
the training set results.   
(5) In Model B, minimum RMSE values (±2.6, ±1.3, ±1.9 mm/year for the testing 
points; ±2.7, ±1.3, ±1.8 mm/year for the validation points, respectively) are obtained 
by BPANN with 20 hidden neurons.  
(6) The velocity residual (∆VX,Y,Z) maps in Appendix, Figure 4 clarify that 
BPANN architecture with 20 hidden neurons is effective for geodetic velocity field 
determination with a satisfactory positional accuracy.  
(7) In Model A, BPANN with 2 hidden neurons provided the smallest RMSE 
values (±2.0, ±1.2, ±1.7 mm/year for the testing points, respectively) of the velocity 
residuals (associated with ∆VX,Y,Z) and (±1.8, ±1.2 mm/year for the validation points, 
respectively) of the velocity residuals (associated with ∆VX,Y). For the training data 
set, RMSE values (±1.7, ±1.1, ±1.6 mm/year, respectively) are obtained by the same 
BPANN architecture. 
(8) Maximum RMSE values of the velocity residuals for all three data sets are 
obtained by BPANN with 1 hidden neuron in Model A and Model B. These results 
show that BPANN could not learn the source data sufficiently and accurately when 
the number of hidden neurons is 1 (Nh<N).  
 In conclusion, the employment of BPANN estimates the densification point 
velocities with a sufficient accuracy. The destructive algorithm can be used for 
optimizing the number of neurons used in the hidden layer of BPANN that will be 
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used in velocity field determination. 20 hidden neurons can be accepted as a starting 
value in the pruning approach with a training set that distributes throughout the 
study are in all dimensions (representative of the testing and validation data sets). 
Furthermore, a rough guideline of appropriate number of hidden neurons can be 
introduced as Nh ≤ T with respect to the accuracy of the result and the learning time 
for adaptation of BPANN for estimating the geodetic point velocities, determining 
velocity field in locations where future GPS stations could be deployed and 
interpolating the velocity field in areas that will not be instrumented.   
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Table 1 - The minimum and maximum values of RMSEs (in mm/year). 

 
 

 
 
 
 
 
 
 

Data Set Velocity Min / Neuron Max / Neuron 

M
od

el
 A

 

Training 
∆Vx 1.4 / 20 2.8 / 1 
∆Vy 0.7 / 20 1.5 / 1 
∆Vz 1.4 / 20 2.4 / 1 

Testing 
∆Vx 2.0 / 2 2.4 / 1 
∆Vy 1.2 / 2 1.6 / 1 
∆Vz 1.7 / 2 2.5 / 1 

Validation 
∆Vx 1.8 / 2 2.3 / 1 
∆Vy 1.2 / 2 1.7 / 1 
∆Vz 1.7 / 20 2.5 / 1 

M
od

el
 B

 

Training 
∆Vx 1.5 / 20 1.8 / 1 
∆Vy 1.3 / 20 1.5 / 1 
∆Vz 1.4 / 20 2.0 / 1 

Testing 
∆Vx 2.6 / 20 3.3 / 1 
∆Vy 1.3 / 20 1.6 / 1 
∆Vz 1.9 / 20 2.8 / 1 

Validation 
∆Vx 2.7 / 20 3.5 / 1 
∆Vy 1.3 / 20 1.8 / 1 
∆Vz 1.8 / 20 2.9 / 1 
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Figure 4 - Reference velocity fields and residual velocity maps of the study area. 
 

 
 


